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SUMMARY. Existing methods for comparing the means of two independent skewed log-normal distributions 
do not perform well in a range of small-sample settings such as a small-sample bioavailability study. In this 
article, we propose two likelihood-based approaches-the signed log-likelihood ratio statistic and modified 
signed log-likelihood ratio statistic-for inference about the ratio of means of two independent log-normal 
distributions. More specifically, we focus on obtaining pvalues for testing the equality of means and also 
constructing confidence intervals for the ratio of means. The performance of the proposed methods is assessed 
through simulation studies that show that the modified signed log-likelihood ratio statistic is nearly an exact 
approach even for very small samples. The methods are also applied to two real-life examples. 
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1. Introduction 
The statistical analysis regarding the ratio of means of two 
independent log-normal distributions is often of interest in 
biomedical research. For example, in a bioavailability study, 
the relative potency of a new drug to that of a standard one 
is expressed in terms of the ratio of means, and analysts often 
need to construct a confidence interval for this ratio or t o  test 
the null hypothesis that the ratio is one, i.e., the mean out- 
comes of the two products are the same (Berger and Hsu, 
1996; Chow and Liu, 2000). In such a study, the primary 
endpoints of interest are estimates of the pharmacokinetic 
parameters specifying the bioavailability of a drug, such as 
the area under the plasma concentration-time curve (AUC) 
and the maximum plasma concentration (Cmax). One of the 
difficulties commonly encountered is that these data are pos- 
itively skewed. Zhou, Gao, and Hui (1997) also presented a 
case where they compared the hospital charges of two groups 
of patients, and medical charge data are frequently skewed 
significantly toward higher cost patients. In these situations, 
a log transformation is often considered in order to normal- 
ize the distribution of the original data. A common approach 
is to perform testing procedures and to construct confidence 
intervals for the difference of means of the log-transformed 
outcome variables and to report the resulting pvalues for the 
null hypothesis based on the original outcomes and the back- 
transformed confidence intervals for the ratio of means. As 
pointed out by Zhou et al. (1997), however, the null hypoth- 

esis based on the log-transformed outcomes is not equivalent 
to the one based on the original outcomes when the variances 
of the log-transformed outcome variables are unequal. In view 
of this, Zhou et al. (1997) proposed two methods for correctly 
testing the null hypothesis. One is a 2-score test and the other 
is a nonparametric bootstrap approach. Their simulation re- 
sults show that the 2-score test is the best among all five 
tests considered in their paper. However, as our simulation 
results show in Section 3, the 2-score test does not perform 
well in a range of small-sample settings. In this article, we pro- 
pose two likelihood-based methods-the signed log-likelihood 
ratio test and the modified signed log-likelihood ratio test 
(Barndorff-Nielsen and Cox, 1994). We demonstrate the high 
performance of the proposed methods in small-sample set- 
tings. 

This article is organized as follows. In Section 2, we intro- 
duce the likelihood-based inference methods, i.e., the signed 
log-likelihood ratio statistic and the modified signed log-like- 
lihood ratio statistic, which we will employ to test the null 
hypothesis of equal means and to construct confidence inter- 
vals for the ratio of means of two log-normal distributions. In 
Section 3, we report some simulation results to demonstrate 
the accuracy of the proposed methods. Two examples are ex- 
amined in Section 4, one of which is a small-sample bioavail- 
ability study and the other is a medical charge study. Some 
final remarks are recorded in Section 5 ,  and the derivation 
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of the modified signed log-likelihood ratio statistic is given in 
Appendix. 

2. Likelihood-Based Methods 
Let 2% be the outcome variable of the i th subject in the first 
group (i = 1,. . . , n) and y j  be the outcome variable of the 
j t h  subject in the second group ( j  = 1,. . . , m). Their cor- 
responding means are al and a 2 ,  respectively. Assume that 
the logarithms of zi and yj are independently and normally 
distributed with means pi and pz and variances a: and u;, 
respectively, i.e., 

log% N (Pl,.?) 1 b Y j  N (PZP22) .  

The null hypothesis of interest is 

Ho: a1 = az, 

where logak = p k  + 4 / 2 ,  k = 1,2. Note that testing the null 
hypothesis Ho is not equivalent to testing the null hypothesis 
H;: = pz when uy # a$. Similarly, a back-transformed 
confidence interval as discussed in Section 1 is actually for 
ep1-p2,  not for the ratio of means al/az when cry # a;. 

