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Anisotropic elastic response of microcracked bodies has 
been studied using transformation-toughened Mg-PSZ and 
Ce-TZP as model materials. These zirconias have been previ- 
ously deformed in triaxial compression to effect various ex- 
tents of phase transformation. Microcracks were found to 
align with the compression axis and their normalized den- 
sity increases linearly with the extent of transformation 
plasticity. The measured elastic constants are anisotropic 
and well described by an elasticity theory. An additional 
anomalous elastic anisotropy was also found in Ce-TZP due 
to a transformation texture of both the remaining tetrago- 
nal phase and the newly formed monoclinic phase. The ter- 
minal crack density w = Nu3, where N is the number of 
cracks per unit volume and a is the crack radius, reaches 
0.05 in Mg-PSZ and 0.1 in Ce-TZP at the completion of 
transformation plasticity. [Key words: microcracking, par- 
tially stabilized zirconia, elastic constants, plasticity, phase 
transformations.] 

I. Introduction 

ICROCRACKING is a common phenomenon in ceramics. M One well-studied example is microcracking due to an- 
isotropic thermal In polycrystals without a tex- 
ture, thermally induced microcracks are randomly distributed 
along grain boundaries. The resultant weakening of elastic 
stiffness in a randomly cracked body has been theoretically 
a n a l y ~ e d . ~ , ~  The latter result has been widely quoted in ce- 
ramic and mechanics literature. Microcracks also form as a 
byproduct of deformation. The distribution of microcracks in- 
duced by deformation, however, is distinctly anisotropic. This 
is well-known in rock mechanics studies in which uniaxial 
and triaxial compression is commonly employed5 and in creep 
fracture studies in which uniaxial tension is of great interest.' 
In all such cases, microcracks extending along grain 
boundaries are found to be preferentially aligned perpendicu- 
lar to the maximal principal stress axis. 

Anisotropic microcracks associated with transformation 
plasticity are of a similar nature.' This is illustrated in Fig. 1, 
which depicts the cracking mechanism under a distant uni- 
axial loading. The primary mechanical force responsible for 
crack formation stems from the shear component of phase 
transformation which produces a wedge opening at the grain 
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boundary. The distant stress biases both the direction of 
shear and the direction of crack propagation in such a way as 
to favor crack formation perpendicular to the axis of the 
maximal principal stress. This is essentially the Zener-Stroh 

well-known in fracture. Such intergranular 
microcracks are initially limited in length to one grain size for 
crystallographic reasons. As transformation plasticity pro- 
ceeds, the density of microcracks increases. Micrographs 
of uniaxially compressed, coarse-grained magnesia-partially- 
stabilized zirconia (Mg-PSZ) have been obtained which sup- 
port the above picture.' 

Microcracking during deformation affects the mechanical 
response of the deformed body in several distinct ways. First, 
the preferential orientation of microcracks causes anisotropy 
in the elastic properties and a drastic weakening in certain di- 
rections and under certain loading conditions." Second, a 
nonlinear elastic strain increment is produced due to the 
changing compliance as a result of crack formation.'," Third, 
any residual crack-opening displacement or frictional surface 
sliding movement contributes additionally to the apparent 
pIasticity.*~l' Like the elastic response, the partition of micro- 
crack plasticity is inherently anisotropic. Therefore, many 
possible fracture mechanics effects, such as crack shielding 
and residual stresses in monotonic'2 and cyclic l~ad ing , '~  can 
be profoundly modified by the anisotropy of such elastic and 
plastic properties. A sound understanding of the mechanical 
response of anisotropically cracked ceramics is thus desirable. 

The present paper is devoted to the study of the elastic 
properties of such objects using two transformation-toughened 
zirconias as model materials. To our knowledge such studies 
have not been reported in the literature, probably because 
laboratory-sized specimens with a controlled, uniform, but 
anisotropic, distribution of microcracks cannot be generated 
easily. (Most rock mechanics studies use natural rocks which 
are very coarse-grained so that crack distribution is not homo- 
geneous. Thermally cracked ceramics, on the other hand, do 
not have the requisite anisotropy in crack distribution.) We 
have compared our data with the theoretical predictions and 
found them in good agreement. As a byproduct of this study, 
we have also obtained some new insight into microscopic 
characteristics of transformation plasticity,' including a direct 
assessment of the damage parameter and the consequence of 
transformation texture on elastic properties. The quantifica- 
tion of the crack density associated with transformation plas- 
ticity is especially worth noting, for such a task has proved 
difficult in the past primarily because of crack closure under 
the compressive residual stress following the dilatant trans- 
formation. Although transmission electron microscopy has 
provided some quantitative information regarding micro- 
cracks, such a technique may suffer from artifacts due to the 
altered stress state in the thin foil and the lack of statistical 
significance in general. By studying the anisotropic elastic re- 
sponse of microcracked macroscopic bodies, we hope we have 
provided the first definitive measurements of microcrack den- 
sities associated with transformation plasticity. 

