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Summary. The development of model-based methods for incomplete data has been a seminal contribution
to statistical practice. Under the assumption of ignorable missingness, one estimates the joint distribution
of the complete data f(y | θ) = f(yobs, ymis | θ) for θ ∈ Θ from the incomplete or observed data yobs . Many
interesting models involve one-to-one transformations of θ. For example, with yi ∼ N(µ, Σ) for i = 1, . . . ,n
and θ = (µ, Σ), an ordinary least squares (OLS) regression model is a one-to-one transformation of θ.
Inferences based on such a transformation are equivalent to inferences based on OLS using data multiply
imputed from f(ymis | yobs , θ) for missing ymis . Thus, identification of θ from yobs is equivalent to identification
of the regression model. In this article, we consider a model for two-level data with continuous outcomes
where the observations within each cluster are dependent. The parameters of the hierarchical linear model
(HLM) of interest, however, lie in a subspace of Θ in general. This identification of the joint distribution
overidentifies the HLM. We show how to characterize the joint distribution so that its parameters are a
one-to-one transformation of the parameters of the HLM. This leads to efficient estimation of the HLM
from incomplete data using either the transformation method or the method of multiple imputation. The
approach allows outcomes and covariates to be missing at either of the two levels, and the HLM of interest
can involve the regression of any subset of variables on a disjoint subset of variables conceived as covariates.

Key words: Hierarchical linear model; Ignorably missing data; Maximum likelihood; Multiple imputation;
Overidentified; Random coefficients model.

1. Introduction
Missing data are ubiquitous in many domains of inquiry. Until
quite recently, most analysts facing missing data either dis-
carded cases having missing values or applied ad hoc methods
of imputation. Such strategies are, in general, subject to biases
in point estimation, uncertainty estimation, or both. Seminal
work in recent years has placed the analysis of such data on a
principled basis (Orchard and Woodbury, 1972; Rubin, 1976,
1987, 1996; Dempster, Laird, and Rubin, 1977; Schafer, 1997;
Liu, Taylor, and Belin, 2000; Little and Rubin, 2002; Schafer
and Yucel, 2002). These model-based approaches are based
on assumptions that are comparatively mild in many appli-
cations: that the data are missing at random (MAR) and
that the parameters generating the complete data are distinct
from the parameters governing the missing data process (Ru-
bin, 1976). Under MAR, likelihood-based methods for miss-
ing information (Orchard and Woodbury, 1972), notably the

expectation–maximization (EM) algorithm (Dempster et al.,
1977; Wu, 1993), provide efficient estimation of the parame-
ters of complete data based solely on analysis of the observed
data.

Framed generally and following Little and Rubin (2002),
we may denote the complete-data vector Y as generated by a
model Y ∼ f(y | θ). The object of our inquiry is to make infer-
ences about θ. However, the data are subject to missingness.
Let Y = (Y obs, Y mis) for observed Y obs and missing Y mis. We
assume that Y obs is selected from Y by a stochastic process
governed by parameters φ, where θ and φ are distinct. Let M
be a missing-value indicator vector such that the kth element
is 1 if the kth element of Y is missing and 0 otherwise. The
key assumption is that M ∼ g(m | y, φ) is conditionally in-
dependent of Y mis given Y obs, that is g(m | y, φ) = g(m | yobs,
φ). This is the MAR assumption, which requires that any
association between M and Y is explained by Y obs.
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In this article, we consider inference for the two-level hier-
archical linear model (HLM) when outcomes and covariates
are MAR. Our approach extends the logic of inference for
the normal theory ordinary least squares (OLS) regression
under MAR. The OLS parameters are, of course, one-to-one
transformations of the parameters of the multivariate nor-
mal distribution Yi ∼ N(β, Σ), where Yi is a complete data
vector of a response variable and covariates for unit i = 1,
2, . . . ,n. Let Oi denote an observed-value indicator matrix,
each row of which contains a single 1 with all other elements
in that row equal to 0, such that Y iobs = OiYi ∼ N(Oiβ,
OiΣOT

i ). Inference about the parameters θ = (β, Σ) can be
obtained from Y iobs via maximum likelihood (ML) using, for
example, the EM algorithm or Fisher scoring. Under OLS,
we partition the data such that Yi = [Ri W T

i ]T where Ri is
a scalar response variable and Wi is a vector of covariates.
We focus on the parameters of the conditional distribution
Yi |Wi ∼ N(γ0 + W T