A 2-score test proposed by Zhou et al. (1997) for testing 
Ho is 

z= 

where f i1  = C logxiln and j i 2  = C Iogyjlm are the max- 
imum likelihood estimators of p1 and pz, respectively, and 
Sf = C (logei-fi1)'/(n-l) and SE = C (logyj-fi2)2/(m-1) 
are the unbiased estimators of af and a;, respectively. Ac- 
cording to the results in Zhou et al. (1997), when ri and m 
are both large and when Ho is true, the statistic 2 is approx- 
imately distributed as the standard normal distribution. Our 
simulation results in Section 3, however, show that the dis- 
tribution of the 2-statistic is skewed when the sample size is 
small. Hence, the 2-score test is not suitable for small-sample 
data. 

We propose two likelihood-based methods for small-sample 
inference purposes. Suppose the joint log-likelihood function 
based on sample data is l ( 0 )  = [($,A), where B = ($,A), $ is 
a parameter of interest and A is a vector nuisance parameter. 
One can make inferences about + based on the signed log- 
likelihood ratio statistic 

where 6 = (4, i )  denotes the maximum likelihood estimator 
of B = (4, A) and 8, = ($, i+) denotes the constrained max- 
imum likelihood estimator of 0 for a fixed $. It is well known 
that T is approximately distributed as a standard normal to 
the first order (Cox and Hinkley, 1974). For testing the null 
hypothesis Ho: $ = $0,  a two-sided pvalue can be obtained 
from T = T ( $ )  by 

pvalue = 2P( r  > 1.01) M 2{1 - (a(lrol)>, 

where (a(.) is the standard normal distribution furictiori and 
TO = ~ ( $ 0 )  is the observed value of T under Ho. Furthermore, 

the approximate l O O ( 1 -  a)% confidence interval for $ can be 
obtained from 

{$; Ir($)l 5 % / Z h  

where z , /~  is the lOO(1 - a /2) th  percentile of the standard 
normal distribution. 

Note that the first-order approximation is not very ac- 
curate, especially when the sample size is small (see Pierce 
and Peters, 1992). There exist various ways to improve the 
accuracy of this approximation by adjusting the signed log- 
likelihood ratio statistic. In this article, we consider the mod- 
ified signed log-likelihood ratio statistic, known as the T* -  

formula, introduced by Barndorff-Nielseu (1986, 1991), which 
has the form 

T*  = T * ( $ )  = T ( $ )  + r($)-llog {a} , (1) 
T ( $ )  

where u = u($) is a statistic given in the Appendix. Barndorff- 
Nielsen (1986, 1991) showed that T* is approximately distri- 
buted as a standard normal to the third order. Therefore, the 
p-value and confidence limits based on r* are highly accurate. 
The two-sided pvalue for testing the null hypothesis Ho is 

pvalue = 2P(r* > I T ; \ )  E 2{1 -  I IT;^)}, 

where r; = T * ( $ o )  is the observed value of T* under Ho. 
Moreover, the lOO(1 - a)% confidence interval for $ can be 
obtained from the T*-formula as 

{$; IT*($)I I Z,/Z>. 

Consider two independent log-normal distributions and let 
the difference of two log means be the parameter of interest. 
In other words, $ = logal -1ogaz = p1 -p2+(1/2)(u:-u22) 
is the parameter of interest and X = (p2 ,a l ,uz)  is a vector 
nuisance parameter. Let ( $ ~ , $ u )  be a l O O ( 1  - a)% confi- 
dence interval for $. Then (eGL,eiu) is the corresponding 
lOO(1 - a)% confidence interval for the ratio of means of the 
two independent log-normal distributions, a1/az. 