1026 
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Fig. 1. Schematic of microcracks formed when shear bands inter- 
cept grain boundaries: (a) microcracks perpendicular to tensile 
stress axis, (b) microcracks parallel to compression stress axis. 

. 11. Theory of Elastic Moduli of a Microcracked Body 

(1) Stiffness Matrix 

sented by 
The generalized relationship for Hooke's law is repre- 

E = S U  

or 

U = CE (1) 

where s and c are matrices of proportionality constants called 
compliance and stiffness, respectively. Using a matrix nota- 
tion, in which the indices run from 1 to 6, the relation takes 
the form 

E L  = S t j U j  

or 

= CijEj (2) 

Here the indices are ordered with reference to the Cartesian 
coordinate (x ,  y ,  z )  of Fig. 2 in the following sequence: xx, yy, 
zz, yz, zx, xy.  

We assume that the uncracked solid is elastically isotropic. 
Under axially symmetric deformation it degrades to possess 
only transverse anisotropy as microcracking takes place. A 
material of such symmetry behaves like a hexagonal crystal in 
symmetry-related properties. For example, waves transmitted 
along the unique axis and an axis perpendicular to it will 
have different wave velocities, while waves along any two 
transverse axes are indistinguishable. 

Z 

-t- 
x 
Fig. 2. Cylindrical compression specimen with the 
compression axis designated as the z axis. Also shown is 
a cube used for ultrasonic measurements. A single-sided 
arrow indicates the polarization vector of a longitudinal 
wave, while a double-sided arrow indicates the polariza- 
tion vector of a transverse wave with a normal incidence 
onto the cube surface. 

Five elastic constants are independent for a material with 
transverse isotropy 

CII = c22; c12; cl3 = c23; c33; 

c44 = c55; c66 = ( C I l  - c12)/2 

Thus, the stiffness matrix takes the form 

c11 c12 c13 0 0 0 
c12 c11 c13 0 0 0 
c13 c13 c33 0 0 0 
0 0 0 c 4 4 0  0 
0 0 0 0 c 4 4 0  
0 0 0 0 0 (c*1 - c12)/2 

(3) 

(4) 

(2) 
In the present case pertaining to compression as shown in 

Fig. l(b), we may assume that cracks are oriented along the 
[OOl] direction and that their distribution is otherwise trans- 
versely symmetric with respect to the same. A crack density is 
now defined. It is the (normalized) crack density, Nu3, and de- 
noted by w. Here N is the number of cracks per unit volume 
and a is the crack radius. Only circular cracks are considered. 
In the limit of small w ,  it is obvious that all the stiffness con- 
stants decrease linearly with w in the form of 

( 5 )  

where A,j is a matrix to be defined later. In the above, c,(O) is 
the stiffness matrix component of the uncracked reference 
solid and c&) is the corresponding property of the cracked 
solid at a crack density o. Hoenig" has considered the present 
problem of an axially cracked body and derived the compli- 
ance matrix sIj .  If we focus on the dilute crack density limit of 
his result, and convert it to the compliance matrix with 
lengthy but straightforward algebra, we obtain the linear form 
cast above in Eq. (9, where 

( 6 4  

Crack Density Dependence of Stiffness 

c L J ( w )  = c L ) ( o )  (l -k ' 2 j o )  

All  = A22 = [2(8 - 3~)]/[3(2 - u)] - A 
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A12 = A21 = [2(1 - ~ ) ] / [ 3 ( 2  - v)] - A 

= [2(1 - ~ ) ( 4  - ~ ) ] / [ 3 ( 2  - v)] - A 

(64  

( 6 4  

( 6 4  

(6f) 

( 7 )  

A13 = = A32 = A31 

A 4 4  = A55 = -[8(1 - ~ ) ] / [ 3 ( 2  - v)] 

A66 = -[4(1 - V)(4  - ~ ) ] / [ 3 ( 2  - V ) ]  

with 

A = [4(1 - V) (8 - l l v  + 2v2)]/[3(1 - 2 ~ )  (2  - v)] 
and vbeing the Poisson's ratio. (In the derivation, we have used 
Eqs. 3.7. 3.8, 3.24, 3.26, 3.29, and 3.30 in Hoenig's paper.'" 
With the expressions for the influence coefficients d l ,  dz ,  
and d 3  used thereof, obtained from a previous study of 
Hoenig's, his Ref. 9, we obtained an explicit form of the com- 
pliance matrix which was then inverted.) 

