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Abstract
The guided wave (GW) field excited by a wedge-shaped, anisotropic piezocomposite
transducer, surface-bonded on an isotropic substrate is investigated with applications to large
area structural health monitoring. This investigation supports the development of the composite
long-range variable-direction emitting radar (CLoVER) transducer. The analysis is based on the
three-dimensional equations of elasticity, and the solution yields expressions for the field
variables that are able to capture the multimodal nature of GWs. The assumption of uncoupled
dynamics between the actuator and substrate is used, and their interaction is modeled through
shear tractions along the transducer’s radial edges. A similar problem is modeled using
three-dimensional finite element simulations to assess the spatial and transient accuracy of the
solution. Experimental tests are also conducted on pristine structures to validate the accuracy of
the theoretical approach. The experimental studies employ CLoVER transducers developed
in-house, and their manufacturing procedure is briefly described. Frequency response
experiments based on piezoelectric sensors are conducted to assess the performance of the
solution in the frequency domain. These tests are complemented by laser vibrometer
measurements that allow the spatial and temporal evolution of the solution to be evaluated. The
numerical simulations and experimental tests show that the wave time of arrival, radial
attenuation, and azimuthal distribution are well captured by the theoretical solution.

(Some figures in this article are in colour only in the electronic version)

Nomenclature

A Area
A∗ Aspect ratio
b Substrate half-thickness
b̄ Residue
C Capacitance
cp, cs Dilatational/shear wave speed in isotropic material
ck Complex Fourier coefficients of shear tractions
D Dispersion equation for Rayleigh–Lamb waves
di j Piezoelectric coupling coefficient (i, j = 1–3)
E Young’s modulus for an isotropic material
F̄ Shear stresses Fourier transform vector

1 Author to whom any correspondence should be addressed.

gi j Piezoelectric constants (i, j = 1–3)
H, ϕ Helmholtz displacement components
h, w Generic functions
H̃k Hankel transform of order k
Jm Bessel function of the first kind and order m
k Dielectric constant
n Number of half-cycles in toneburst signal
p Capacitance function
r, θ Radial/azimuthal position
r∗ Non-dimensional sensor dimension
�r Radial dimension
R Radius

0964-1726/09/075005+27$30.00 © 2009 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0964-1726/18/7/075005
mailto:ksalas@umich.edu
mailto:cesnik@umich.edu
http://stacks.iop.org/SMS/18/075005


Smart Mater. Struct. 18 (2009) 075005 K I Salas and C E S Cesnik

RO Transducer’s outer radius
RI Transducer’s inner radius
s(t) Toneburst signal
S(ω) Fourier transform of toneburst signal
t Time
t̄ Thickness
u(·) Unit step function
u Displacement vector
V Voltage
w∗ Non-dimensional sensor width
x, y, z Cartesian coordinates
ẑ Arbitrary complex variable
Γ,Ψ Coefficient matrices used in the theoretical solution
δ(·) Dirac delta function
�θ Azimuthal dimension
εi j Strain components (i, j = x, y or r, θ )
ε0 Permittivity constant
ε Error between function and Fourier series represen-

tation
θ∗ Non-dimensional sensor azimuthal span
θL Transducer’s left azimuthal edge
θR Transducer’s right azimuthal edge
λ,μ Substrate Lamé constants
ν Poisson’s ratio for an isotropic material
ξ Radial wavenumber
ξx , ξy Wavenumber along x- and y-directions
ρ Substrate material density
τ0 Traction amplitude
σ Stress tensor
φ Azimuthal wavenumber
ω Angular frequency
ω0 Center frequency of toneburst signal

Subscript
a Actuator
A Antisymmetric mode
B Substrate
e Element property
P Piezoelectric
s Sensor
S Symmetric mode
uc Unit cell

1. Introduction and background

The objective of structural health monitoring (SHM) is to
obtain real-time information about the condition of a structural
component. This involves interrogating the structure of interest
using an on-board network of transducers to determine whether
any damage is present, and if so its location, type, and
severity. It is envisioned that the information obtained from
these systems could be used as input to damage prognosis
algorithms which would make a prediction about the remaining
useful life of the component based on its current condition.
There are multiple safety and cost-saving benefits associated
with the implementation of this technology in aerospace,
mechanical, and civil structures. An introduction to this field
was presented in the work by Farrar et al [1], where the
process of SHM was defined in terms of a four-step pattern

recognition process. These steps dealt with evaluation of the
operational environment of the SHM system, the acquisition
and interpretation of transducer data, and the development of
statistical models for feature discrimination. Similarly, the
work of Worden et al [2] provided a set of axioms for the
development of SHM methodologies where key requirements
and constraints were discussed.

Guided wave (GW) testing methods have gained
importance in SHM applications primarily because of their
ability to be transmitted over long distances over the surface
as well as through the thickness of a structure with little
attenuation [3]. In addition, their active nature allows them
to be used for inspection on demand. Another important
benefit of this approach is the sensitivity of different GW
modes to a variety of structural defects. For instance,
the fundamental symmetric (S0) Lamb mode is sensitive to
through-the-thickness damage due to its dominant in-plane
components, and therefore is well suited for the detection of,
for example, full- or part-depth holes. Similarly, the A0 mode
is better suited for surface damage (e.g., surface cracks) due
to its dominant out-of-plane component. A comprehensive
review of this SHM approach was presented by Raghavan and
Cesnik [3].

The following subsections provide a brief background on
the key aspects that are addressed in this paper. Previous
efforts on GW modeling are discussed first, followed by a brief
overview of the available technology for GW transduction.
The different testing approaches available for GW experiments
are then discussed. These components are combined in the
last subsection where the scope of the present investigation is
described.

1.1. Analysis of GW propagation in isotropic plates

After the early development of Lamb wave theory (e.g., the
works of Lamb [4] and Gazis [5]), there has been much effort in
elastodynamics research to develop solutions for the GW field
excited by surface-bonded transducers. Various approaches
have been taken towards this goal and some of these are
highlighted in this section. Several researchers have analyzed
the propagation of GWs in isotropic plates by modeling the
actuator as a combination of point sources. For example,
Wilcox et al [6] used the Huygens principle to model the
acoustic field induced by interdigital polyvinylidene fluoride
(PVDF) transducers. In that approach, the electrode fingers
were divided into individual elements, each of which was
modeled as a point source causing a normal traction on the
surface of the substrate. Each of these sources was represented
through an excitability function and radiation pattern, both of
which depended on wavenumbers found from the Rayleigh–
Lamb dispersion relation. The contribution from the actuator
was then found by integrating the contributions from each
individual point. The predictions from this analysis were
shown to compare well with experimental measurements for
rectangular and wedge-shaped transducers. Along a similar
direction, although in a more general framework, Achenbach
et al [7] expressed the displacements induced by a time-
harmonic point load of arbitrary direction, applied either
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internally or on the surface, as an expansion of symmetric
and antisymmetric Lamb modes using Hankel functions as the
carrier waves. In their approach, the principle of elastodynamic
reciprocity was used to find the expansion coefficients for each
mode.

Different studies have used reduced order plate theories
in the analysis of wave propagation in an effort to obtain
more computationally efficient, but significantly simplified
solutions. For instance, Lin and Yuan [8] modeled the
excitation of GWs on isotropic substrates using Mindlin
plate theory accounting for transverse shear and rotary inertia
effects, and considering only axially symmetric motions. The
effect of the transducer on the plate was modeled as uniform
bending moments around the edges of the actuator. In an
effort to correlate their analysis with experimental results, a
model for the sensor response under the excited GW field was
developed. The experimental measurements, which employed
piezoceramic disks, displayed reasonable agreement with the
theory until frequency-thickness products of 160 kHz mm,
as the shear correction factor needed in the formulation was
chosen to match one dispersion curve corresponding to the
3D elasticity solution. Similarly, Rose and Wang [9] used
Mindlin plate theory to derive source solutions that could be
combined to represent finite-dimensional transducers. They
argued that the range of validity of their solution made it
applicable to typical aerospace structures. A higher-order plate
theory, considering first-order normal strains and second-order
transverse shear strains, was developed by Yang and Yuan [10].
In their work, it was argued that this theory produced good
agreement with 3D elasticity solutions until the first cut-off
frequencies using a more efficient approach. However, the
main limitation with this type of approaches is that they are
limited to low frequency-thickness products and, in most cases,
can only model the fundamental antisymmetric mode. As
was previously mentioned, one of the main advantages of
using GWs is their sensitivity to different damage types, which
can be better exploited at higher frequency-thickness products.
Furthermore, while damage detection can be typically achieved
using the fundamental modes, it may be necessary to use higher
modes if the type of defect is to be identified. In this case, only
3D elasticity models will be reliable.

A more accurate model was developed by Giurgiutiu,
where the GW field excited by an infinitely wide piezoelectric
actuator and an isotropic substrate was modeled using
2D elasticity [11, 12]. The interaction between both
parts was modeled as shear tractions along the transducer
edges, and the solution was found using Fourier transforms
and the residue theorem from complex calculus. The
concept of Lamb wave tuning was demonstrated and good
agreement with experiments was reported. Following this
approach, Raghavan and Cesnik developed 3D elasticity
solutions for GW excitation by finite-dimensional transducers
in isotropic and composite structures [13–15]. The
analysis used Fourier transforms and complex calculus,
and a rigorous Fourier inversion procedure was presented.
Several transducer constructions (piezoelectric wafers and
piezocomposite transducers) and geometries (rectangular,
circular, and ring-shaped) as well as structural configurations

(pipes and plates) were considered, and the solution was used
to determine optimal actuator and sensor dimensions for use in
SHM systems.

Different approaches to numerically model the propaga-
tion of GW have also been proposed. Typical solution method-
ologies, such as the finite-difference and finite element meth-
ods, are not ideally suited for GW analysis due to their high
computational cost. An alternative approach was proposed by
Lee and Staszewski [16] who applied the local interaction sim-
ulation approach (LISA) to analyze the GW propagation in
metallic structures. Following this approach, the domain was
divided into elementary cells that were considered to be discon-
tinuous among each other. Therefore, displacement continuity
was enforced at each cell node. The results from this method
were favorably correlated with experimental data, and subse-
quently used in modeling the interaction of GWs with different
structural defects [16, 17].