For this problem, the log-likelihood function l ( B )  = e($, 
A) is 

l($, A) = -n log u1 - m log 02 
+{$+P-z(":-";)}-tl 1 1 

4 
P 1 1 + -tz - -t3 - -794 
u2' 2 4  2u2 

where p = p2 and t = (ti,t2,t3,t4) = (C logzi, C logyj, 
c (log c (log yj)') is a minimum sufficient statistic. It 
can be shown that the maximum likelihood estimator 6 = 
(i, i) = (4, ji, &I, &2) is 

fi = tz, 
2 1 (  -2 61 = - t 3  - ntl)  , 

n 
1 

m 4 - 4) , u z  = - ( t  - 2  
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Table 1 
Parameter configurations for the simulation study 

Design P1 01 P2 02” 1cI 
~ 

1 1.1 0.4 1.2 0.2 0 
2 2.5 1.5 3.0 0.5 0 
3 1.1 2.4 2.2 0.2 0 
4 2.5 3.5 4.0 0.5 0 
5 1.0+ l.O/nl/’ 0.6 1.0 0.4 0.1 + l.O/nl/’ 
6 1.0+ 1.5/n1/’ 0.6 1.0 0.4 0.1 + 1.5/n1/2 
7 1.0+ 2.5/n1l2 0.6 1.0 0.4 0.1 + 2.5/n1/2 

where El = t l / n  and c2 = tz/m. Furthermore, for a fixed value 
of $, the constrained maximum likelihood estimator i+ = 
(b+, &I+, 62$)  is defined by the following recursive equations: 

where & = 1c, + Pli, - ;(&?$ - 6&). Hence, the Gauss-Seidel 
iteration can be used to find the constrained maximum like- 
lihood estimator &,. It can also be calculated by using the 
S-plus function nlmin (Mathsoft, 1998). The signed log-like- 
lihood ratio statistic r can be simplified to be 

The details for the derivation of r* are given in the Appendix. 

3. Simulation Studies 
Table 1 gives the parameter configurations of seven designs 
that we will consider in this section. Our aim is to assess the 
coverage probabilities of the Z-, r-, and r*-intervals. More- 
over, the type I error rates and powers of these three tests are 
also examined. 

Our first simulation study is to compare the coverage prob- 
abilities of the three methods using designs 1 and 2 of Table 
1. Note that these two designs have the same parameter con- 
figurations as those considered in Zhou et al. (1997). They 
represent increasing differences in skewness between two in- 
dependent log-normal distributions. We also use two different 
settings in small sample sizes: (i) (n, m) = (5,lO) and (ii) 
(n,m) = (10,lO). For each of the four possible combinations 
of sample size (n,m) and design parameters, we have gen- 
erated 20,000 samples from two independent log-normal dis- 
tributions and have calculated the two-sided 90% confidence 
intervals for 4 with equal tail probabilities. The simulated 
empirical coverage probabilities, upper and lower error prob- 
abilities, and average lengths for each method are given in Ta- 
ble 2. The criteria for comparison are (a) coverage probability 
or coverage error of a confidence interval, which is defined as 
the absolute difference between the coverage probability and 
nominal value, and (b) upper and lower error probabilities and 
their symmetry, where the upper error probability is the per- 
centage of the intervals falling below the true parameter and 
the lower error probability is the percentage of the intervals 
falling above the true parameter. 

From Table 2, we observe that the coverage probabilities 
are lower than the nominal value, or equivalently, the cover- 
age errors are relatively large for both the 2- and r-intervals. 
Furthermore, for these two intervals, the biases of the upper 

Table 2 
Coverage probabilities, coverage errors, error probabilities and average 

lengths of two-sided 90% confidence intervals for  the three methods 

Sample Coverage Coverage Upper error Lower error Average 
size Design Method probability error probability probability length 

(5, 10) 1 z 0.859 0.041 0.096 0.045 1.129 
r 0.851 0.049 0.087 0.063 1.154 
r* 0.895 0.005 0.052 0.053 1.578 

2 z 0.855 0.045 0.129 0.016 2.643 
r 0.847 0.053 0.105 0.048 2.788 
r* 0.898 0.002 0.053 0.049 4.505 

(10, 10) 1 z 0.886 0.014 0.067 0.047 0.873 
r 0.878 0.022 0.064 0.058 0.878 
r* 0.900 0.000 0.049 0.051 0.979 

2 z 0.889 0.011 0.088 0.023 1.924 
r 0.876 0.024 0.074 0.050 1.984 
r* 0.901 0.001 0.049 0.051 2.365 
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Table 3 
Type I error rates of the three tests 

Nominal level 

Sample size Design Test statistic 0.01 0.025 0.05 0.1 

1 2 0.043 0.068 0.098 0.149 
T 0.025 0.053 0.089 0.153 
r* 0.011 0.027 0.055 0.105 

(5, 10) 

2 2 0.069 0.098 0.131 0.187 
r 0.034 0.065 0.107 0.180 
r* 0.012 0.029 0.055 0.107 

z 0.023 0.041 0.069 0.120 
r 0.017 0.037 0.066 0.123 
r* 0.010 0.026 0.051 0.101 

2 2 0.036 0.060 0.088 0.143 
r 0.020 0.044 0.077 0.139 
r* 0.011 0.027 0.053 0.103 

error probabilities are large and they are extremely asymmet- 
ric in small sample-size cases (n  = 5, m = 10). Also, as the 
difference in skewness between the two distributions increases, 
the asymmetry becomes serious. 