The mathematical limit of dilute crack density corresponds 
to the physical situation in which microcracks are not inter- 
acting. This is because Hoenig's derivation began with the 
fundamental solution of a single crack, of any orientation, in 
an infinite isotropic elastic solid. Such solutions were then 
superimposed onto each other according to  the requisite crack 
density and symmetry to arrive at the compliance matrix. 
This procedure is valid as long as the crack density is suffi- 
ciently low so that their interactions are negligible. At higher 
densities, this assumption can still be justified as long as a fa- 
vorable comparison between the experimental and the above 
prediction is demonstrated. This turns out t o  be the case in 
our study. Eventually, crack interactions may be approxi- 
mately accounted for by replacing the linear relation with an 
exponential one 

Cl/ (W) = C , ( O )  exp(A,w) (8) 
based on an incremental self-consistent method reviewed 
e1se~here . I~  Such a technique may be used instead of the nu- 
merically more involved method found in Hoenig's work,4.'" 
although further experimental studies on specimens of very 
high crack densities are required to  test both predictions. 

The above theory is the basis for understanding the elastic 
response of a microcracked solid of the type shown in 
Fig. l(b). To provide a graphical illustration of the effect of 
microcracking on stiffness, we let v = 0.3, which is typical 
for zirconia ceramics, and plot c,(w)/c,(O) using Eqs. (6) to 
(8). As shown in Fig. 3, the normalized elastic stiffness de- 
creases in the following order: c44,  ~ 3 3 ,  ell, c13, c12, due to 
microcracking along the [OOl] axis. At small w ,  these stiffness 
constants decrease linearly as expected from Eq. (5). The 
exponential curvature becomes significant at large w. The 
physical meaning of the relative decrease of the stiffness 
components will become clear in Section II(4). 

(3) Renormalization of Stiffness 
To apply the above result to transformation-induced micro- 

cracking, it is important to recognize that the elastic moduli 
of the product phase may be different from the parent phase. 
That is, c:,  the stiffness of the undeformed, uncracked solid, 
may be different from c,(O), the stiffness of the reference 
solid to which microcracks are introduced. Here the reference 
solid should be identified as the uncracked but deformed and 
thus transformed polycrystalline assemblage. An independent 
measurement of the moduli of the transformed but uncracked 
solid, however, is not feasible because microcracking is a 
necessary byproduct of displasive transformation in brittle 
ceramics. Such cracks can be closed only under a very high 
hydrostatic pressure, but the latter, in turn, causes reverse 
t ransf~rmation '~ as we found experimentally. One can, never- 
theless, overcome the above complication by using a renor- 
malization procedure described below. 

First, let C denote a normalized stiffness matrix 

c,  = c,(w)/c,(O) (9) 

We then define, for small w,  a renormalized quantity C* 

C,T = C9/C6h = 1 + (At, - A 6 6 ) ~  (10) 
Thus, C J  is always independent of the moduli of the un- 
cracked matter. In the above, we have chosen Ca as the con- 
stant for the second normalization, although this choice is 
entirely arbitrary and all other stiffness constants may be 
used for this purpose as well. If we further assume 

c,(O)/cG = constant independent of ij (11) 
then we find that the first normalization could have been car- 
ried out with respect to  c i  without affecting the final result 
obtained after the second normalization. It should be noted 
that the condition for Eq. (11) is actually not very restrictive. 
Specifically, one can easily prove that it is satisfied among all 
isotropic solids of the same Poisson's ratio. (This is a direct 
consequence of the fact that an isotropic solid has only two 
independent elastic constants which are now fixed by Pois- 
son's ratio and the constant of Eq. (Il).) Since Poisson's ratios 
for zirconia ceramics are nearly identical, ca. 0.3, it is satis- 
fied in essentially all transformation-toughened polycrystals 
which do not have a strong texture. 