1.2. Transducers for GW excitation in SHM

Several transducer options are available for the excitation
of GWs, and a brief summary of these is presented in this
section. For a comprehensive review of this area, the reader
is referred to the work of Raghavan and Cesnik [3]. The GW
field is usually excited using piezoelectric transducers, with
the most common transducer type being simple piezoelectric
wafers (commonly referred to as piezos) bonded on the surface
of the structure to be inspected. Typical materials used
for the construction of these wafers include lead zirconium
titanate ceramics (PZT) and polyvinylidene fluoride (PVDF)
films. These wafers are thin, light, and unobtrusive and are
very convenient for surface-bonded-based inspection. Among
these, however, PZT is usually preferred since PVDF has a
high compliance and low inverse piezoelectric effect which
results in poor actuator–sensor response [3]. The main
disadvantage in using these, however, is that, although thin
and light, the ceramic material is also very brittle and does
not have good surface conformability. This limitation is
particularly important for the shell-type structures usually
encountered in aerospace applications. In order to alleviate
this problem, different anisotropic piezocomposite transducer
(APT) concepts have been designed and manufactured in
recent years. Bent and Hagood [18] designed the active
fiber composite (AFC) transducer using extruded, cylindrical
piezoceramic fibers embedded in an epoxy matrix. These
fibers are actuated through the use of interdigitated electrode
patterns printed on a copper-clad kapton film. This
construction presented numerous advantages, in particular, a
greatly enhanced surface conformability, high strain energy
density, and focused strain actuation. The implementation
of interdigitated electrodes allowed the use of the 3 − 3
piezoelectric effect, where the poling of the device is such
that the highest piezoelectric coupling coefficient coincides
with the intended actuation direction, as shown in figure 1(a),
theoretically allowing these devices to induce strains at
least twice as large as those obtained with simple PZT
actuators. An alternative concept, the macro-fiber composite
(MFC) transducer illustrated in figure 1(b), was developed by
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Figure 1. The two primary types of APT [19]. (a) Active fiber composite (AFC) transducer, (b) macro-fiber composite (MFC) transducer.

researchers at NASA Langley [19]. This type of construction
is very similar to the AFC, except that it uses rectangular fibers
obtained by dicing a piezoceramic wafer using high-precision
dicing saws [20, 21] yielding a more repeatable manufacturing
procedure. The most salient non-piezoelectric alternative is
that of electromagnetic acoustic transducer arrays (EMATs)
which typically require permanent magnets to be bonded on the
surface of the structure under inspection (see for example [22]).
These devices use electromagnetic fields to generate forces
on the substrate that result in the excitation of GWs. Since
these devices are typically bulky, they are not well suited for
aerospace applications and will consequently not be considered
in this work from this point onwards.

1.3. GW experiments for SHM applications

GW experiments directed towards SHM applications have been
performed in the past by several researchers in both isotropic
and composite structures. In general, two approaches have
been used to record the GW field generated experimentally.
The first consists of bonding piezoelectric sensors on the
surface of the structure under investigation to record the
strain field produced by the actuator. Using this approach,
the sensor can be sized so that it is insensitive to specific
Lamb wave modes which is a desirable feature for damage
detection. An additional benefit is that there is no limit to
the Lamb wave propagation frequency that can be sensed.
Some important disadvantages of this approach are the facts
that the sensor’s performance is susceptible to environmental
conditions, such as electromagnetic interference (EMI), and
that information is only recorded at the point where the
sensor is placed. Raghavan and Cesnik have used this
approach successfully in sensing the GW field generated by
piezoelectric-based actuators in pristine and damaged isotropic
structures [13, 23]. More recently, this was used to study
the effects of environmental conditions, such as elevated
temperatures, on GW propagation and damage detection [24].
This approach has also been used for damage detection in
composite structures. The works of Badcock et al [25],
who used embedded piezoelectric transducers to detect impact
damage in composite plates, and Kessler et al [26], where
surface-bonded piezoelectric patches were used for detecting
different damage types in composite laminates and sandwich
panels, are typical examples of this application.

The second approach is based on the non-contact
technique of laser vibrometry, where a laser beam is used to
record the out-of-plane velocities induced by the piezoelectric
actuator using the Doppler shifting phenomenon. An overview
of the different non-contact techniques available for SHM
applications can be found in the work of Staszewski et al [27].
This approach allows outstanding visualization of the wave
field, which is valuable in studying its interaction with different
damage types. This feature is also critical in the experimental
analysis of wave propagation in composite laminates, where
wave steering phenomena are typically present [15]. In spite
of these advantages, this method is impractical for on-line
based inspection, and post-processing of the data recorded
(smoothing and denoising) is usually necessary before it can
be effectively analyzed [27]. Staszewski et al have used
this method to study the GW field excited by piezoelectric
transducers in metallic structures, with their initial studies
successfully verifying this technique’s performance in sensing
low frequency (75 kHz) GWs in isotropic plates [27]. Their
investigation was later directed towards detecting different
damage types such as circular holes, rectangular notches, and
cracks [28, 29]. More recently, they have used 3D laser
vibrometry to directly measure all displacement components
with applications to fatigue crack detection [30]. This approach
has also been used for GW visualization in quasi-isotropic
composite laminates (see for example [31]).

1.4. Scope of the present work

This study is concerned with the development of a 3D
elasticity theory for GW excitation by a wedge-shaped APT
in isotropic plate-like structures. The construction of this
theory supports the development of the composite long-
range variable-direction emitting radar (CLoVER) transducer
presented by the authors as an alternative concept for damage
interrogation in SHM systems. The theoretical framework is
based on the work of Raghavan and Cesnik [13, 14], and the
resulting solution is therefore able to capture the multimodal
nature of GWs. The paper begins with a brief description
of the CLoVER transducer where some of its salient features
are briefly described. The boundary value problem of linear
elasticity is then formulated and tailored to the case of a
CLoVER sector. The solution process is later described in
detail and the resulting displacement equations are presented.
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Figure 2. (a) Sequential damage interrogation approach proposed with CLoVER transducers; (b) electrode design used in first generation of
CLoVER sectors.

Results from 3D finite element simulations are then used to
determine the accuracy of the theoretical result as a solution to
the elasticity problem considered. Subsequently, the fitness of
the theoretical result in describing the actual physical system
is explored through a comprehensive set of experimental
tests in pristine isotropic structures. The performance of the
solution in the frequency domain is verified using sensor-based
experiments for both the symmetric and antisymmetric modes.
These results are then complemented by laser vibrometer
measurements that allow the temporal and spatial evolution of
the solution to be assessed.

2. The CLoVER transducer

The CLoVER transducer has been introduced [32, 33] as an
alternative concept for efficient damage interrogation and GW
excitation in SHM systems. This transducer consists of a
collection of wedge-shaped APTs arranged in a circular array
that are individually activated in a sequential manner to scan a
complete 360◦ structural range, as shown in figure 2(a).

The geometry of a CLoVER sector allows the amplitude
of the induced displacements to be larger than those for a
similarly sized ring configuration for similar electric current
inputs. This is related to the decreasing capacitance of the
device as its azimuthal span is decreased. In addition, the
interdigitated electrode design used in the first generation of
CLoVER transducers uses two independent radial subdivisions
that are obtained by connecting different sets of electrode
fingers to independent electrode lines. This variable-length
feature can be used to achieve modal selectivity, which is a
desired feature in GW testing (see for instance [34]). This
can be achieved by selecting the radial dimension according
to the wavelength of the desired mode. Moreover, these
subdivisions give each sector in the transducer the ability to
independently act as an actuator and sensor, as schematically
shown in figure 2(b), where it can be seen on the left-hand-side
of the electrode pattern that the upper and lower sections are
separate. Using the radial subdivisions for independent acting
and sensing could decrease the number of separate transducers
needed for inspection. Finally, the composite construction

characteristic of APTs gives the CLoVER transducer the
ability to conform to curved surfaces (e.g., aircraft fuselages),
an increased resistance to environmental damage, and a higher
specific strength than monolithic piezoelectric wafers. The
advantages of the CLoVER concept are discussed in detail in
separate works by the authors [33, 35].

3. Boundary value problem formulation

The GW field excited by a finite-dimensional transducer
bonded on the surface of an isotropic substrate is modeled as
a boundary value problem of linear elasticity. The dynamics
of the actuator and the substrate are assumed to be uncoupled,
and their interaction is modeled as surface tractions along the
edges of the transducer. There are two implications to this
assumption. First, the bonding layer between the actuator and
the substrate is assumed to be infinitely thin and not shear
deformable, that is, the two parts are assumed to be perfectly
bonded. This ensures that strains are transferred only along
the actuator edges. This assumption is clearly an idealization,
as the bonding layer will have a finite thickness in actual
applications. Valuable insight into this aspect was provided
by the work of Crawley and de Luis [36], who considered the
case of a piezoelectric actuator surface-bonded on a substrate
under static conditions. They showed that, for a bonding
layer with finite thickness, this assumption becomes accurate
if the product of the actuator’s modulus and thickness is much
larger than that of the substrate on which it is bonded. In
fact, it was shown that as this ratio approaches zero, the
assumption becomes the exact solution. It was also shown
that if this condition was not satisfied, a shear lag solution
considering strain transfer along the length of the actuator was
necessary. Secondly, so that the dynamics of the actuator can
be ignored, its inertia must be a small fraction of the total
inertia of the system in the region where strains are transferred.
These assumptions are necessary if tractable semi-analytical
solutions are to be obtained. Similar models have been used
in the past and good agreement with experiments has been
obtained [11–14].
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(a)

(b)

Figure 3. Transducer bonded on surface of infinite plate.
(a) Cross-sectional view, (b) top view.