i γ1, σ
2) as well as the marginal distribu-

tion Wi ∼ N(βw, Σww ). The parameters θ∗ = (γ0, γ1, σ
2, βw,

Σww ) represent a one-to-one transformation of θ (Little and
Rubin, 2002, Chapter 6). Under MAR, inference for the OLS
may proceed in one of the two ways. First, one may compute
the ML estimates (MLE) θ̂ of θ, then transform to θ∗; we
call this “MLE onY obs.” Second, one may generate multiply
imputed Y mi = (Rmi , W mi ) from f(y | yobs, θ̂) and then com-
pute the usual OLS estimates of θ∗ from each of the multiply
imputed data sets, combining the estimates as specified by
Rubin (1987); we call this “MLE onY mi .”

We extend these two methods to the two-level HLM. The
extension, however, is not straightforward because, unlike in
the OLS case, the parameters of the joint distribution of the
response variables and covariates are not generally one-to-one
transformations of the parameters of the HLM. We focus on
the problem of aligning this joint distribution with the HLM
of interest. If this problem is ignored, substantially biased
inferences may result.

Related work by Liu et al. (2000) considered Bayes infer-
ence to longitudinal designs having a fixed within-subject de-
sign with repeated measures. This is a special case of a two-
level design where level-1 units are occasions nested within
persons at level 2, where the level-1 design is invariant across
level-2 units, and where the data are ignorably missing at both
levels. The level-1 covariance matrix was diagonal. Schafer
and Yucel (2002) developed Bayes and ML inference for a
broader class of two-level HLMs in which the level-1 design
matrix could vary across level-2 units. This flexibility incor-
porates longitudinal designs in which the timing of repeated
measures varies arbitrarily across subjects. It also extends to
two-level cross-sectional designs, for example, in which stu-
dents are nested within schools or workers within firms. The
approach allows level-1 data to be MAR.

This article builds on the past work. First, our primary aim
is to consider the overidentification problem that arises in an
HLM. Unless considerable care is taken in specifying the joint
distribution of the complete data, the HLM will be overfit and
that may cause substantially biased inferences due to the im-
putation model being uncongenial to subsequent analysis of
the HLM (Meng, 1994; Rubin, 1996), and this issue has not
yet commanded attention. Second, we generalize the appli-
cation by allowing data to be missing at either level and by

allowing a flexible multivariate approach in which any sub-
set of variables are regressed on a disjoint subset of variables
conceived as covariates. We shall consider models in which re-
gressors having random coefficients are completely observed.
The more general case with such regressors partially observed
can be handled within a Bayesian framework, but we shall
avoid that option to maintain our focus on the identification
problem. Following Liu et al. (2000) and Schafer and Yucel
(2002), we restrict our attention to two-level multivariate nor-
mal data using likelihood-based inference (Dempster, Rubin,
and Tsutakawa, 1981; Laird and Ware, 1982; Longford, 1993;
Goldstein, 1995; Pinheiro and Bates, 2000; Raudenbush and
Bryk, 2002) and leave useful extensions to a broader range of
distributions, and to three or more levels to future work.

The ML approach provides fast computation and is most
appropriate when the number of level-2 units is moderately
large. In this context, we explore some issues of data analysis
and interpretation that arise in an HLM, accommodating a
general missing pattern.

Sections 2 and 3 describe the model and estimation includ-
ing special cases that yield familiar methods. Sections 4 and
5 illustrate the approach using data sets from two large-scale
surveys. The discussion section follows.

2. Model
Our general strategy is to model the joint distribution of a re-
sponse variable and covariates subject to missingness. Having
accomplished this objective, we have the option of either esti-
mating an HLM using the MLE onY obs or the MLE onY mi . In
pursuing this strategy, however, the general form of the joint
distribution identifies more parameters than are typically of
interest in subsequent analysis. We illustrate the problem of
over-identification and propose a reasonably general modeling
framework for managing this problem.