In contrast, the r*-interval gives nearly the exact cover- 
age probabilities, or equivalently, nearly zero coverage errors. 
Moreover, its upper and lower error probabilities are close to 
the nominal ones and they are much more symmetric than 
those of the 2- and r-intervals. 

Overall, based on the comparison criteria examined in this 
article, the r*-interval performs much better than the 2- and 
r-intervals. Note that the r*-interval has the longest average 
length whereas the 2-interval has the shortest average length. 
However, both the 2- and r-intervals are too short to ensure 
their coverage probabilities close to the nominal value. 

Some further simulations have been conducted to explore 
how the coverage probabilities change as a function of $ and 
how the nuisance parameters affect the coverage probabili- 
ties as were recorded in Wu et al. (2001). The simulation 
results showed that, if we fix the nuisance parameters and 
only change the parameter of interest, $, the coverage prob- 
abilities remain relatively stable, i.e., the simulation results 
were consistent with those given in Table 2. To explore how 
the nuisance parameters affect the coverage probabilities, we 
performed simulations for designs 3 and 4 from Table 1. De- 
signs 3 and 4 are obtained by increasing the variance of of 
designs 1 and 2 by two and keeping the parameter of interest, 
$, unchanged. Furthermore, we observed from the simulation 
results that the coverage probabilities of 2 have decreased. 
However, the coverage probabilities of r and r* remain rela- 
tively constant and r* gives almost the exact coverage proba- 
bilities even if we increase the difference of skewness between 
the two distributions by a large amount. 

We have also conducted some simulations for the compari- 
son of the type I error rates and powers of the three tests. In 
estimating the type I error rates, we have used the same four 
possible combinations of sample size and design parameters 
(designs 1 and 2) as in Table 2. For each of the four possible 

combinations, we have simulated 20,000 data sets. For each 
data set, we have calculated the values of the 2-, r-, and r*- 
statistics under the null hypothesis Ho: $ = 0. The proportion 
of those values that falls below the value -1.96 represents the 
empirical type I error rate corresponding to the nominal level 
0.025 of the standard normal distribution. Table 3 records the 
empirical type I error rates of Z , r ,  and r* corresponding to 
the nominal levels 0.01, 0.025, 0.05, and 0.1, respectively. It 
can be seen that, among all the tests compared, r* has the 
empirical type I error rates that are the closest to the preset 
nominal levels and the 2-statistic has the worst performance 
among the three test statistics. One can also observe that 
the worst performance of Z and r occurs in the setting of a 
small sample size and large skewness. When the sample size 
increases and/or skewness decreases, the performance of both 
2 and r improves. 

In simulating powers of the tests, we have considered de- 
signs 5-7 from Table 1, where Ho: $ = 0 is not true. The 
proportion of rejecting Ho based on a test represents the 
empirical power of this test. For a prespecified significance 
level a = 0.05 and sample sizes n = m from 10 to 25, Ta- 
ble 4 records simulation results based on 20,000 replications 
for the empirical powers and empirical type I error rates of 
the three tests for designs 5-7 in Table 1. The parameter val- 
ues used to obtain these empirical type I error rates are also 
from designs 5-7 but by setting $ to be the true value, i.e., 
p1 -pa+ (0: -a$). The results in Table 4 show that r has the 
largest power among the three tests and the power of r* is the 
smallest among the three tests. However, from the empirical 
type I error rates, we can see that both T and 2 are too liberal 
and, in contrast, that the r*-test nearly achieves the desired 
nominal level a = 0.05. Thus, to be safe for maintaining the 
type I error rate, we suggest using r*. 