Based on these assumptions, consider an isotropic
substrate of thickness 2b, with the coordinate system centered
midway through its thickness, as depicted in figure 3(a).
The substrate is of infinite dimensions along the x- and y-
directions, as shown in figure 3(b), and the transducer is
bonded on the surface z = b. Using the constitutive law for
isotropic materials and linear strain–displacement relations, the
equilibrium equations in the absence of body forces may be
expressed as:

(λ+ μ)∇∇u + μ∇2u = ρü. (1)

As previously mentioned, the transducer is replaced by
surface tractions on the top surface of the substrate, while the
bottom surface is traction free. Therefore, the following set of
boundary conditions applies:

σ (x, y,−b) · nl = 0 (2)

σ (x, y, b) · nu = σ 0 (3)

where nl = [ 0 0 −1 ]T, nu = [ 0 0 1 ]T and:

σ 0 =
[
σ ◦

xz
σ ◦

yz
0

]
. (4)

Equation (4) reflects the fact that the surface-bonded
actuator only induces shear stresses on the substrate. A
solution to this problem, for the general case of an
arbitrarily-shaped transducer, was presented by Raghavan and
Cesnik [13, 37] and is outlined below. The displacement
vector, u, is decomposed into its Helmholtz components as:

u = ∇ϕ + ∇ × H (5a)

∇ · H = 0. (5b)

The first term in equation (5a) represents the gradient of
a scalar potential associated with dilatational deformations,
while the second term represents the curl of a vector
potential associated with constant volume distortions. This

decomposition results in the following four differential
equations:

∇2ϕ = ϕ̈

c2
p

(6a)

∇2H = Ḧ

c2
s

(6b)

where cp and cs correspond to the dilatational and shear wave
speeds, respectively, which are defined through:

c2
p = λ+ 2μ

ρ
(7a)

c2
s = μ

ρ
. (7b)

The solution to these equations, under harmonic excita-
tion, is obtained using two-dimensional Fourier transforms,
along with the set of boundary conditions given by equa-
tions (2) and (3). The spatial version of the two-dimensional
Fourier transform, F̄(ξx , ξy), of a generic function, f (x, y), is
defined as:

F̄(ξx , ξy) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)ei(ξx x+ξy y) dx dy. (8)

Applying the 2D spatial Fourier transform to equation (6a)
results in:

− (ξ 2
x + ξ 2

y )ϕ̄ + ∂2ϕ̄

∂z2
= −ω

2

c2
p

ϕ̄ (9)

where the derivatives property of the Fourier transform has
been used. It can be seen that the Fourier transform application
resulted in a partial differential equation being reduced to an
ordinary differential equation in the thickness domain. The
solution to this equation can be expressed as:

ϕ̄ = A sinαz + B cosαz (10)

where the term α is defined as:

α ≡
√
ω2

c2
p

− ξ 2 (11)

and the radial wavenumber ξ is defined through ξ 2 = ξ 2
x + ξ 2

y .
A similar procedure is applied to each component of the
distortional field, H, which results in the introduction of eight
constants that determine the displacement field. The solution to
ϕ̄ and each component of H̄ are then substituted in the Fourier-
transformed version of equation (5a) to find the displacement
components in the Fourier domain. This result is subsequently
combined with a linear kinematic relationship of the form
given in equation (12) to obtain the strain components.

εi j = 1
2 (ui, j + u j,i). (12)

The strain components are then used in conjunction with
a linear elastic constitutive equation to determine the stress
components. The boundary conditions given by equations (2)
and (3) are subsequently used along with equation (5b) to form
a system of equations from which the necessary constants can
be found. The dispersion equation for Rayleigh–Lamb waves
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(a) (b)

Figure 4. (a) Geometry of a CLoVER sector; (b) transducer replaced by shear tractions along radial edges.

results from seeking a non-trivial solution to this system of
equations. A detailed exposition of this procedure can be found
in the book by Graff [38]. The resulting displacement field can
be separated into symmetric and antisymmetric components.
To facilitate the presentation of the theory, only the results
corresponding to the antisymmetric mode will be presented
from this point on. The derivation of the symmetric component
follows an analogous sequence. Note that the complete
displacement field is obtained by summing the contribution
from both modes. After applying the 2D inverse Fourier
transform, the Cartesian displacement components expressed
in Cartesian coordinates are obtained as:

uA(x, y, t) =
∫ ∞

−∞

∫ ∞

−∞
ΓA(ξx , ξy)

DA(ξ)

× ΨA(ξx , ξy) · F̄(ξx , ξy)e
−i(ξx x+ξy y−ωt) dξx dξy . (13)

Note that equation (13) provides the displacement
components at the surface z = b. All subsequent analytical
expressions presented here will be for this surface as well.
In equation (13), ΓA and ΨA are matrices of coefficients, F̄
is a vector containing the Fourier transform of the surface
tractions, and DA corresponds to the dispersion relation for the
antisymmetric mode of Rayleigh–Lamb waves given by:

DA = (ξ 2 − β2)2 sinαb cos βb + 4ξ 2αβ cosαb sinβb (14)

where the term β is defined as:

β ≡
√
ω2

c2
s

− ξ 2. (15)

In the following section, the result given by equation (13)
will be expressed in polar coordinates and used to solve for the
displacement field produced by a CLoVER sector.

4. GW excitation by a CLoVER sector

The CLoVER sector geometry is easily described using polar
coordinates, and is defined by the transducer’s inner and outer
radii, RI and RO, as well as its left- and right-most angular
edges, θL and θR. Figure 4(a) shows a schematic of the
transducer’s geometry. At this point, equation (13) must be

modified to express the displacement components in polar
coordinates. This modification involves the use of the 2D
Fourier transform for polar coordinates; for a generic function,
g(r, θ), it is defined as:

G(ξ, φ) =
∫ ∞

0

∫ 2π

0
g(r, θ)eiξr cos(θ−φ)r dθ dr (16)

while the inverse transform is defined through:

g(r, θ) = 1

4π2

∫ ∞

0

∫ 2π

0
G(ξ, φ)e−iξr cos(θ−φ)ξ dφ dξ. (17)

Using these definitions, along with the transformations
ξx = ξ cosφ and ξy = ξ sinφ, yields the following equation
for the Cartesian displacement components expressed in polar
coordinates:

uA(r, θ, t) =
∫ 2π

0

∫ ∞

0

ΓA(ξ)

DA(ξ)
ΨA(ξ, φ)F̄(ξ, φ)

× e−iξr cos(θ−φ)eiωt dξ dφ. (18)

The matrix ΓA is a 3 × 3 diagonal matrix of coefficients
whose components are given by:

�11 = �22 = τ0 sinβbξ

4π2μβ cos βb
(19a)

�33 = −iτ0ξ
2

4π2μ
[2αβ cosαb sinβb + (ξ 2 − β2) cos βb sinαb].

(19b)
Similarly, ΨA is a 3 × 2 matrix of coefficients defined

through:

ΨA =
⎡
⎣ −γ (1)3 − γ

(1)
4 (e−2iφ + e2iφ)

γ
(2)
1 (e2iφ − e−2iφ)

cosφ

γ
(1)
5 (e2iφ − e−2iφ)

−γ (2)4 − γ
(2)
5 (e−2iφ + e2iφ)

sinφ

⎤
⎦ (20)

where the coefficients γ ( j)
i (defined in the appendix) depend on

the substrate material properties, frequency, and wavenumbers.
Finally, the vector F̄ contains the Fourier transform of the
shear tractions produced at the transducer’s edges. Only shear

7
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stresses along the piezoceramic fiber direction are considered,
as shown in figure 4(b). This choice is based on the fact
that the transducer is acting on the 3 − 3 piezoelectric
effect, which makes the strains induced along the fiber’s axis
significantly larger than those along its normal direction. For
a typical piezoelectric material (such as PZT-5A) poled along
the thickness direction, the piezoelectric coupling coefficient
normal to the poling direction is approximately 54% smaller
than that along the poling direction [39]. This level of actuation
is still significant, but the strains induced along this direction
are further attenuated due to the high aspect ratio of the
fiber and the construction of the APT device. As previously
discussed, the APT is a composite transducer with epoxy
located in between any two fibers. Thus, the shear lag effect
effectively eliminates any strain transmitted normal to the fiber
length. As a result, for the case of a CLoVER sector, the
boundary conditions given by equation (3), transformed to
polar coordinates, take the form:

σzr (r, θ, b) = τ0 f (r, θ) (21)

σzz(r, θ, b) = σzθ (r, θ, b) = 0 (22)

where τ0 represents the amplitude of the traction exerted by
the transducer on the substrate, and f (r, θ) is a function
whose purpose is to make the stress non-zero only along the
transducer’s radial edges, as shown in figure 4(b). Such an
expression is given by2:

f (r, θ) = [u(θ−θL)−u(θ−θR)][δ(r−RI)−δ(r−RO)]. (23)

In order to use the formulation presented above, the
Fourier transform of equation (23) must be determined. Before
doing so, the function must be decomposed along the x- and
y-directions to be compatible with the displacement vector
given by equation (18). This is simply done by defining the x-
and y-components as the function multiplied by an appropriate
rotation matrix. Then, the necessary Fourier transforms are
given by:

F̄1(ξ, φ) =
∫ 2π

0

∫ ∞

0
[u(θ − θL)− u(θ − θR)]

× [δ(r − RI)− δ(r − RO)] cos θeiξr cos(θ−φ)r dr dθ (24)

F̄2(ξ, φ) =
∫ 2π

0

∫ ∞

0
−[u(θ − θL)− u(θ − θR)]

× [δ(r − RI)− δ(r − RO)] sin θeiξr cos(θ−φ)r dr dθ. (25)

The integrals given by equations (24) and (25) cannot be
solved analytically. An alternate solution method is applicable
since the radial and angular parts of the function are readily
separable. For this type of functions, the Hankel transform
of the radial part can be combined with a Fourier series
representation of the angular part to obtain the desired Fourier
transform [40]. In this way, the two-dimensional Fourier
transform, W (ξ, φ), for a generic functionw(r, θ) = g(θ)h(r)
can be expressed as:

W (ξ, φ) =
∞∑

k=−∞
ckeikφ(−i)k H̃k(ξ) (26)

2 Note that this definition of f (r, θ) yields correct units for stress as the delta
function has units of [1/length] and the unit step function is dimensionless.

where H̃k represents the kth order Hankel transform of h(r),
defined through:

H̃k(ξ) = 2π
∫ ∞

0
h(r)Jk(rξ)r dr (27)

and ck are the complex Fourier coefficients of the function
g(θ), defined by:

ck = 1

2π

∫ 2π

0
g(θ)e−ikθ dθ. (28)

In the case under consideration, the function h(r) is
defined by:

h(r) = δ(r − RI)− δ(r − RO) (29)

while the two functions g1(θ) and g2(θ) are given by:

g1(θ) = [u(θ − θL)− u(θ − θR)] cos θ (30a)

g2(θ) = −[u(θ − θL)− u(θ − θR)] sin θ. (30b)