To illustrate the problem of over-identification, consider a
simple HLM

Rij = γ0 + γ1Wij + uj + eij ∼ N
(
γ0 + γ1Wij , τ + σ2

)
, (1)

where uj ∼ N(0, τ) and eij ∼ N(0, σ2) for level-1 i = 1, . . . ,nj

nested within level-2 j = 1, . . . , J . A joint model of Yij =
[Rij Wij ]

T is

Yij = β + bj + εij ∼ N(β,Ψ + Σ), (2)

for β =

[
βr

βw

]
,Ψ =

[
ψr ψrw

ψrw ψww

]
and Σ =

[
σrr σrw

σrw σww

]
,

where bj = [brj bwj ]
T ∼ N(0,Ψ),

and εij ∼ N(0, Σ). Relating model (1) to model (2) results in
γ0 = βr − ψrw +σrw

ψww +σww
βw, γ1 = ψrw +σrw

ψww +σww
, τ = ψrr , and σ2 = σrr −

(ψrw +σrw )2

ψww +σww
. Model (2), which contains eight parameters, is

over-parameterized in representing model (1), which involves
seven parameters including Wij ∼ N(βw, ψww + σww ). Let us
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express model (2) such that it recognizes the latent random
effect bwj of Wij in cluster j




Rij

Wij − bwj

bwj


 ∼ N






βr

βw

0


 ,



ψrr + σrr σrw ψrw

σrw σww 0

ψrw 0 ψww





 . (3)

Then, a regression of Rij on other variables leads to

Rij |Wij , bwj

∼ N
((
βr −

σrw

σww
βw

)
+
σrw

σww
Wij +

(
ψrw

ψww
− σrw

σww

)
bwj ,

(
ψrr −

ψ2
rw

ψww

)
+

(
σrr −

σ2
rw

σww

))
. (4)

Model (4) implies model (1) if bwj = 0. The transformation
of model (2) for bwj = 0 identifies model (1) with γ0 = βr −
σrw
σww
βw, γ1 = σrw

σww
, τ = ψrr , and σ2 = σrr − σ2

rw
σww

. Model (2) with
bwj = 0, however, has a strong assumption that Wij does not
vary across level-2 units. Violation of the assumption leads to
underestimation of the standard errors of effects.

Model (4) also implies model (1) if α = ψrw
ψww

= σrw
σww

.

Model (2) under the “α” constraint implies γ0 = βr − αβw,
γ1 = α, τ = ψrr − ψrw α, and σ2 = σrr − σrw α. Thus, the
constrained joint model (2) identifies model (1). The stan-
dard errors in model (1) will be correctly estimated taking
uncertainty at both levels into account.

To extend these ideas, we now propose a reasonably general
HLM

Rij = CTij γ +DTij uj + eij ∼ N
(
CTij γ, D

T
ij τDij + σ2

)
, (5)

where Rij is a scalar response variable, Cij is a vector of co-
variates having fixed effects γ, Dij is a vector of completely
observed covariates having random effects uj ∼ N(0, τ),
and eij ∼ N(0, σ2) for i = 1, . . . ,nj nested within j =
1, . . . , J . Although our method does not require the pres-
ence of an intercept in Dij , many applications do. Thus, we
let Dij = [1 X T

dij ]
T for covariates Xdij having random slopes

where the subscript “d” denotes covariates in Dij . Rauden-
bush and Bryk (2002, “RB” hereafter) review statistical in-
ference in case of complete data using either ML or Bayes
methods.

To facilitate statistical inference with incomplete data, we
reparameterize model (5) in terms of the joint distribution
of the response and all covariates subject to missingness con-
ditional on all completely observed covariates. Let p1-vector
X1ij and p2-vector X2j be completely observed level-1 and
level-2 covariates, respectively, in Cij . The covariate vectors
subject to missingness are q1-vectorW 1ij and q2-vectorW 2j at
levels 1 and 2, respectively. Thus, CT

ij = [XT
1ij X

T
2jW

T
1ijW

T
2j ]

and γ = [γTx1 γ
T
x2 γ

T
w1 γ

T
w2]

T . For n a positive integer, let In de-
note an n by n identity matrix. The joint distribution of Rij ,
W 1ij , W 2j |X1ij , X2j , Xdij is



Rij

W1ij

W2j


 =



XT

1ij XT
2j 0 0

0 0 Iq1 ⊗
[
XT

1ij X
T
2j

]
0

0 0 0 Iq2 ⊗XT
2j






βr1

βr2

βw1

βw2




+




1 XT
dij 0 0

0 0 Iq1 0

0 0 0 Iq2






br0j

br1j

bw1j

bw2j


 +



εrij

εw1ij

0


 ,

(6)

where

br0j

br1j

bw1j

bw2j


 ∼ N


0,



ψr0r0 ψr0r1 ψr0w1 ψr0w2

ψr1r0 ψr1r1 0 0

ψw1r0 0 ψw1w1 ψw1w2

ψw2r0 0 ψw2w1 ψw2w2





 ,

and

[
εrij

εw1ij

]
∼ N

(
0,

[
Σrr Σrw1

Σw1r Σw1w1

])
.