4. Two Real-Life Examples 
In this section, we will illustrate our method using two real-life 
examples. The first example is a bioavailability study in which 
a randomized, parallel-group experiment was conducted with 
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Table 4 
Powers of the three tests with Q = 0.05 

Sample size Design 2 r r* 

10 5 0.217 (0.066)a 0.237 (0.065) 0.200 (0.051) 
6 0.367 (0.066) 0.385 (0.065) 0.329 (0.051) 
7 0.705 (0.066) 0.697 (0.065) 0.623 (0.051) 

15 5 0.237 (0.063) 0.258 (0.062) 0.235 (0.051) 
6 0.390 (0.063) 0.407 (0.062) 0.376 (0.051) 
7 0.728 (0.063) 0.728 (0.062) 0.688 (0.051) 

25 5 0.266 (0.059) 0.281 (0.058) 0.269 (0.051) 
6 0.431 (0.059) 0.444 (0.058) 0.426 (0.051) 
7 0.766 (0.059) 0.769 (0.058) 0.751 (0.051) 

a Empirical power, with empirical type I error rate in parentheses. 

20 subjects to compare a new test formulation (x) with a ref- 
erence formulation (y) of a drug product with a long half-life. 
Among other statistical analyses, testing the equality of the 
means of Cmax and constructing a confidence interval for the 
ratio of means of Cmax of the two formulations are of great im- 
portance in determining if the two formulations have different 
bioavailability. The Cmax data from this study are presented 
in Tahle 5 (n = m = 10). The sample means are 3 = 668.20 
and 5 = 997.56, and the sample standard deviations are 
S, = 314.86 and S, = 913.43. After the log transformation, 
the sample means are 81 = 6.417 and 82 = 6.601 and the sam- 
ple standard deviations are S1 = 0.429 and S2 = 0.817. The 
QQ-plots for the original data and log-transformed data are 
given in Figure 1. These plots suggest that the distributions 
of Cmax data are highly positively skewed and the logarith- 
mically transformed data are approximately symmetric. 

The Shapiro-Wilk tests for the normality on the log-trans- 
formed data give a pvalue of 0.595 for the test formulation 
group and a pvalue of 0.983 for the reference formulation 
group, while the same tests on the original data give a pvalue 
of 0.099 for the test formulation group and a pvalue of 0.005 
for the reference formulation group. Therefore, the log trans- 
formation normalizes the data. The F-test for equal variances 
of the log-transformed data between the two groups gives a 
pvalue of 0.034, and therefore the log transformation does 
not stabilize the variances. In testing equal means of Cm,, 
between the two formulations, we compute the two-sided p 
value of r* to be 0.173 and the 95% confidence interval for the 
ratio of means of Cm, to be (0.242, 1.200). For comparison 
purposes, we also computed the two-sided pvalues of r and 
the 2-score test to be 0.167 and 0.203, respectively, and the 
corresponding 95% confidence intervals to be (0.295, 1.181) 
and (0.339, 1.259), respectively. 

The second example is a medical charge study of patient 
data from the Regenstrief Medical System (McDonald et al., 
1988; Zhou et al., 1997) on effects of race on medical charges 
of patients with type I diabetes who had received inpatient 

or outpatient care on at least two occasions during the pe- 
riod from January l, 1993, through June 30, 1994. One of the 
questions of interest is whether the average medical charge 
for African American patients is the same as that for white 
patients. The data set consists of 119 African American pa- 
tients and 106 white patients. The distributions of medical 
charges are skewed significantly toward higher cost patients 
for both groups. The QQ plots for the original data and log- 
transformed data are given in Zhou et al. (1997). As they 
reported, the Shapiro-Wilk tests for normality on the log- 
transformed data give a pvalue of 0.15 for the African Amer- 
ican patient group and a pvalue of 0.15 for the white pa- 
tient group. Thus, the log transformation normalizes the data. 
Since the F-test for equal variances of log-transformed data 
gives a pvalue of 0.04, the log transformation does not sta, 
bilize the variances. After the log transformation, the sample 
means and sample standard deviations are 9.067 and 1.351, 
respectively, for the African American group and 8.693 and 
1.641, respectively, for the white group. For testing equal 
means of medical charges between the two groups, our r*-test 
gives the two-sided pvalue of 0.83, while the r- and 2-score 
tests give 0.85 and 0.84, respectively. Due to large sample 
sizes, all three tests give almost the same pvalues. 