Therefore, the necessary Fourier transforms for the shear
tractions applied on the substrate’s surface result in:

F̄j1 =
∞∑

k=−∞
c( j)

k eikφ(−i)kχk, j = 1, 2 (31)

where:
χk = 2π[RO Jk(ξ RO)− RI Jk(ξ RI)]. (32)

The resulting complex Fourier coefficients, obtained by
substituting equations (30) into equation (28), can be expressed
through:

c(1)k = 1

2π(1 − k2)
{u(θL)[e−ikθL (ik cos θL − sin θL)− ik]

− u(θR)[e−ikθR (ik cos θR − sin θR)− ik]},
|k| �= 1 (33)

c(1)k = [(2π − θL − sin θLe−iθL)u(θL)

− (2π − θR − sin θRe−iθR)u(θR)][4π]−1,

|k| = 1 (34)

c(2)k = 1

2π(1 − k2)
{(θL)[e−ikθL (cos θL + ik sin θL)− 1]

− u(θR)[e−ikθR (cos θR + ik sin θR)− 1]},
|k| �= 1 (35)

c(2)k = [u(θL)(−1 + e−2iθL − 4iπ + 2iθL)

− u(θR)(−1 + e−2iθR − 4iπ + 2iθR)][8π]−1,

|k| = 1. (36)

Since the CLoVER transducer is primarily meant to
interrogate the structure away from the location where it is
bonded, the main interest is in characterizing the GW field
induced for radial positions such that r > RO, as shown in
figure 5. This set is characterized by the fact that both edges
of the transducer, inner and outer, send waves propagating in
the positive radial direction (henceforth referred to as outward
direction). The form of the solution, i.e., the combination of

8
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Figure 5. Schematic illustrating the solution domain.

equations (18) and (31), suggests that the integral definition of
the Bessel function of kth order be used:

Jk(ẑ) = 1

2π

∫ 2π

0
e−i π2 keiẑ cosφeikφ dφ

= 1

2π

∫ 2π

0
ei π2 ke−iẑ cosφe−ikφ dφ. (37)

Note that equation (37) holds because the Bessel function
returns a real number for ẑ > 0. Therefore, taking the complex
conjugate of the integrand does not alter the final result as its
imaginary part is zero. This equation must be manipulated so
that the exponential part of its integrand is similar to that in
equation (18) (taking ẑ = ξr ). This process is carried out
through the following change of variables:

φ = φ̄ − θ. (38)

This operation results in:

Jk(ẑ) = 1

2π

∫ 2π+θ

θ

ζke−iẑ cos(θ−φ̄)e−ikφ̄ dφ̄ (39)

where:
ζk ≡ ei π2 keikθ . (40)

The right-hand side in equation (39) is almost in the
desired form. The only differences between this result and the
form of equation (18) are in the integration limits and the index
k in the complex exponential. The difference in the integration
limits is of no concern since the integrand of both functions is
periodic in φ with a period of 2π . The indices in equation (18)
will vary according to the powers of the exponentials given
in equation (20). This can be simply resolved by redefining
the resulting index of the complex exponential as −k, and
incorporating this change in the corresponding multiplying
coefficients. As a result, the solution to equation (18) in the
angular wavenumber domain is given by:

uA(r, θ, t) =
∫ ∞

0

∞∑
k=−∞

[
2πΓA(ξ)

ζk(θ)DA(ξ)

× ΔA(k, ξ, RO, RI, θL, θR)Jk(ξr)

]
eiωt dξ (41)

where ΔA is a 3 × 1 column vector of coefficients that
represents the source terms and is defined in the appendix.
Note that the effect of the transducer dimensions are included
in this term. The Bessel function solution presented in
equation (41) corresponds to a standing wave. In order to
obtain a propagating wave, we resort to the following definition
of the Hankel function of the first and second kind:

H (1)
k (ẑ) = Jk(ẑ)+ iYk(ẑ) (42a)

H (2)
k (ẑ) = Jk(ẑ)− iYk(ẑ). (42b)

Based on the frequency convention we have adopted, the
Hankel function of the second kind corresponds to an outward-
propagating wave in time. Therefore only this part is retained,
which yields:

uA(r, θ, t) =
∫ ∞

−∞

∞∑
k=−∞

[
πΓA(ξ)

ζk(θ)DA(ξ)
ΔA H (2)

k (ξr)

]
eiωt dξ.

(43)
Note that the integration limits in the radial wavenumber

domain have changed. This is because retaining the Hankel
function of the second kind only is equivalent to replacing the
azimuthal wavenumber integration limits from a range of 2π
to a range of π ; hence, in order to keep the integration domain
unchanged, the limits in the radial wavenumber domain must
be modified3. The resulting integral is solved using the residue
theorem from complex calculus. Since equation (43) is the
quotient of two functions of ξ , it follows from the theory of
complex calculus that the residue, b̄, of this function at a pole
ξA can be expressed as [41]:

b̄ = NA(ξA)

D′
A(ξA)

(44)

where the ′ symbol indicates differentiation with respect to
ξ , and the pole ξA corresponds to values of ξ for which DA

vanishes; these points are the wavenumbers corresponding
to the antisymmetric modes of Rayleigh–Lamb waves at a
frequency ω. The notation N(ξ) has been used in equation (44)
to illustrate the concept. This result can be combined with the
residue theorem to express the solution of the integral in the ξ
domain as:∫ ∞

−∞
N(ξ)

D(ξ)
dξ = 2π i

∑
ξA

N(ξA)

D′(ξA)
, ξA > 0 (45)

where the condition that ξA be greater than zero indicates that
only positive wavenumbers are to be included in the integration
contour. Therefore, the solution may be expressed in final form
as:

uA(r, θ, t) =
∞∑

k=−∞

[
2π2iΓA(ξA)

ζk(θ)D′
A(ξA)

ΔA H (2)
k (ξAr)

]
eiωt . (46)

Note that since only harmonic excitation is being
considered, only one wavenumber needs to be included.

3 This statement is not fully rigorous as a correction term included in the
integral definition of H (2)

k has been neglected. However, it can be shown that
the contribution from this term is only significant for very small arguments.
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The solution given by equation (46) corresponds to the
antisymmetric mode. The symmetric mode is given by a
similar equation, which is derived by interchanging all sine
and cosine terms whose arguments depend on the substrate
half-thickness, b. This is a crucial change since it modifies
the dispersion equation DA, which produces solutions with
different wavenumbers.

In typical SHM applications, the structure to be inspected
for damage is excited with a stress wave whose shape is
determined by a time-dependent modulated signal. This type
of signal is generally desired so as to control the frequency
bandwidth and avoid dispersion. Hann-modulated signals have
been successfully used in the past by several researchers and
will be adopted in the present formulation [42]. Such a signal
is given by:

s(t) = 1

2

[
1 − cos

(
2
ω0t

n

)]
sin(ω0t) (47)

where n is the number of half-cycles and ω0 represents the
center frequency of excitation. In order to account for the time-
dependence, the time Fourier transform of equation (47) must
be determined through:

S(ω) =
∫ ∞

−∞
s(t)e−iωt dt . (48)

The time-dependent displacements are obtained through
the inverse Fourier transform of the product of the transforms
of the spatial and temporal parts. Since the excitation signal
has several frequency components, a sum over all possible
wavenumbers is necessary. Hence, the solution becomes (only
antisymmetric mode is presented for simplicity):

uA(r, θ, t) = 1

2π

∫ ∞

−∞

∑
ξA

[ ∞∑
k=−∞

iπ2ΓA(ξA)

ζk(θ)D′
A(ξA)

× ΔA H (2)
k (ξAr)

]
S(ω)eiωt dω. (49)

4.1. Additional spatial regions

While the GW field induced by a CLoVER sector will be
used for interrogation away from the transducer, it is still of
interest to find a solution for the GW excitation problem in
the remaining spatial regions. Therefore, region I is defined as
the set of all points such that r < RI, as depicted in figure 6.
The solution for this region is obtained through an analogy to
a circular transducer. In that case, the resulting wave pattern
for radial positions within the edge of the actuator corresponds
to standing waves. This result can be intuitively understood
due to the symmetry of the source. Therefore, each source
term in the Fourier expansion used to obtain the solution for a
CLoVER sector will be treated as a standing wave. Once all
the terms have been multiplied by the corresponding Fourier
coefficient and summed together, the result will correspond
to the GW field excited by a CLoVER sector. To emphasize,
note that each term in the sum represents a standing wave, but
the overall combination yields a propagating wave. Therefore,
the expression for the antisymmetric displacement components

Figure 6. Additional solution regions for CLoVER GW excitation.

induced under harmonic excitation at a frequency ω is given
by:

uA =
∞∑

k=−∞

2iπ2ΓA(ξA)

ζk(θ)D′
A(ξA)

ΛA(k, ξA)Jk(ξAr)eiωt (50)

where ΛA is a 3×1 column vector of coefficients that represent
the source terms, presented in the appendix.

In a manner analogous to region I, region II is defined
as the set of all points such that RI < r < RO. This
set of points is characterized by the fact that the each
source contribution from the outer edge of the transducer
corresponds to a standing wave, while those from the inner
edge of the transducer correspond to traveling waves. Thus,
the solution for this region is obtained as a combination of
the two solutions presented previously. The antisymmetric
displacement components under harmonic excitation at a
frequency ω are given by:

uA =
∞∑

k=−∞

2iπ2ΓA(ξA)

ζk(θ)D′
A(ξA)

[ῩA(k, ξA)Jk(ξAr)

− ΥA(k, ξA)H
(2)
k (ξAr)]eiωt (51)

where ΥA and ῩA are vectors of coefficients whose definition
is given in the appendix. Note that ΥA is associated with waves
originating at the inner radial edge of the transducer, while ῩA

corresponds to waves originating from its outer radial edge.

5. Finite element verification

Results from the theoretical formulation presented above
were compared with three-dimensional FE simulations run in
ABAQUS [43] to assess its spatial and temporal performance.
Taking advantage of the problem’s symmetries, only one
quarter of an aluminum plate was considered. A summary of
the material properties and actuator dimensions considered in
the simulations is given in table 1.