We assume Cov(br1j , bw1j) = Cov(br1j , bw2j) = 0. The
nonzero covariances could be estimated. However, they in-
troduce extraneous quadratic effects between Dij and Cij in
model (5), leading to interpretational difficulties. Let αT =
Σrw1Σ

−1
w1w1 = (ψr0w1 − ψr0w2ψ

−1
w2w2ψw2w1) × (ψw1w1 −

ψw1w2ψ
−1
w2w2ψw2w1)

−1 and πT = (ψr0w2 − αT ψw1w2)ψ
−1
w2w2.

Represent βw1 = [βTw11 β
T
w12 . . . β

T
w1q1

]T for a vector βw1k of
(p1 + p2) fixed effects for the kth covariate in W 1ij

such that β∗
w1 = [βw11 βw12 . . . βw1q1 ]. Likewise, let βw2 =

[βTw21 β
T
w22 . . . β

T
w2q2

]T for a p2-vector βw2l for the lth covari-
ate in W 2j such that β∗

w2 = [βw21 βw22 . . . βw2q2 ]. Model (6) is
a reparameterization of model (5), where [γTx1 γTx2]

T = [βTr1
(βr2 − β∗

w2 π)
T ]T − (β∗

w1 α), γw1 = α, γw2 = π, σ2 = Σrr −
Σrw1 α and

τ =

[
τ00 τ01

τ10 τ11

]
=

[
ψr00 − ψr0w1α− ψr0w2π ψr01

ψr10 ψr11

]
.

Although model (6) is useful in revealing the relationship
between the joint model and model (5), an alternative repre-
sentation that combines data within level-2 j is essential in
deriving estimators. Thus, we define

Y1j =




Y11j

Y12j

...

Y1njj


 ,X1j =




Iq1+1 ⊗
[
XT

11j X
T
2j

]
Iq1+1 ⊗

[
XT

12j X
T
2j

]
...

Iq1+1 ⊗
[
XT

1njj
XT

2j

]



,

Z1j =




diag
{
DT1j , Iq1

}
diag

{
DT2j , Iq1

}
...

diag
{
DTnjj

, Iq1

}



, ε1j =




ε11j

ε12j

...

ε1njj


 ,
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where Y1ij = [Rij W
T
1ij ]

T ,diag{DTij , Iq1} is a diagonal matrix
with diagonal elements DT

ij and Iq1 , β1 = [βTr1 β
T
r2 β

T
w1]

T , b1j =
[br0j b

T
r1j b

T
w1j ]

T , and ε1ij = [εrij εTw1ij ]
T ∼ N(0, Σ). Adopting

the modeling notation of Schafer and Yucel (2002), we express
model (6) at level-2 j

Yj = Xjβ + Zjbj + εj , bj ∼ N(0,Ψ),

εj ∼ N
(
0,diag

{
Inj

⊗ Σ, 0
})
,

(7)

which is equivalent to[
Y1j

W2j

]

=

[
X1j 0

0 Iq2 ⊗XT
2j

][
β1

βw2

]
+

[
Z1j 0

0 Iq2

][
b1j

bw2j

]
+

[
ε1j

0

]
.

(8)

Let Oj be an observed-value indicator matrix for Yj

such that Yjobs = OjXjβ +OjZjbj +Ojεj ∼ N (OjXjβ, Vj)
for Vj = Oj(ZjΨZ

T
j + diag{Inj

⊗ Σ, 0})OTj . An application
to a multivariate HLM (5) with missing data is straightfor-
ward by a vector Rij and matrices Cij and Dij .

3. Estimation
We maximize the observed data likelihood via a combination
of the EM algorithm for (Ψ, Σ) and Fisher scoring for β in
the joint model (7) to hasten the slow convergence of the
conventional EM (Laird and Ware, 1982; Schafer and Yucel,
2002). We sketch the estimation of parameters and standard
errors. See Web Appendices A, B, and C for details (Magnus
and Neudecker, 1998).