Based on the above reasoning, the stiffness data reported 
in this study will be renormalized using the values of unde- 
formed, untransformed zirconia. This is the case for Mg-PSZ, 
since the transformed Mg-PSZ polycrystal still largely retains 
random grain orientations. For later reference, we list the 
constants in Eq. (10): 

Ail - 8 6 6  - [ 2 ~ ( 7  - ~ ) ] / [ 3 ( 2  - v ) ( l  - v)] W a )  
A33 - A66 = 

[4(4 - 1 3 ~  + 3v2 + 2v3)]/[3(2 - v ) ( l  - 2v)l (12b) 

A12 - A 6 6  = 

-[2(7 - 2 ~ )  (1 - v)]/[3(2 - V) (1 - 2v)l ( 1 2 ~ )  
A13 - A M  = 

A44 - A66 = 4(1 - ~ ) / 3  

-[2(4 + 5~ - 2v2)(1 - ~ ) ] / [ 3 ( 2  - v ) ( l  - 2 ~ ) ]  ( 1 2 4  

(124 

(4) 

along [OOl] ,  Young's modulus is defined as 

E and v in Axial Deformation 
In the generalized Hooke's law under a uniaxial stress state 

(13) E = U3/&1 = (s33)-I 

It turns out that E is unchanged by axial microcracks. Simi- 
larly, Poisson's ratio, defined as the proportionality constant 
between - F ~  and E~ 

v = -&1/&J = -s13/s33 (14) 
is also unchanged. These two are the only constants, among 
the five independent ones, that are not affected by axial 
cracks. The  physical meaning of these two results can be eas- 
ily appreciated by viewing the extreme case of a solid con- 
taining parallel "long" cracks. When deformed in the axial 
direction parallel to the long cracks, the solid behaves as a 
bundle of parallel columns, still fully capable of carrying 
loads, and has no transverse interaction other than a uniform 
Poisson contraction/expansion. In such cases, its elastic re- 
sponse in terms of E and v in the axial deformation is un- 
affected by the existence of cracks. 

The above picture can also be used to understand qualita- 
tively the relative magnitude of weakening of C44, C33, C66r 
C I I ,  c13, and C12, shown previously. For example, Clz is 
severely weakened by the loss of shear stiffness across the 
crack plane, while C33 is only slightly weakened because the 
columns can still support load in the axial direction. These 
predictions will be specifically verified in the following ex- 
perimental study. 
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111. Experimental Procedure 

(1) Materials 
Materials used in the present study were an Mg-PSZ and a 

Ce-TZP which have been extensively characterized for their 
transformation Essentially, Mg-PSZ (containing 
8 mol% MgO) is a coarse-grained cubic zirconia of 50-pm 
grain size with tetragonal precipitates occupying 33% of the 
total volume, whereas Ce-TZP (containing 12 mol% Ce02) is 
a fine-grained tetragonal zirconia of 1.2-pm grain size. These 
materials were deformed in uniaxial compression with a super- 
imposed pressure to effect transformation to various extents. 
The specimens used for compression were cylinders of 12-mm 
diameter and 24-mm height. As reported elsewhere,’ such test 
conditions, under which the uniaxial and triaxial stresses are 
independently controlled, are especially suited for the study 
of transformation plasticity which has a dilatational compo- 
nent. For the purpose of the present work the confining pres- 
sure serves to stabilize the microcrack propagation to allow a 
high density of microcracks to fully develop uniformly in a 
macroscopic volume, thus facilitating subsequent characteri- 
zation of elastic properties. To monitor deformation and the 
extent of transformation, axial and radial strains were mea- 
sured using strain gauges which, in turn, provided the volu- 
metric strains. The latter was directly converted to the 
fraction of phase transformation using the molar volume in- 
crease of 0.044 from tetragonal to monoclinic phases. The 
fraction of phase transformation, denoted by 4, will be used 
as a state variable for the transformed materials. Thus, when 
4 = 1, thc volumetric strains are 0.014 and 0.044 in Mg-PSZ 
and Ce-TZP, respectively. In addition to providing the ma- 
terials of a controlled density and distribution of microcracks 
for acoustic studies of the stiffness matrix, the above defor- 
mation experiment was also used to measure the axial E and 
v defined in Section II(3). More details of the experimental 
procedures are available elsewhere.16 

(2) Pulse-Echo Technique 
A standard pulse-echo technique using ultrasonic waves 

was employed to measure the elastic stiffness. The two zirco- 
nia materials, deformed to different volumetric strains, were 
cut into cubes with reference to the compression axis as shown 
in Fig. 2. The longitudinal and shear velocities were meas- 
ured along all the cube directions. In the [loo] direction, for 
example, two shear velocities, polarized along [OlO] and [OOl], 
need to be distinguished because of different symmetries. 
This is also indicated in Fig. 2. Velocities of five elastic waves 
were measured all together. The errors of these experiments 
were primarily due to the measurements of the dimensions 
and the parallelness of the cubic specimens. They were esti- 
mated to be within 0.2%. Of course, considerable variations 
of properties could still exist because of microstructural in- 
homogeneities due to transformation and damage, as we will 
indeed find to be the case later in Figs. 4 to 6. 