The mesh consisted of three-dimensional continuum
elements, and was primarily composed of eight-node bricks
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(a) (b)

Figure 7. FE mesh: (a) complete overview; (b) detail on shear traction application points.

Table 1. Substrate material properties and actuator dimensions used
in FE simulations and theoretical results.

Parameter Value

E (GPa) 70
ν 0.33
ρ (kg m−3) 2700
RO (m) 0.015
RI (m) 0.005
�θ (deg) 30

(C3D8). In addition, the geometry of the mesh required the use
of six-node tetrahedra (C3D6) for the elements immediately
connected to the origin. Similarly, infinite continuum elements
(CIN3D8) were used on the outer radial boundary of the model,
in an effort to minimize boundary reflections [43]. However,
the results showed that these elements were not successful in
achieving this, and therefore the radial positions selected for
comparison were located far from the radial edge. In all cases,
three elements were used through the thickness of the plate.
A schematic of the mesh is shown in figure 7(a), while its
relevant dimensions (radius, R, and half-thickness, b) are given
in table 2. Symmetric (S0) and antisymmetric (A0) modes were
excited by specifying a symmetry and antisymmetry condition
with respect to the z-axis, respectively. The symmetric mode
was used to validate the out-of-plane displacement, while
the antisymmetric mode was used to model the in-plane
displacements. This choice was based on the fact that the
antisymmetric mode has a higher frequency threshold for the
appearance of the SH-mode (shear horizontal mode present
only in the in-plane displacements), which is not considered in
the theoretical solution and would therefore prevent an accurate
verification.

The radial dimension of the elements, �re, was selected
so as to have at least 20 nodes per wavelength for the highest
frequency of the toneburst excitation. The element azimuthal
size, �θe, was selected at 3◦ providing six nodes along the
angular span of the actuator, whose centerline was located
at 90◦. A summary of the mesh parameters is presented in
table 2. The shear tractions caused by the actuator were
modeled through nodal forces on the nodes corresponding
to the actuator edges. Since the theoretical model considers
the traction per unit length to be constant along the radial
edges of the transducer, the relative force amplitudes must

Table 2. Mesh and analysis parameters used in FE simulations.

Parameter Value (S0) Value (A0)

R (m) 0.54 0.13
�re (m) 0.0025 0.0005
�θe (deg) 3 3
�t (s) 10−7 10−7

b (m) 0.002 0.002
f0 (kHz) 100 100
n 7 7
No. of elements 38 700 47 336
No. of nodes 52 464 63 444

be scaled appropriately. This was achieved by considering
point forces of unit magnitude on the outer radial edge and
scaling the magnitude on the inner edge accordingly, which
results in its amplitude being RI/RO. The time-dependent
part of this forcing function was a Hann-modulated toneburst
whose properties are also summarized in table 2. A schematic
showing the details of the shear traction application is given in
figure 7(b). The time step,�t , was selected so as to satisfy the
following criteria: (i) proper sampling of the highest frequency
component of the excitation signal, and (ii) sufficient resolution
of the time needed for the fastest traveling wave to move across
one element in the radial direction [44]. An implicit dynamic
analysis was performed with 1404 steps in all cases.

The numerical implementation of the theoretical solution
requires that a finite number of terms in the infinite sum
given by equation (49) be selected. This number was chosen
based on the normalized error between the angular part of the
shear traction function, equation (30), and its Fourier series
representation, equation (26). This error is defined as:

ε =
√∫ 2π

0 |g1,2 − gF
1,2|2 dθ√∫ 2π

0 g2
1,2 dθ

(52)

where the superscript F refers to the Fourier series
representation of the function. Figure 8 shows how this error
decreases with increasing number of terms. Based on this
result, the sum was truncated at 150 terms as the reduction
in error with increasing terms was slower after this point.
In addition, the solution was implemented using a larger
number of terms and no difference was observed, indicating
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(b)(a)

Figure 8. Normalized error between angular part of shear traction function and its Fourier series representation for: (a) x1-component;
(b) x2-component.

this selection was sufficient for convergence. For the spatial
comparisons, several azimuthal positions were selected at
different radial locations sufficiently far from the radial edge
to avoid boundary reflections. Figure 9(a) shows the set of
points selected for for this. The radial positions selected
were ten times the transducer’s outer radius (n̂ = 10) for the
symmetric mode, and five thirds times the outer radius (n̂ =
5/3) for the antisymmetric mode. Seven azimuthal locations
from the transducer’s centerline to its opposite direction were
selected, which resulted in intervals of 30◦. Figure 9(b) shows
the normalized peak-to-peak comparison between the theory
and FE results, while figures 9(c) and (d) show a similar
result for the in-plane displacements. Similarly, figures 10(a)
and (b) show sample time histories for two different azimuthal
positions. These figures indicate that the spatial distribution is
accurately modeled by the theoretical solution.

A similar comparison was performed for regions I and
II, where only the antisymmetric mode was considered due
to its shorter wavelength. Figure 11(a) shows a schematic
of the points selected for comparison. For region I, an
azimuthal distribution similar to the one used in the previous
case was employed, but the radial position was changed to
one-half the transducer’s inner radius. In region II, only six
azimuthal points were considered to avoid having a point over
the transducer’s area, while the radial location selected was the
transducer’s midpoint along the radial direction. Figures 11(b)
and (c) show good spatial correlation for the out-of-plane
displacement in regions I and II, respectively. Similarly,
figure 11(d) shows that the time history of the analytical
displacements also matches very well with FE results.

6. Sensor response

In GW-based testing, a stress wave is excited by the
piezoelectric actuator through the structural element whose
condition is to be inspected. This wave typically experiences
changes in its amplitude, frequency content, and group
speed due to its interaction with any defects it encounters
(e.g., cracks, corrosion, delaminations). Furthermore, these
interactions produce additional waves that, generally, scatter

in every direction. This process leads to the use of two
primary methods of testing: the pitch-catch and pulse-echo
methods. The pitch-catch method is based on identifying
damage based on the changes that defects introduce into the
wave by locating a sensor a certain distance away from the
actuator and recording the received wave. In contrast, the
pulse-echo method uses the reflections scattered from defects
to identify and locate damage. This typically involves using
a transducer that acts both as actuator and sensor. In either
method, information about the damage is obtained from strains
sensed by the piezoelectric transducer and the corresponding
voltage signal generated through the piezoelectric effect. This
voltage signal is then used to determine information about
damage presence, location, and severity using adequate signal
processing techniques. Therefore, it is necessary to relate the
strains sensed by the transducer to the induced voltage. This
will allow us to identify excitation frequencies and transducer
dimensions that maximize the sensor response. Raghavan and
Cesnik [13] proposed a model to do this by modeling the
sensor as a capacitor. Using the assumption that the sensor
is under plane stress conditions, the following expression was
presented:

Vs = kε0 Es t̄s g

(1 − νs)Cs

∫
As

εii dA (53)

where the piezoelectric constant to be used depends on the
relative directions of the applied electric field and the induced
strain. Similarly, the capacitance of the sensor, Cs, will depend
on whether it is a uniform piezo material or an APT. An
implication of this model is that the sensor is assumed to be
infinitely compliant, so that it does not disturb the GW field
produced by the actuator. The strains necessary to obtain
the sensor response can be obtained from the displacement
components defined previously by means of a linear strain–
displacement relation. In polar coordinates, this is expressed
as:

εrr = ∂ur

∂r
(54)

εθθ = ur

r
+ 1

r

∂uθ
∂θ

(55)
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(a) (b)

(c) (d)

Figure 9. Comparison between FE and theoretical results. (a) Points selected for comparison. (b) Amplitude comparison for symmetric u3.
(c) Amplitude comparison for antisymmetric u2. (d) Amplitude comparison for antisymmetric u1.

(a) (b)

Figure 10. Sample time history for out-of-plane displacement at r = 10RO (with baseline RO = 15 mm) and θ = (a) 90◦ and (b) 0◦.
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(a) (b)

(c) (d)

Figure 11. Comparison between FE and analytical results in regions I and II. (a) Points selected for comparison; (b) amplitude comparison for
antisymmetric u3 in region I; (c) amplitude comparison for antisymmetric u3 in region II; (d) sample time history for out-of-plane
displacement at the origin.

where ur and uθ are the radial and azimuthal displacement
components, respectively. These components can be expressed
in terms of the Cartesian components obtained previously
through the transformation:{

ur

uθ

}
=

[
cos θ sin θ

− sin θ cos θ

]{
u1

u2

}
. (56)

Since the Cartesian components were previously obtained
in terms of polar coordinates, it follows from equation (56)
that:

∂ur

∂r
= ∂u1

∂r
cos θ + ∂u2

∂r
sin θ (57)

and

∂uθ
∂θ

= cos θ

(
∂u2

∂θ
− u1

)
− sin θ

(
∂u1

∂θ
+ u2

)
. (58)

Similarly, the strain–displacement relation in Cartesian

coordinates is given by:

εxx = ∂u1

∂x
(59)

εyy = ∂u2

∂y
. (60)

Since the displacement components were found in terms
of polar coordinates, the coordinate transformation r =√

x2 + y2, θ = tan−1(y/x) is used along with the chain rule
of derivatives to obtain:

εxx = ∂u1

∂r
cos θ − ∂u1

∂θ

sin θ

r
(61)

εyy = ∂u2

∂r
sin θ + ∂u2

∂θ

cos θ

r
. (62)

Finally, the r and θ derivatives of the displacement
components, for the antisymmetric mode, may be expressed
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(a) (b)

Figure 12. Sensor geometry and location used in analysis. (a) Rectangular piezo sensor. (b) Rectangular APT sensor.

in vector form as:

∂uA

∂r
=

∞∑
k=−∞

[
iπ2ξAΓA(ξA)

ζk(θ)D′
A(ξA)

ΔA{H (2)
k−1(ξAr)− H (2)

k+1(ξAr)}
]

(63)
and:

∂uA

∂θ
=

∞∑
k=−∞

[−2kπ2ΓA(ξA)

ζk(θ)D′
A(ξA)

ΔA H (2)
k (ξAr)

]
. (64)

6.1. Rectangular piezo sensor

The sensor response of a homogeneous rectangular piezoelec-
tric sensor is of practical interest in SHM applications. Con-
sider a rectangular sensor of width w, and aspect ratio A∗, so
that, h = A∗w and As = A∗w2, as shown in figure 12(a). The
sensor is centered at the point x = xs , y = ys and is under
the GW field excited by a CLoVER sector of radial span �r
and angular span �θ centered at the point ra = 0.5(RI + RO),
θa = 90◦. In contrast to the case of an APT sensor, the piezo
material has isotropic piezoelectric properties in the plane nor-
mal to the poling direction, and therefore senses all in-plane
extensional strains. In addition, this enables the piezo to be
modeled as a parallel plate capacitor filled with a dielectric ma-
terial. In this way, its capacitance may be expressed through:

Cs = kε0 As

t̄s
. (65)

Consequently, its sensor response is given by [13]:

Vs = Es t̄s g13

As(1 − νs)

∫ ys+A∗ w
2

ys−A∗ w
2

∫ xs+ w
2

xs− w
2

(εxx + εyy) dx dy (66)

where εxx and εyy are defined by equations (61) and (62),
respectively.