The complete data are Y = (Y obs, Y mis) and b1. We view
(Y mis, b1) missing (Dempster et al., 1981). The presence of α
in both Ψ and Σ makes the estimation difficult. Instead, we
use model (5) to estimate α and translate it back into model
(7). For the M-step, the complete data MLE are (γ̂, Σ̂, Ψ̂, β̂),
which are then translated to (Σ̂rw1, ψ̂r0w1, ψ̂r0w2, β̂r1, β̂r2). For
the E-step, the estimates of the complete data sufficient statis-
tics ε1j , ε1j ε

T
1j , ε1j bT

j , bj and bj bT
j are obtained from ε1j ,

bj |Yobs , Ψ, Σ, β. Let dj = Oj (Yj − Xjβ). The score and

expected Hessian matrices are S =
∑J

j=1X
T
j O

T
j V

−1
j dj and

EH = −
∑J

j=1X
T
j O

T
j V

−1
j OjXj = H (RB). The Fisher scor-

ing update is β̂ = β − (EH)−1S.
Let ϕ contain distinct elements in (Ψ, Σ). The observed

information for θ = (ϕ, β) is

IO =

[
Iϕϕ Iϕβ

Iβϕ Iββ

]

Table 1
Variables used in analysis of the High School and Beyond Study

Level Variable Description Mean (S.D.)

I MATHACH Math achievement score 12.75 (6.88)
SES Standardized socioeconomic score 0 (0.78)

II DISCLIM Measure of disciplinary climate, the higher the worse −0.02 (0.98)
LOGSIZE Log(school enrollment) 6.79 (0.73)

for Iϕϕ = ∂2l
∂ϕT ∂ϕ

, Iϕβ = ∂2l
∂ϕT ∂β

= ITβϕ, and Iββ = ∂2l
∂βT ∂β

. The

Fisher information is E(IO). The asymptotic variance of θ̂ is
[E(IO)]−1 or I−1

O .
Two special cases yield familiar methods. The first is Y =

Y obs. The missing data are b1. This is an HLM whose level-
1 estimation is the full ML method in Dempster et al.
(1981); see also Lindley and Smith (1972). The second spe-
cial case involves no random effects b = 0. The joint model
is Y1j ∼ N(X1jβ1, Inj

⊗ Σ). The MLE β̂1 is the generalized
least-squares estimator with missing data (Beale and Little,
1975; Dempster et al., 1977; Schafer, 1997; Little and Rubin,
2002).

In the next two sections, we illustrate the over-identification
problem and the method. The MLE onY obs, both uncon-
strained and α-constrained, and the MLE onY mi are carried
out by C programs written by the authors. A random num-
ber generating library of C routines, RANDLIB 1.3, by Barry
W. Brown, James Lovato, Kathy Russell, and John Venier is
used. HLM5 (Raudenbush et al., 2002) fits model (5) on Y and
Y mi following Rubin’s rule (Rubin, 1987). Fisher information
is used to provide an objective comparison of standard errors
with those of HLM5 based on Fisher information. Starting
values for θ are the least-squares estimates. The convergence
criterion is the difference in observed loglikelihoods between
two consecutive iterations, which is taken to be <10−6.

4. Illustrative Example I: Over-Identification Problem
We illustrate the over-identification problem with a subset of
the High School and Beyond Study of 1980 that does not con-
tain missing data (RB). The data has 7185 students within
160 schools. Each school has 14 to 67 students surveyed. The
variables are described in Table 1. Model (5) of interest has
Rij = MATHACH ij , Cij = [1 SESij DISCLIMj LOGSIZEj ]
and Dij = 1. The estimates appear under HLM in Table 2.
The unconstrained and α-constrained joint models (7) of [Rij

CT
ij ]T are estimated and translated to Rij |Cij . These esti-

mates follow those under HLM in Table 2. The inaccuracy of
estimates in the over-identified model (5) is apparent under
the MLE onY unconstrained. There are discrepancies in all
estimates and their standard errors against those under HLM.
On the contrary, the estimates in the last column closely
match those of HLM. It is interesting that there exists so
much sensitivity in the estimated HLM (5) by the uncon-
strained joint model (7).

5. Illustrative Example II: Missing Data
We illustrate estimation of an HLM subject to missingness
using the Chicago Community Adult Health Study (CCAHS,
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Table 2
Regression of MATHACH on SES, DISCLIM, and LOGSIZE

Estimate (S.E.)