The analysis of wave propagation in an elastic body is stan- 
dard; hence, only results obtainable from standard references 
are given below. As mentioned previously, the symmetry in 
the present case is identical to that of a hexagonal crystal. 
Waves transmitted along the unique axis, [OOl], have the ve- 
locities given by 

V,  = KVar = (~~.,/p)~” (along any transverse direction) 
(15) 

For the [loo] direction 

V, = I/;ongiludinal = (cll/p)”’ (along [loo]) 

Measurements along these two directions will determine four 
of the five elastic constants. To determine the fifth one, a 
wave is transmitted along [loll. For the shear wave polarized 
along [OlO], the wave velocity is 

(17) 

The nearly longitudinal wave and the other shear wave, po- 
larized toward [loll, suffer from acoustic birefringence. Their 
velocities are, respectively 

vh = [(Cll - c12 + 2c44)/4p11’2 

6 . 8  = [ (A f B1”)/2p]”’ (18) 

where 

A = (CII C33 + 2C44)/2 

B = [(CII - c33)/2I2 + ( ~ 1 3  + ~44)’ (19) 
The density of the material, p, is given by 

where po is the initial density before deformation and E ~ ,  is 
the volumetric plastic strain recorded during compression 
experiments. 

In this study we have measured V, through 6. Thus, all 
elastic constants except C 13 have been determined. 

IV. Experimental Results and Analysis 

(1) Acoustic Measurements of Elastic Constants 
Table I records the prior deformation history of the samples 

studied here. The measured wave velocities are presented 
in Table 11. The calculated elastic constants are shown 
in Table 111. We now discuss the results of Mg-PSZ and 
CeTZP separately. 

(A) Mg-PSZ: Wave velocities and elastic constants of 
Mg-PSZ, recorded in Tables I1 and 111, show considerable an- 
isotropy from the compression axis to the transverse direc- 
tions. Transverse isotropy was verified in all cases. Some 
direct insight into the stiffness matrix component can be ob- 
tained easily; for example, a lower velocity in the transverse 
direction corresponds to a cll  lower than c33. In general, how- 
ever, elastic constants have to be evaluated by converting 
wave velocities into cg using Eqs. (15) to (17) and Eq. (20). 
The data thus obtained are listed in Table 111. The elastic 
constants normalized by those of the undeformed material, 
ci,  are plotted in Fig. 4. It is seen that the stiffness decreases 
monotonically with the fraction of transformation in the order 
of C44, C33, C66,  Cll,  C12, as predicted by the calculations. 
This is obvious by comparing Figs. 3 and 4. The assumption 
of transverse isotropy and an axial alignment of microcracks 
was thus verified. 

To provide a quantitative comparison between the data 
and the model calculations and to infer the crack density, we 
renormalize the data as prescribed previously. The results are 
shown in Fig. 5. Apparently a linear dependence of stiffness 
evolution with the state variable is obeyed. To compare these 
data with Eqs. (10) and (12), we choose the following correla- 

Table I. Plastic Strains of the Zirconia Specimens 
Samole En,, , ,  E.Arl,.l E d  

Mg-PSZ 
1 - 0.000 72 0.000 95 0.001 20 
2 -0.004 55 0.006 56 0.008 57 
3 -0.004 76 0.008 32 0.011 88 
4 -0.007 65 0.010 91 0.014 17 

0.013 45 
2 - 0.012 00 0.022 00 0.032 00 
3 - 0.027 40 0.035 50 0.043 60 

Ce-TZP 
0.010 85 1 -0.008 25 
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Table 11. Wave Velocities along Different Directions (m/s) 
Sample VI v 2  6 v 4  vs 

Mg-PSZ undeformed 7043.75 3724.80 
1 7028.46 3718.36 6956.11 3721.27 3735.61 
2 6986.21 3729.87 6671.38 3731.62 3644.10 
3 6987.61 3702.79 6647.23 3703.91 3647.26 
4 6929.64 3662.09 6440.29 3680.21 3584.90 

1 6861.59 3441.50 6374.03 3708.69 3439.14 
2 6913.58 3440.67 6398.61 3449.66 3563.43 
3 5798.29 3140.97 4986.26 3127.03 3120.65 