Note that equation (66) holds for harmonic forcing at
a frequency ω. For the general case of a time-dependent
excitation, such as the toneburst signal considered before,

the integrand is multiplied by the time Fourier transform of
this signal and integrated over an infinite frequency range
(which in reality is limited to the frequency bandwidth of
the excitation toneburst), as outlined in section 4. However,
in order to identify optimal excitation frequencies and sensor
dimensions a harmonic analysis is sufficient. Once these have
been identified, they can be used as center frequencies of time-
dependent excitations.

The variation in three parameters was examined. First,
we explored the excitation frequencies to determine values at
which the sensor response would be maximum, as well as to
identify values that should be avoided due to negligible sensing
response. Second, two sensor dimensions were explored. The
width of the sensor was considered, which resulted in the
definition of the non-dimensional parameter w∗ as w/�r . The
effect of the sensor’s aspect ratio was also studied. The results
from this analysis are shown in figures 13 and 14. In the study
of the aspect ratio, the value of w∗ was kept fixed at 1. The
two modes show different qualitative behavior over the range
of frequencies studied with the A0 mode showing two main
frequencies at which high response is obtained, as opposed
to the S0 case which shows primarily one up to 500 kHz.
Note that both dimensions are critical in the response of the
rectangular piezoelectric sensor, with smaller sizes resulting
in better performance. This observation is consistent with
the findings reported in [13]. In addition to the decrease in
amplitude observed for larger sensors, it can also be seen that
the number of nodes increases significantly.

6.2. Rectangular APT sensor

The response of a rectangular APT sensor under the GW
field excited by a CLoVER sector is now derived. This
analysis is based on the assumption that only extensional
strains along the piezoelectric fiber direction are sensed. This
is a reasonable simplification since the induced shear strains
are small compared to the extensional ones. Furthermore,
as discussed in section 4, the piezoelectric performance of
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(a) (b)

Figure 13. Effect of sensor width on piezo sensor response. The baseline case was �r = 0.005 m. (a) A0 mode. (b) S0 mode.

(a) (b)

Figure 14. Effect of sensor aspect ratio (A∗) on piezo sensor response. The baseline case was �r = 0.005 m. (a) A0 mode. (b) S0 mode.

the transducer along the normal direction to the fiber is very
weak. Therefore, for the rectangular configuration, only εrr is
needed. The rectangular sensor is modeled by using a wedge-
shaped geometry whose radial origin coincides with that of
the CLoVER actuator. Therefore, while its effective geometry
is that of a rectangle, its dimensions will be expressed in
terms of radial and azimuthal components. This further
assumes that the fibers in the rectangular device are always
oriented along the radial direction. Consider a rectangular
APT sensor centered at the point r = rs , θ = θs , with
radial dimension �rs , angular span �θs , and surface area
As = rs�rs�θs , as shown in figure 12(b). The sensor is
subjected to the GW field excited by a CLoVER sector with
radial dimension �r and angular span �θ centered at the
point ra = 0.5(RI + RO), θa = 90◦. In order to use the
sensor response equation presented earlier (equation (53)), an
expression for the APT capacitance is needed. For this type
of transducer, the capacitance is typically analyzed using the
repetitive nature of the interdigitated electrode pattern. In this
way, only the electric field in a representative unit cell, defined
as the region between any two electrode fingers, is considered.
A comprehensive study on this electric field was conducted
by Lloyd [45] using conformal mapping techniques. In that
work, it was shown that the capacitance of each unit cell was

primarily determined by the piezoceramic thickness, electrode
finger width, and electrode finger spacing, while it scaled
linearly with electrode finger length. Thus, the capacitance of
a unit cell can be expressed as:

Cuc = p(k, ε0, dIDE, t̄a)L IDE (67)

where, in the case of a rectangular APT, the electrode finger
length is determined by its radial position, rIDE, and the
azimuthal span,�θ , so that:

Cuc = p(k, ε0, dIDE, t̄a)rIDE�θ. (68)

A closed form expression for the function p cannot
be readily obtained. However, the work of Lloyd [45]
showed that this function is non-linearly dependent on the
electrode finger and unit cell geometry, and that it increases
exponentially as the center-to-center distance between the
electrode fingers approaches zero. It is also important to note
that any contribution from the capacitance of the epoxy has
been neglected. This is a logical choice since its dielectric
constant (k ∼ 6) [46] is much smaller than that for a
typical piezoelectric ceramic (k ∼ 1700, PZT-5A) [39].
The capacitance of the overall device may be obtained by
considering it as a composition of capacitors connected in
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(a) (b)

Figure 15. Effect of radial dimension on rectangular APT sensor response. The baseline case was �r = 0.005 m. (a) A0 mode. (b) S0 mode.

parallel. Then, the capacitance of each unit cell may be simply
added together which results in:

C = p(k, ε0, dIDE, t̄a)�θ
RO + RI

2
�r. (69)

Using equation (69), the voltage induced in the APT
sensor due to the induced strains is given by:

Vs = kε0 Es t̄s g33

(1 − νs)p As

∫ θs+ �θs
2

θs− �θs
2

∫ rs+ �rs
2

rs− �rs
2

εrr r dr dθ. (70)

Note that in the case of an APT, g33 is used. In addition,
for a given APT device, the function p is a constant. Using the
definition in equation (70), the voltage is given by:

Vs = kε0 Es t̄s g33

(1 − νs)p As

∫ θs+�θs
2

θs−�θs
2

∫ rs+�rs
2

rs−�rs
2

[
∂u1

∂r
cos θ + ∂u2

∂r
sin θ

]
× r dr dθ. (71)

This analysis was performed in two separate steps; the
ratio of the radial dimension was first explored by defining
the non-dimensional parameter r∗ as the ratio �rs/�r and
obtaining the sensor response, given by equation (71), over a
wide frequency range for both symmetric and antisymmetric
modes. The result from this analysis is shown in figure 15.
The location of the sensor was set to rs = 15RO and θs =
90◦; this azimuthal position was selected since it coincides
with the transducer’s centerline which is the intended scanning
direction. The actuator dimensions were similar to the ones
presented in table 1. In these and subsequent sensor response
plots, the results presented are normalized by the maximum
value in each set. Similar qualitative differences between the
two modes are observed in this case, with the antisymmetric
mode showing the lower response at a higher frequency than in
the previous case.

The effect of varying the ratio of azimuthal spans was also
examined, which resulted in the definition of the parameter θ∗
as �θs/�θ . The results from this analysis, for r∗ fixed at 1,
are shown in figure 16. As it can be seen, this characteristic
does not affect the trend observed in frequency (figure 15),
but instead causes a decrease in amplitude. Notice that this

effect is significant only if the actuator is made much smaller
than the sensor or vice versa. These trends are logical since
it is expected that changing the sensor dimension in the wave
propagation direction will have the most significant effect. As
in the previous case, it is evident that smaller sensors produce
better results.

7. Experimental studies on GW excitation by a
CLoVER sector

7.1. CLoVER fabrication

The CLoVER transducers used in this study were manufac-
tured based on an adaptation of the procedure presented by
Wilkie et al [20, 21] for MFC actuators. The design and con-
struction process is outlined in figure 17. The first step con-
sisted of designing the desired interdigitated electrode pattern
using a suitable CAD application. Once the design was com-
pleted, the electrode pattern was printed on a copper-clad kap-
ton film (Pyralux LF7062R) using photolithography (Metro-
Circuits Inc). The devices used in this study had an elec-
trode finger width of 0.1 mm and an electrode finger spac-
ing of 0.5 mm, both parameters consistent with those used
in NASA-standard MFCs. PZT-5A piezoceramic rings with
0.2 mm thickness (EBL Products) were diced into wedge-
shaped fibers with a cut angle of 2◦ (American Dicing), so that
a fiber width of 0.36 mm was achieved at the inner radius. This
value corresponds to the width of prismatic piezoceramic fibers
used in typical APT devices [47]. The fibers and electrodes
were bonded using an epoxy adhesive system (Hysol Loctite
E-120HP).

The transducers were cured in an autoclave, while the
standard manufacturing procedure employed a vacuum hot
press. Consequently, the cure cycles presented by Wilkie
et al [21] were used as a starting point, and fine tuned for
the autoclave cure. Each actuator was cured for 2 h in
a vacuum (−28.2 in Hg) bag at 100 psi (689.5 kPa) and
250 ◦F (121 ◦C). This cure time and temperature have been
previously shown to be sufficient for full actuator cure based
on experimentally-calibrated cure kinetics models [20]. A new
set of poling parameters was also employed which resulted in
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(a) (b)

Figure 16. Effect of azimuthal dimension on rectangular APT sensor response. The baseline case was �r = 0.005 m, r ∗ = 1. (a) A0 mode.
(b) S0 mode.

Figure 17. CLoVER transducer development stages.

transducers with performance levels similar to those of NASA-
standard MFCs. Further details of the manufacturing and
characterization procedures can be found in separate works by
the authors [33, 35].

7.2. Sensor-based experiments

In this section, piezoelectric sensors are employed to verify the
accuracy of the theoretical solution in the frequency domain.
This method is restricted to single-point measurements, but
it is able to provide information on the performance of the
transducer over a wide frequency range. This is a critical
component of the solution as it enables a transducer designer
to determine the transducer size that would induce maximum
displacements at a given frequency. This is a key aspect in the
transducer design as the excitation frequency is directly related
to the damage type to be detected.