MLE onY MLE onY
Predictor HLM Unconstrained Constrained

γ Intercept 10.083 (1.642) 10.345 (1.534) 10.083 (1.623)
SES 2.378 (0.105) 2.975 (0.140) 2.378 (0.105)
DISCLIM −1.203 (0.179) −1.097 (0.168) −1.202 (0.177)
LOGSIZE 0.373 (0.240) 0.336 (0.225) 0.373 (0.238)

τ 3.505 (0.490) 6.348 (1.055) 3.505 (0.490)
σ2 37.024 (0.625) 33.970 (0.800) 37.024 (0.625)

Table 3
Variables used in analysis of CCAHS

Level Variable Description Mean (S.D.) Missing (%)

I BMI Body mass index 28.55 (6.96) 40 (1.3)
EDUC The number of years educated 12.71 (3.51) 5 (0.2)
INCOME In $10K’s, incomes >20 set to 20 4.50 (3.66) 577 (18.6)
AGE Age in years 42.50 (16.46) 0 (0.0)
FEMALE 1 if female 0.60 (0.49) 0 (0.0)

II SDISO Measure of social disorder −7.17 (0.91) 263 (76.7)

Morenoff et al. 2006), a survey of 3105 adults living in
343 Chicago neighborhoods. The general aim of this study
is to investigate social disparities in health arising from
neighborhood and person-level risk factors. Here we consider
neighborhood social disorder (SDISO) and individual-level
covariates education (EDUC), household income (INCOME),
age (AGE), and female indicator (FEMALE) as predictors of
body mass index (BMI; see Table 3). SDISO is a scale of seven
items indicating loitering adults, public drinking, youth dis-
playing gang indicators, adults fighting or arguing hostilely,
and the presence of drug sales or prostitutes on the street
(see Raudenbush and Sampson, 1999, for details). We reason
that healthful food would be relatively less available in more
highly disordered neighborhoods, and that lifestyles in such
neighborhoods would be unconducive to good nutrition. We
therefore expect that residence in neighborhoods character-
ized by high levels of social disorder will be associated with
elevated BMI even after adjustment for education, income,
age, and gender. Measurement of social disorder is expensive,
requiring the videotaping of each of several hundred “block
faces” (sides of a city block) in each neighborhood, followed
by coding of the videotapes. As a result, the investigators de-
cided to study SDISO in a random sample of 80 of the 343
neighborhoods from which the subjects were drawn. The key
explanatory variable at the neighborhood level is thus miss-
ing completely at random (MCAR, Rubin, 1976) in 77% of
the neighborhoods. In addition, INCOME is missing on 19%
of the 3105 persons, a common result in large-scale survey
research. Our analysis uses all available data under the as-
sumption of MAR.

5.1 Random Intercept Model with Missing Data
In this section, we illustrate the MLE onY obs and the
MLE onY mi . Let Rij = BMIij , X1ij = [AGEij FEMALEij ]

T ,

X2j = 1, W 1ij = [EDUCij INCOMEij ]
T , W 2j = SDISOj

and Dij = 1 in HLM (5). It took 122 iterations for the con-
strained joint model (7) to converge. We imputed five com-
plete data sets (Rubin, 1987; Schafer, 1997). To propagate
the uncertainty in estimation, we generated θ from its sam-
pling distribution estimated by ML and then generated miss-
ing data given the θ. Let vii and vij be variances of log(ψii)

and log
1+ρij
1−ρij

for i �= j, where ρij =
ψij√
ψiiψjj

. We generated β ∼
N(β, I−1

β ), diagonal ψii ∼ N(log (ψii), vii ), and off-diagonal

ψij ∼ N(log
1+ρij
1−ρij

, vij ). With many level-1 units, Σ was esti-

mated accurately enough to be fixed at ML Σ̂. Both methods
suggest, as expected based on available literature, that ed-
ucation is negatively related to BMI while age and female
gender are positively related to BMI in Table 4. Net these as-
sociations, both methods show a positive association between
neighborhood social disorder and BMI. Moderate differences
show up in the effects of social disorder and the τ estimates
across the MLE onY obs and the MLE onY mi . Other estimates

Table 4
Random intercept model of BMI on covariates in Table 3

Estimate (S.E.)