Ce-TZP undeformed 6634.12 3429.48 

Table 111. Stiffness Components for Deformed Zirconia (GPa) 
Sample 4 c 11 c 12 c 33 c 44 C66 

Mg-PSZ undeformed 0.000 282.30 124.41 282.30 78.94 78.94 
1 0.085 274.83 116.31 280.57 78.53 79.26 
2 0.605 251.09 101.25 275.35 78.48 74.92 
3 
4 

0.834 248.46 98.85 274.56 77.03 74.86 
1,000 232.70 88.49 267.93 74.84 72.11 

Ce-TZP undeformed 0.000 272.43 126.83 272.43 72.80 72.80 
1 0.309 248.15 103.66 287.56 82.05 72.25 
2 0.734 245.57 93.24 286.69 71.01 76.17 
3 1.000 147.47 31.94 199.41 58.71 57.77 

tion between the crack density and the state variable: 

w = 0.054 (21) 
in which the numerical coefficient in front of $ is treated 
as the only fitting parameter. With the above relationship, 
predictions of Eqs. (10) and (12), shown as the straight lines, 
are in close agreement with all four branches of the renormal- 
ized data. 

The good agreement achieved by the use of only one ad- 
justable parameter is nontrivial and lends us confidence in 
our model. In view of this, we believe that the crack density 
in deformed Mg-PSZ is now reasonably well established and 
correlates with the fraction of phase transformation according 
to Eq. (21). We further infer that even at w = 0.05, at the end 
of transformation plasticity, microcracks are essentially non- 
interacting so that their effects on the weakening of the stiff- 
ness matrix are additive, obeying a linear relationship with W .  

Lastly, we may infer that the stiffness of an uncracked but 
transformed Mg-PSZ matrix is essentially isotropic. 

(B) Ce-TZP: Data of Ce-TZP revealed an elastic 
anomaly in the early part of deformation and transformation. 
As can be seen from Tables I1 and 111, wave velocities and 

1 .o 

0.8 c44 

33 

66 0.6 

0.4 
11 

13 

12 
0.2 

0.oI ' I ' ' ' 1 . 1 ' I 
0.00 0.05 0.10 0.15 0.20 0.25 

Fig. 3. 
tion of the normalized crack density. 

Normalized elastic stiffness matrix components as a func- 

stiffness constants in certain directions are higher than those 
of the undeformed Ce-TZP. This observation is clearly illus- 
trated by the normalized elastic constants with reference to 
those of undeformed Ce-TZP, as plotted in Fig. 6. For ex- 
ample, at $ = 0.31, the longitudinal and shear stiffnesses 
along the compressed [OOl] direction, C33 and C4.,, have in- 
creased substantially. On the other hand, the longitudinal and 
shear stiffnesses along the transverse directions, CI1 and C66,  
have been depressed with reference to  their later values at, 
e.g., $ = 0.73. In the following paragraph and in Figs. 7 and 
8 we digress to  explore the origin of this anomaly. Readers in- 
terested in microcracking only may simply proceed to  the 
paragraph after the next and to  Fig. 9. 

This elastic anomaly may be attributed to the transforma- 
tion texture which has been documented by Li et al.I9 and 
Bowman et al.'" for tetragonal polycrystals deformed under 
similar conditions. Essentially, while the undeformed Ce-TZP 
has a random texture consisting of the tetragonal phase only, 
the stress-assisted transformation strongly favors those tetrago- 
nal variants with the maximum shear coupling between the 
applied stress and the transformation strain, as schematically 
indicated by Fig. 7. This in turn, as shown by the above 

1.1 1 

0 
GI 

e II 

0.9 - C ij 
t1  

0.8 - A 

66 Mg-PSZ 

0.0 0.2 0.4 0.6 0.8 1.0 
CD 

Fig. 4. Normalized elastic stiffness of a deformed 
Mg-PSZ. 
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STRESS AXIS 

0.0 0.2 0.4 0.6 0.8 1.0 

CD 
Fig. 5. Renormalized elastic stiffness, by CG, of a de- 
formed Mg-PSZ. The straight lines are model predic- 
tions given by Eqs. (10) and (12), by setting w = 0.054. 

authors, leads to a texture of both the transformed mono- 
clinic phase and the remaining untransformed tetragonal 
phase. The resultant texture of the deformed Ce-TZP follows 
a simple pattern; namely, the remaining tetragonal crystals 
tend to have their longer axes [OOZ] aligned perpendicular to 
the compression axis, and, correspondingly, the transform_ed 
monoclinic crystals tend to have their longer axes [111]/[111] 
aligned in the same way. This can be seen in Fig. 8, in which 
the X-ray diffraction patterns of a uniaxially compressed 
Ce-TZP are shown for the axial and radial cross sections. 
From a simple bonding consideration, the shorter crystal axis 
is expected to have a higher longitudinal and shear stiffness 
than the longer crystal axis. Thus, both the remaining tetrag- 
onal and the newly formed monoclinic crystals may be ex- 
pected to be “stiffer” in the compression direction than in the 
transverse direction. This was precisely what we observed in 
Fig. 6 at low 4.  