7.2.1. Experimental setup. In order to verify the GW
excitation model presented in sections 4 and 6, a 3.2 mm-
thick square aluminum 5005 plate was used in the experimental

tests. The plate thickness was selected so that the effect
of the actuator’s dynamics on the substrate system could
be neglected. Past studies have shown successful results
employing a similar arrangement [13]. The plate had a side
length of 0.7 m. In an effort to excite pure symmetric
and antisymmetric modes over a wide frequency range, one
CLoVER transducer was bonded on each surface of the plate
at its geometric center. The sectors used had a radial dimension
�r = 1.0 cm (RO = 2.5 cm, RI = 1.5 cm) and an
azimuthal span �θ = 45◦. The symmetric mode was obtained
by exciting both actuators in phase, while the antisymmetric
mode resulted from exciting them out of phase. The induced
wave field was recorded using a square piezoceramic sensor
with a side length of 11.6 mm and a thickness of 0.3 mm.
The sensor was located along the transducer’s centerline at
a radial distance of 76.3 mm. This position was selected
based on the plate’s dimension, so that boundary reflections
were avoided, thereby satisfying the infinite plate assumption.
The actuators and the sensor were bonded by applying a thin
layer of Epotek 301 bonding agent and allowing it to cure for
24 h. The actuator and sensor arrangement used is illustrated
in figure 18(a). Each actuator was excited with a 3.5-cycle
Hann-modulated toneburst signal using an arbitrary waveform
generator (Agilent 33220A). A digital oscilloscope (Agilent
Infinium 54831DSO) was used to monitor and acquire the
voltage signal from the sensor, which was averaged over 64
samples at a sampling rate of 10 million samples per second.
The overall set up is illustrated in figure 18(b).

7.2.2. Results and discussion. The sensor frequency
response was measured experimentally and simulated using the
theoretical model in section 6.1. A sample of these results is
shown in figure 19, which shows the time history predicted by
the model is in good agreement with the data recorded from
the piezoelectric sensor. The material properties used for the
aluminum alloy in the computations are summarized in table 3.
The figure illustrates the results for the A0 mode at 65 kHz. It
can be noted that the amplitude and time of arrival of each peak
are very well captured by the model, as the error in the time of
arrival is less than 2% while the largest amplitude difference
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(a) (b)

Figure 18. Experimental setup: (a) CLoVER actuator and sensor detail; (b) overall arrangement.

Figure 19. Time history comparison for A0 mode at 65 kHz.

(which occurs for the final secondary peak) is less than 8% of
the peak-to-peak amplitude of the pulse.

Several time histories, similar to that presented in
figure 19, were recorded over different frequencies for both
the symmetric and antisymmetric modes. These results
are summarized in figure 20 where each data set has
been normalized by its maximum value. The experimental
data points represent average values, while the error bars
represent three times the peak-to-peak standard deviation. This
uncertainty was found by taking 64 averages at each frequency.
It can be seen that there is good agreement between the
theoretical prediction and the experimental data, especially
for the antisymmetric mode where the differences between
the two results are within the error bars of the experimental
measurements for most of the points. It can also be appreciated
that there is good correlation between both results for the
symmetric mode until a frequency of approximately 275 kHz.
Beyond this frequency, the EMI generated by the CLoVER
sector is very strong and its interaction with the excitation

Table 3. Aluminum substrate material properties.

Property Value

E (GPa) 68.9
ν 0.33
ρ (kg m−3) 2700

pulse is very significant. Consequently, the peak-to-peak
amplitude of the response recorded had to be manually
measured according to the expected time of arrival of the pulse,
calculated based on its group velocity at each frequency. The
EMI results from the rapidly changing electric currents flowing
through the interdigitated electrode fingers of the transducer.
An important area for further development is the shielding of
the transducer and sensor to this type of interference.

7.3. Laser vibrometer experiments

In this section, the non-contact technique of laser vibrometry
is used to investigate the GW field induced by a CLoVER
sector. This method is an important complement to the sensor-
based experiments presented in the previous section as it is
able to provide information on the spatial variations of the GW
field. The section begins with a brief overview of the operating
principles of the scanning laser vibrometer and a description
of the experimental setup used. A comprehensive set of results
are subsequently presented to verify the spatial and temporal
accuracy of the theoretical solution.

7.3.1. Setup and laser vibrometer operation. The key
instrument used in these studies was a Polytec PSV-400
scanning laser vibrometer. This system is composed of the
PSV-I-400 scanning head, the OFV-5000 controller, the PSV-
E-401 junction box, and a data management system. The
light source used in the PSV-400 is a helium neon laser that
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(b)(a)

Figure 20. Comparison between theoretical and experimental frequency response results. (a) S0 mode, (b) A0 mode.

(a) (b)

Figure 21. (a) Definition of horizontal and vertical scan angles; (b) experimental setup used in laser vibrometer tests.

provides a linear polarized beam [48]. The vibrometer system
is able to measure the out-of-plane velocities by measuring
the difference in path lengths between a reference beam and
an object beam that is backscattered from the surface under
inspection. The PSV-I-400 scanning head houses a high
sensitivity vibrometer sensor, a high-precision scan unit, and
a color video camera used to manipulate the laser and scan
points in the PSV software. The OFV-5000 controller is able
to decode the interference signal of the object and reference
beams, while the PSV-E-401 junction box provides an interface
for the scanning head, controller, and data management system
as well as several input channels for triggering and signal
generator output. Finally, the data management system houses
the PSV software used to operate the laser vibrometer.

The scanning head was supported using a tripod and
maintained at a distance of 915 mm from the scanning surface
for most of the experimental tests conducted. This distance
was selected to operate at a laser visibility maximum [48].

An important consideration when taking laser vibrometer
measurements is that the scanning angles be small enough
so that contributions from the in-plane components remain
negligible. The horizontal and vertical scanning angles are
defined in figure 21(a). Furthermore, large scanning angles
(∼10◦) are expected to reduce the signal-to-noise ratio. The
work of Leong et al [29] provided important insight into this
issue. They showed that the vertical scan angle should be
kept below 4◦ in order to maintain a consistent signal to noise
ratio, while the amplitudes of the displacements measured were
mostly insensitive to variations in the horizontal scan angle.
Consequently, the plate under inspection was arranged so that
the vertical scan angle did not exceed the 4◦ limit.

The test specimen consisted of the same isotropic plate
and CLoVER transducer arrangement described in section 7.2.
The surface to be scanned was lightly sanded using 120
grade sand paper to enhance its backscattering behavior. As
the laser vibrometer is primarily sensitive to the out-of-plane
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(a) (b)

(c) (d)

Figure 22. (a) Schematic illustrating distribution of measurement points; time history comparison at r = 3.2R0 and: (b) θ = 90◦;
(c) θ = 72◦; (d) θ = 46◦.

velocities, the center frequency of the excitation pulse used
was maintained at 65 kHz. It was shown earlier through sensor
response experiments that the A0 mode is maximized near this
frequency. This mode was selected as it is well known that
it has a predominantly out-of-plane component. In this case,
the excitation pulse was amplified using a Trek PZD2000 high
power amplifier which provided a fixed gain of 200. The
input voltage used in this set of tests was higher than in the
sensor tests to obtain a high signal-to-noise ratio in the laser
vibrometer, and varied from 200 to 800 Vp−p. The sampling
frequency used in the data acquisition system was 5.12 MHz.
The overall experimental setup is illustrated in figure 21(b).

7.3.2. Results and discussion. The first set of tests consisted
of evaluating the time history performance of the solution.
Three points were selected at a fixed distance of 3.4RO and
various azimuthal locations, as shown in figure 22(a). The
time of arrival is close for both solutions (within 5%) as
shown in figures 22(b)-(d). The shape of the toneburst signal
is also well captured although there are some differences in
the relative amplitude of both the main and secondary peaks.
The largest of these differences occurs for the time history
recorded at 72◦ and corresponds to approximately 30% of the
peak-to-peak amplitude of the excitation pulse. As previously

mentioned, the excitation voltage used in these experiments
was significantly larger than that used in the sensor-based
experiments, partially to obtain a good signal to noise ratio. A
larger voltage input generates larger strains in the transducer,
and it is possible that this results in a more pronounced
contribution from the transducer dynamics which have been
neglected in the theoretical solution. It should be noted that
there are additional reasons for selecting a higher excitation
voltage in this set of experiments. First, in this case only one
transducer is being used in contrast to the two used in the
previous experiments. This was done because in preliminary
testing it was found that due to the sensitivity of the laser
beam, minor misalignments in the placement of the transducers
(∼2 mm) significantly affected the shape of the propagating
pulse. It is likely that the sensor is not as sensitive to these
differences as it is primarily excited by the weaker (in the A0

case) in-plane displacements. In addition, the piezoceramic
fibers used in the CLoVER transducer are relatively thin.
Finally, the antisymmetric mode is being excited using shear
tractions in the plane of the substrate. It has been previously
reported [49] that, due to this mode’s strong out-of-plane
component, transducers that apply surface tractions normal to
the surface are preferred for A0 excitation when employing a
single device.
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o

Figure 23. Comparison between theoretical and laser vibrometer
results for peak-to-peak amplitude.

The second set of tests consisted of evaluating the decay
in the propagating pulse amplitude with radial distance. It is
important to accurately capture this parameter in the theoretical
solution as it is key in determining the inspection distance
that can be achieved with the transducer. In this case, several
radial positions oriented along the centerline of a CLoVER
sector were selected and the laser was used to measure the
time history. The peak-to-peak amplitude obtained from
these measurements were then compared to similar results
obtained using the theoretical model. This result is shown
in figure 23, where the results have been normalized by
the mean peak-to-peak amplitude in each data set. As in
previous cases, the error bars represent three times the standard
deviation. This uncertainty was found by repeating each
measurement three times, collecting 64 averages in each
test. The figure shows that the experimental and theoretical
results are in excellent agreement, with the differences between
them staying within the experimental uncertainty for all the
measurement points. Note that neither the theoretical model
nor the numerical simulations have accounted for material
damping, and therefore the amplitude attenuation observed
in the results in figure 23 are due to geometric attenuation
only. The good agreement between both results indicates
that accounting for material damping is not necessary when
working with linearly elastic isotropic materials.