Predictor MLE onY obs MLE onY mi

γ Intercept 27.980 (0.220) 28.010 (0.216)
EDUC −0.158 (0.041) −0.178 (0.040)
INCOME 0.058 (0.042) 0.047 (0.039)
AGE 0.032 (0.008) 0.031 (0.008)
FEMALE 1.022 (0.254) 1.054 (0.259)
SDISO 0.839 (0.250) 0.659 (0.265)

τ 2.256 (0.589) 1.996 (0.575)
σ2 44.668 (1.207) 44.996 (1.205)
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Table 5
Random coefficient model with AGE having a random

coefficient on BMI

Estimate (S.E.)
Predictor MLE onY obs

γ Intercept 27.996 (0.221)
EDUC −0.160 (0.043)
INCOME 0.057 (0.043)
AGE 0.034 (0.008)
FEMALE 1.017 (0.254)
SDISO 0.825 (0.085)

τ τ 00 2.322 (0.597)
τ 01 0.020 (0.020)
τ 11 0.001 (0.001)

σ2 44.279 (1.249)

and standard errors appear to be similar between the two
methods.

5.2 Random Slope Model with Missing Data
Consider the same HLM (5) as in Table 4 except Dij =
[1AGEij ]

T . The constrained joint model (7) converged in
1345 iterations. The MLE onYobs appears in Table 5. The re-
sults are very close to those for the random intercept model.
This is not surprising in that the slope for age varies at most
modestly with a 95% confidence interval of (0.000, 0.012).

6. Discussion
The joint model (6) of the variables subject to missingness in
HLM (5) over-identifies the HLM. Consequently, considerably
biased inferences may result. The approach in this article es-
tablished a one-to-one transformation between the two models
by constraining model (6).

Based on existing methods in estimating an HLM with
missing data, analysts will prefer the MLE onY mi to the
MLE onY obs (Schafer and Yucel, 2002). The reason is that
the joint model assumptions of covariates subject to miss-
ingness are nontrivial but affect missing data only under
the MLE onY mi . Under the approach in this article, the
MLE onY mi and the MLE onY obs are based on the same joint
model and hence are equivalent as in single-level data analysis
(Collins, Schafer, and Kam, 2001).

Despite benefits of multiple imputation when imputers and
analysts are different (Collins et al., 2001; Schafer, 2003), spe-
cial care needs to be taken with analysis of multilevel data.
Because modeling covariates subject to missingness becomes
of concern in analysis of an HLM, imputers should concern
themselves far more carefully with a model of interest than
they would in single-level data. As a result, a more dynamic
relationship between imputer and analyst arises in a multi-
level data analysis with missing data.

The unconstrained model (6) adds one more parameter for
each level-1 covariate subject to missingness in HLM (5) than
are of interest in subsequent analysis. This one parameter rep-
resents the coefficient for each of the latent random effects bw1j

in model (6), which, under the unconstrained model, are as-
sumed distinct from each of the coefficients for (W 1ij , W 2j).
Because the latent means are likely to be highly correlated

in many applications, the unconstrained model is likely to
become overfit as the number of level-1 covariates W 1ij in-
creases. The problem worsens with multivariate Rij . On the
contrary, the constrained model (6) achieves parsimony in
such cases. One would still economize on parameters by mod-
eling completely observed covariates in Xj because they do
not affect the constraints among variables subject to miss-
ingness. One other possibility is to constrain some of level-1
variables subject to missingness while others may be left un-
constrained.

It is helpful to use extra variables in model (7) not of direct
interest but having high correlations with the variables sub-
ject to missingness as Collins et al. (2001) and Schafer and
Graham (2002) have done in a single-level context. Model (7)
can accommodate an arbitrary number of extra variables in
both completely observed Xj and missing Yj .

In model (6), we have encountered discrete covariates sub-
ject to missingness under normal distribution at both levels
and found no difficulty in both real and simulated data so
far. A similar experience has been observed in a single-level
context (Schafer, 1997).

Finally, our methodology, implemented in C, automatically
handles the constraints in model (6) and generates the re-
duced number, due to the constraints, of variance estimates
and their standard errors. It also handles a general missing
pattern across multiple levels distinct from existing software.

7. Supplementary Materials
Web Appendices referenced in Section 3 are available un-
der the Paper Information link at the Biometrics website
http://www.tibs.org/biometrics.
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