5.  Conclusions 
In this article, we have proposed two small-sample likelihood- 
based methods for testing the hypothesis of equal means and 
for calculating confidence intervals for the ratio of means of 
two log-normal distributions. Simulation studies show that 
the proposed method based on the r*-formula gives essen- 
tially exact coverage probabilities and is almost an exact test 
even for small samples. The calculations involved are simple 
because the maximum likelihood estimator has an explicit 
form and the constrained maximum likelihood estimator can 
easily be obtained by the S-plus function nlmin. The method 
can be applied to randomized, parallel-group bioavailability 
studies and other settings of skewed log-normal observations. 

Table 5 
Cm, data of a parallel-group experiment 

x 732.89 1371.97 614.62 557.24 821.39 363.94 430.95 401.42 436.16 951.46 
y 1053.63 1351.54 197.95 1204.72 447.20 3357.66 567.36 668.48 842.19 284.86 
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Test sample Reference sample 

1 I I I 

1 0 1 1 0 1 

Quantiles of Standard Normal Quantilea of Standard Normal 

Test sample Reference sample 

1 0 1 1 0 1 

Quantlles of Standard Normal Ouaniiles of Standard Normal 

Figure 1. Quantile plots of Cm, and log(Cmax) data. 
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RESUME 

Les mkthodes existantes de comparaison des moyennes de 
deux distributions log-normales asymktriques indkpendantes 
n’ont pas de bonnes performances dans certains contextes 
d’kchantillons de petites tailles, comme par exemple dans des 
Btudes de bio-disponibilitk sur petits kchantillons. Dans cet 
article nous proposons deux approches, bas6es sur la vraisem- 
blance-le rapport des log-vraisemblances sign6 et le rap- 
port modifik des log-vraisemblances sign&-pour effectuer une 
infkrence sur le rapport des moyennes de deux distributions 
log-normales indBpendantes. Nous nous intkressons particu- 
lihrement B l’obtention des pvaleurs pour le test d’kgalitk des 
moyennes, et kgalement B la construction d’intervalles de con- 
fiance pour le rapport des moyennes. 
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APPENDIX 

Derivation of the r*-Formula for  Two 
Independent Log-Normal Distributions 

Suppose that the log likelihood !($, A; 2, y) based on the sam- 
ple (2, y) can be rewritten as l(+, A; e )  with a fixed ancillary 
statistic; then the statistic u required for computing r* is 
given by 

where the sample-space derivatives are defined as 

the mixed derivatives as 

end &(4, A) is the observed information matrix and j x x ( $ ,  
A+)  is the observed nuisance information matrix (Barndorff- 
Nielsen, 1991). 

Since the two-sample log-normal model is a full-rank expo- 
nential model, the log-likelihood function based on the sam- 
ple data (2, y) is only related to a minimum sufficient statis- 
tic t = ( t l l t 2 , t 3 , t 4 )  and is given in (2). There is a one-to- 
one transformation between the maximum likelihood estima- 
tor 0 = (+, /2, &I, 5,) and the minimum sufficient statistic t ,  
and the transformation Jacobian matrix is &/at. Hence, the 
sample-space derivatives with respect to 8 in the formula for 
u can be derived based on the sample-space derivatives with 
respect to t .  By using the identity j&3(8) = f8;,(e) (Barndorff- 
Nielsen and Cox, 1994) and by canceling the determinant of 
the transformation Jacobian matrix, one can show that u re- 
duces to the following form: 

p;t (4, A) - f ; t  ($7 &) f x ; t  (?A &) 1 
p 8 ; t  (4, A) I u(*) = 
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where the sample-space derivatives l , t ( O )  = b’l(0; t)/at and mixed derivatives l , , t ( O )  = a21(O; t)/aXdt are given by 

and 
- 1 - - ( $ + p + $ )  2 1 - 0 2  

0 

l , ; t (O)  = 

- 

respectively. The determinants of the observed information matrix an- mixed derivative matrix are given by / jo@(Gl A)[ = 
4n2nz/i?;&i and llo;t(8)l = 1/&:&:, respectively. The observed nuisance information matrix is 

Therefore, the statistic u($) can be calculated from (4) .  Thus, with the log-likelihood function given in ( 2 )  and r ($ )  and u($) 
defined in (3) and (4), respectively, T* ($ )  can be obtained from (1). 