Regardless of this elastic anomaly at earlier stages, eventu- 
ally, at full transformation, 4 = 1.0, the stiffness constants 
are again weakened in the same order predicted by the model 
calculations. Although a precise, quantitative comparison with 
our model calculations is no longer warranted because of the 
presence of elastic anisotropy of the reference solid, this termi- 
nal behavior strongly implies that the microcracks in Ce-TZP 
are also aligned axially. A rough comparison of these data with 
the model calculations placed an estimate of the crack density 
at 4 = 1.0 to be between 0.1 and 0.15, i.e., 2 to 3 times the 
amount in Mg-PSZ. We regard this reasonable in view of 
their respective volume fractions of the transformable phase. 

1.2 1 
0 

1. 

0.6 - 

Ce-TZP ’ c 66 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

a, 
Fig. 6. Normalized elastic stiffness of a deformed 
Ce-TZP. Note the initial rise of C33 and C44. 

Fig. 7. Relationship between applied stress in 
axisymmetric deformation and the t-to-rn 
transformation. The tetragonality in the 
r phase is greatly exaggerated. 

(2) Axial E and Y 
Our acoustic measurements confirmed that transformation 

plasticity is accompanied by microcracking, which has a 
strongly nonisotropic orientation distribution dictated by the 
stress state. In compression, microcracks are aligned along 
the stress axis but otherwise possess transverse isotropy. To 
provide an independent verification of the above picture, we 
now turn to the other prediction of the elasticity model that 
Young’s modulus and Poisson’s ratio along the compression 
axis remain unchanged. A direct verification of the latter pre- 
diction is possible since, in triaxial compression testing of zir- 
conia, the instantaneous elastic properties can be monitored 
along the way in the axial and radial directions by intermit- 
tent unloading-loading cycles during plastic deformation. The 
linear portions of the loading and unloading stress-strain 
curves in the axial and radial directions could then be used to 
compute Young’s modulus and Poisson’s ratio for the axial 
loading. (The friction due to the O-ring in the pressure vessel 
was taken into account in analyzing unloading-loading stress 
strain curves. In addition, at higher fractions of transforma- 
tion, Young’s modulus was measured after reinitiation of load- 
ing (or unloading) following a stress relaxation period. In this 
way, the relaxation effects due to transformation or frictional 
sliding of crack faces could be avoided. The errors of these 
experiments, though larger than conventional elastic moduli 
measurements, were estimated to be within ?3%. The related 
details of the test procedure are given elsewhere.I6) 

Young’s modulus E and Poisson’s ratio v for Mg-PSZ and 
Ce-TZP for axial deformation measured by the above method 
are shown in Fig. 9. It was found that, within the precision of 
the present experiment, Young’s modulus and Poisson’s ratio 
for axial loading remain unchanged throughout the progres- 
sion of transformation plasticity, except for a small rise ini- 
tially in E in Ce-TZP which is associated with the elastic 
anomaly discussed previously. This is, indeed, the result pre- 
dicted in Section II(3) if microcracks are aligned along the 
stress axis. Thus the picture of axial cracks is reconfirmed. 

V. Discussion 
( I )  Transformation Plasticity 

Since microcracking is proportional to the fraction of trans- 
formation, as inferred from Fig. 5, the volumetric strain meas- 
ured in our study contains two proportional contributions 
from the transformation and microcracking. The latter, esti- 
mated as o6/2a, where 6 is the wedge opening depicted in 
Fig. 1, is primarily manifested as a radial strain in our experi- 
ment. Using reasonable microstructural parameters, this con- 
tribution was found to be relatively small. Thus the volume 
strain arises almost entirely from the phase transformation. 
This provides, a posteriori, a justification of the use of I$ as a 
state variable in our study. 