Another important consideration is the azimuthal distribu-
tion of the induced GW field. This parameter indicates the
directionality achieved by a CLoVER sector. As in the ra-
dial decay study, the peak-to-peak displacement amplitude was
measured at several azimuthal and radial locations as shown in
figure 24(a). In this case, a complete 360◦ range was scanned
using a grid consisting of 60 azimuthal points. In addition,
three radial locations were chosen to investigate the evolution
of the azimuthal distribution with radial distance. The mea-
surements were repeated three different times with each set

consisting of 64 averages. The displacement field was calcu-
lated theoretically for the same radial locations using a finer
grid of azimuthal points. These results are compared in several
polar plots shown in figures 24(b)–(d). In these figures, the
transducer centerline coincides with the 90◦ direction, and the
peak-to-peak amplitude is represented by the radial distance
from the origin for each azimuthal location. The uncertainty
for each point is represented by two finer lines surrounding the
experimental points which correspond to three times the stan-
dard deviation.

The results show that the azimuthal distribution is
captured well by the model. The regions where the largest
disagreements are observed correspond to normal directions
from the transducer centerline where the GW field is smallest,
which in turn decreases the signal-to-noise ratio in the laser
vibrometer resulting in large standard deviations. Some
differences are also observed for the wave field induced in the
opposite direction, i.e., towards the 270◦ direction, especially
for larger radial distances. The largest error in this case is in the
order of 23% and it occurs for the farthest radial position tested,
at an azimuthal location of approximately 300◦. It is likely that
this disagreement is partly due to the presence of additional
CLoVER sectors which are not accounted for in the theoretical
solution. These additional transducers introduce concentrated
masses which act as very small GW scatterers. As the radial
position is increased, a larger portion of the wave field interacts
with the additional sectors, which may explain the increasing
difference with larger distance. It can also be appreciated from
the figures that as the radial position is increased, the main
displacement lobe becomes wider, which is consistent with the
expectation that in the far field the wavefront would tend to a
uniform circular front [38].

The final set of tests consisted of a full-field scan to
visually compare the temporal and spatial evolution of the GW
field induced by a CLoVER sector. The scanning grid used
in this case consisted of 25 radial points distributed over a
7 cm range, which provided approximately three wavelengths
with seven points per wavelength. A complete 360◦ range was
covered using an azimuthal grid consisting of 40 points. The
starting radial position for the measurements was selected at
1 cm from the radial edge of the CLoVER sector to avoid
scanning over pieces of kapton film that remain attached to
house the electrode bus of the transducer. Similarly, the
radial positions scanned excluded points near the origin as a
piezoelectric sensor was bonded in this area. These results are
summarized in figures 25 through 27, which show very good
correlation between the theoretical model and the experiment.
The directionality of the transducer is clearly visible, as the
induced displacements remain primarily within the azimuthal
span of the CLoVER sector. The results presented in the
previous sections have shown the accuracy of the three-
dimensional elasticity solution in describing the GW field
induced by a CLoVER sector in isotropic structures. The
performance of this device in damage detection and location
has also been explored in separate studies [33, 50] by the
authors, where it has been shown that its directionality and
geometry allow it to accurately detect simulated defects in
metallic and composite plate-like structures.
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(a) (b)

(c) (d)

Figure 24. (a) Schematic showing location of the scan points used in azimuthal comparison tests; comparison of peak-to-peak amplitudes at:
(b) r = 1.4RO; (c) r = 2.2RO; (d) r = 3.8RO.

Figure 25. Full-field comparison between laser vibrometer and theoretical solution at time t = 35 μs. (a) Experiment. (b) Theory.

8. Summary and conclusions

The guided wave (GW) field excited by a surface-bonded,
wedge-shaped anisotropic piezocomposite transducer (APT)

was investigated in this paper. This study supports the
development of the composite long-range variable-direction
emitting radar (CLoVER) transducer. This novel device has
been introduced by the authors as an alternative concept for
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Figure 26. Full-field comparison between laser vibrometer and theoretical solution at time t = 50 μs. (a) Experiment. (b) Theory.

Figure 27. Full-field comparison between laser vibrometer and theoretical solution at time t = 65 μs. (a) Experiment. (b) Theory.

damage interrogation and GW excitation in structural health
monitoring (SHM) systems. This transducer has an overall ring
geometry, but is composed of wedge-shaped APT sectors that
can be individually excited to interrogate the structure along
a particular direction from a central location. Some of the
advantages offered by this new design were briefly discussed.
The theoretical analysis considered uncoupled dynamics for
the actuator and substrate, and their interaction was modeled
as surface tractions along the actuator’s edges. Under these
assumptions, a 3D elasticity boundary value problem was
formulated, and its solution yielded theoretical expressions
for the displacement field. Results from three-dimensional
finite element simulations demonstrated the accuracy of the
theoretical result as a solution to the elasticity problem.
The sensor response of a uniform rectangular piezoelectric
wafer and a wedge-shaped APT under the GW field excited
by a wedge-shaped APT was also investigated. This
analysis was based on modeling the actuators as capacitors.
The rectangular piezoelectric sensor was considered as a
parallel plate capacitor, while the APT was considered as
a combination of parallel plate capacitors. It was found
that the radial dimension of the APT sensor significantly
affects the response in frequency, while the azimuthal span

only affects the response amplitude. The overall trend that
smaller sensors produce enhanced response was confirmed.
A combination of sensor-based and laser vibrometer-based
experiments were conducted to verify the performance of
the solution in representing the actual physical system. A
comprehensive set of results was presented and the ability of
the solution to capture the experimental results in the time,
frequency, and space domains was demonstrated.
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Appendix

The column vector of coefficients, Δ, first introduced in
equation (41), is defined through:

Δ =
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where the individual components have the following defini-
tions:
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Similarly, the column vector Λ is defined as:

Λ =
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(3)
2−k

ν̄
(1)
1−k + ν̄

(2)
−1−k

⎫⎪⎬
⎪⎭ (A.10)

where the individual components have the following defini-
tions:

η
(1)
k = [c(2)k γ

(1)
5 − c(1)k γ

(1)
4 ][RO H (2)

k (ξAr)

− RI H (2)
k (ξAr)](−i)k (A.11)

η
(2)
k = c(1)k γ

(1)
3 [RO H (2)

k (ξAr)− RI H (2)
k (ξAr)](−i)k (A.12)

η
(3)
k = [c(1)k γ

(1)
4 + c(2)k γ

(1)
5 ][RO H (2)

k (ξAr)

− RI H (2)
k (ξAr)](−i)k (A.13)

κ
(1)
k = [c(1)k γ

(2)
1 − c(2)k γ

(2)
5 ][RO H (2)

k (ξAr)

− RI H (2)
k (ξAr)](−i)k (A.14)

κ
(2)
k = c(2)k γ

(2)
4 [RO H (2)

k (ξAr)− RI H (2)
k (ξAr)](−i)k (A.15)

κ
(3)
k = [c(1)k γ

(2)
1 + c(2)k γ

(2)
5 ][RO H (2)

k (ξAr)

− RI H (2)
k (ξAr)](−i)k (A.16)

ν̄
(1)
k = 1

2 (c
(1)
k + ic(2)k )[RO H (2)

k (ξAr)

− RI H (2)
k (ξAr)](−i)k (A.17)

ν̄
(2)
k = 1

2 (c
(1)
k − ic(2)k )[RO H (2)

k (ξAr)

− RI H (2)
k (ξAr)](−i)k. (A.18)

The column vector Υ̃ is defined as:

Υ̃ =

⎧⎪⎨
⎪⎩
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(1)
−2−k − ρ̃

(2)
−k − ρ̃

(3)
2−k
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(1)
−2−k − ψ̃

(2)
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(3)
2−k

υ̃
(1)
1−k + υ̃

(2)
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⎫⎪⎬
⎪⎭ (A.19)

where the individual components are given by:

ρ̃
(1)
k = [c(2)k γ

(1)
5 − c(1)k γ

(1)
4 ](−i)k RO H (2)

k (ξA RO) (A.20)
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k (ξA RO) (A.26)
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2 (c
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k (ξA RO). (A.27)

Finally, the column vector Υ is defined as:
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where the individual components are given by:
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(1)
5 − c(1)k γ

(1)
4 ](−i)k RI Jk(ξA RI) (A.29)
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υ
(2)
k = 1

2 (c
(1)
k − ic(2)k )(−i)k RI Jk(ξA RI). (A.36)

The distinction between symmetric and antisymmetric
modes occurs in the definition of the coefficients γ

(i)
j .

The following equations provide their definition for the
antisymmetric case. The coefficients for the symmetric mode
are found analogously by interchanging sine and cosine terms
whose arguments depend on the substrate half-thickness b,
and by replacing the antisymmetric wavenumber, ξA, by its
symmetric counterpart, ξS.

γ
(1)
1 = sinαb cos βb (A.37)

γ
(1)
2 = 4αβ cosαb sinβb (A.38)

γ
(1)
3 = γ

(1)
1

(
ξ 4

A

2
+ β4 − β2 ξ

2
A

2

)
+ γ

(1)
2

ξ 2
A

2
(A.39)

γ
(1)
4 = γ

(1)
1

(
3

4
ξ 2

Aβ
2 − ξ 4

A

4

)
− γ

(1)
2

2
ξ 2

A (A.40)

γ
(1)
5 = −i

ξ 2
A

4
[(ξ 2

A − 3β2) sinαb cos βb + 4αβ cosαb sinβb]
(A.41)
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γ
(2)
1 = −i

ξ 2
A

4
[(ξ 2

A − 3β2) sinαb cos βb + 4αβ cosαb sinβb]
(A.42)

γ
(2)
2 = sinαb cos βb (A.43)

γ
(2)
3 = 4αβ cosαb sinβb (A.44)

γ
(2)
4 = γ

(2)
2

(
ξ 4

A

2
+ β4 − β2 ξ

2
A

2

)
+ γ

(2)
3

ξ 2
A

2
(A.45)

γ
(2)
5 = γ

(2)
2

(
ξ 4

A

4
− 3

4
ξ 2

Aβ
2

)
+ γ

(2)
3

4
ξ 2

A. (A.46)
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