We noted that the transformation texture imparts a strong 
anisotropy into the elastic properties of the deformed Ce-TZP. 
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The elastic anisotropy arises from both the remaining tetrago- 
nal phase and the newly formed monoclinic phase. Such an 
effect is probably unimportant in the Mg-PSZ because the 
latter, unlike Ce-TZP, is comprised largely of an untransform- 
able (cubic) matrix, with only 33 vol% of transformable te- 
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Fig. 9. 
Mg-PSZ and Ce-TZP for axial deformation. 

Normalized Young's modulus and Poisson's ratio for 

tragonal precipitates. As such, the reference uncracked but 
transformed Mg-PSZ is largely isotropic and apparently sat- 
isfies Eq. (11). It is plausible that this distinction between 
Mg-PSZ and Ce-TZP can be generalized to other zirconia sys- 
tems of similar microstructures. 

(2) Microcracking in Tension 
As pointed out in the Introduction, elastic anisotropy due 

to a nonrandom distribution of microcracks is a common fea- 
ture in deformed brittle ceramics. In addition to the compres- 
sion symmetry studied above, creep damage can produce 
the tension symmetry depicted in Fig. l(a). Unlike the com- 
pression case, in which only the axial moduli E and v are un- 
altered, the tension symmetry with microcracks perpendicu- 
lar to the tensile axis has only two moduli altered. These are 
the axial Young's modulus E = (s3$' and the axial shear 
rigidity G = (sJ1 = (s5J1 given by 

E = E"[1 - 16(1 - v2)w/3] 

G = G"(1 - 16[(1 - ~ ) / ( 2  - v)]w/~} 

(22) 

(23) 
in the dilute crack density limit.'".'' In the above, E" and Go 
are Young's modulus and the shear rigidity of the uncracked 
reference solid. The stiffness matrix can be easily derived 
from the above. Since crept specimens in tension are increas- 
ingly available in recent years, it should be interesting to at- 
tempt to verify the above prediction in the future. 

Microcracking due to transformation plasticity, subject to a 
predominantly tensile stress field, is of relevance to the 
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strength of transformation-toughened ceramics. In some highly 
transformable, very high toughness zirconia, preexisting flaws 
are not capable of initiating fracture. In turn, the tensile 
strength is found to be limited by the tensile yield stress?* We 
have previously proposed that the strength-limiting factor in 
this case is the rampant formation of micro crack^.^ Indeed, 
two zirconias studied here have evidenced a drastic stiffness 
reduction once transformation is complete in bulk specimens. 
It should be noted that when macroscopic yielding occurs, 
transformation plasticity is actually spatially inhomogeneous 
on a finer scale. Because of autocatalysis and shear localiza- 
tion which tends to accompany transformation plasticity in 
zirconia the local damage can be severe and 
comparable to the one observed here for fully transformed 
bulk materials. Furthermore, all the microcracks formed in 
tensile deformation are normal to the stress axis and capable 
of resulting in an even more severe loss of load-carrying capa- 
bility. Thus, in highly transformable zirconia loaded to the 
macroscopic yield stress, the localized initiation of transfor- 
mation plasticity will probably be accompanied by a fatal mi- 
crocrack damage which is unsustainable under the tensile 
yield stress and must cause a localized, catastrophic propaga- 
tion of yield and fracture. This is probably the cause of yield 
limited strength behavior first noted by Swain.*’ 

VI. Conclusion 

(1) Under triaxial compression, Mg-PSZ and Ce-TZP de- 
velop a high density of transformation-induced microcracks 
which are uniformly distributed and parallel to the compres- 
sion axis. 

(2) Because of the relatively small volume fraction of 
the transformable phase, deformed Mg-PSZ remains largely 
isotropic in crystallographic texture. Axial microcracks cause 
anisotropic weakening in stiffness in the order of c44, c33, c 6 6 ,  

CI1, C,3 ,  CI2 in quantitative agreement with the prediction of 
the elasticity theory. The terminal crack density Nu3 reaches 
0.05 in Mg-PSZ. Even at such density interactions among mi- 
crocracks appears insignificant. 

(3) A strong transformation texture of both the trans- 
formed monoclinic phase and the remaining tetragonal phase 
develops in Ce-TZP, causing an initial strengthening in the 
axial direction. In the end, as transformation progresses, axial 
microcracks begin to have a dominant weakening effect on 
stiffness in the way predicted by the theory. The terminal 
crack density exceeds 0.1 in Ce-TZP. 

In view of the very high crack density and very se- 
vere elastic degradation associated with the stress-assisted 
transformation in both Mg-PSZ and Ce-TZP, strength of 
transformation-toughened zirconia ceramics is ultimately lim- 
ited by the tensile yield (transformation) stress. 

(4) 
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