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SUMMARY. We derive semiparametric methods for estimating and testing treatment effects when cen-
sored recurrent event data are available over multiple periods. These methods are based on estimating
functions motivated by a working “mixed-Poisson” assumption under which conditioning can eliminate
subject-specific random effects. Robust pseudoscore test statistics are obtained via “sandwich” variance
estimation. The relative efficiency of conditional versus marginal analyses is assessed analytically under a
mixed time-homogeneous Poisson model. The robustness and empirical power of the semiparametric ap-
proach are assessed through simulation. Adaptations to handle recurrent events arising in crossover trials
are described and these methods are applied to data from a two-period crossover trial of patients with

bronchial asthma.
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1. Introduction

Medical studies are frequently designed based on clinically
important events that may recur repeatedly over the course
of follow-up. Examples include seizures in neurological stud-
ies (Thall and Vail, 1995), respiratory attacks in asthma tri-
als (Sears et al., 1990), and exacerbations of symptoms in
studies of cystic fibrosis (Fuchs et al., 1994). In such set-
tings there are a variety of strategies available for the analy-
ses of recurrent event data including intensity-based methods
(Andersen et al., 1993), methods based on random effect
models (Lawless, 1987), and marginal methods (Andersen
and Gill, 1982; Wei, Lin, and Weissfield, 1989; Lawless and
Nadeau, 1995). Marginal methods are perhaps the most
widely adopted in clinical trials because they typically involve
the fewest distributional assumptions and, therefore, pro-
vide a natural basis for making treatment comparisons. Even
within the class of marginal methods, however, there are a va-
riety of approaches one can adopt. Wei et al. (1989) describe
methods for marginal analysis of multivariate failure time
data which have been applied in settings with recurrent events
(Hughes, 1997; Li and Lagakos, 1997). Marginal methods have
also been developed based on rate functions (e.g., Andersen
and Gill, 1982; Lawless and Nadeau, 1995), which can be gen-
eralized to incorporate stratification based on the cumulative
number of events (Prentice, Williams, and Petersen, 1981;
Pepe and Cai, 1993). Therneau and Grambsch (2000) provide
an excellent discussion and illustration of the various marginal
approaches. Cook and Lawless (2002) give a review of recent
developments for the analysis of recurrent events.

Clinical trials often involve observation of subjects over two
or more periods of interest. Following accrual, for example,
patients may undergo a baseline period of observation during
which events are recorded but no treatment is administered.
Following this baseline period, a patient may be randomized
to receive either an experimental or control treatment and
then followed for the occurrence of events of interest (e.g.,
ACIP, 1992). In other settings baseline data representing the
number of events occurring over a predefined period of inter-
est are recorded retrospectively upon study entry (e.g., Fuchs
et al., 1994). Crossover trials represent another setting where
events are observed over multiple periods. Examples include
a recent 1-year study of the prophylactic use of valcyclovir
for outbreaks of symptoms in patients with Herpes simplex
virus (Romanowski, Marina, and Roberts, 2003) and a study
reported in Sears et al. (1990) on the efficacy of fenoterol ver-
sus placebo for the reduction of symptoms in patients with
bronchial asthma. In long-term crossover trials such as these,
complications can arise if patients do not switch from the
treatment assigned in period 1 to the treatment assigned in
period 2 at the scheduled time, or even if they simply with-
draw from the study prematurely.

The purpose of this article is to develop robust methods
suitable for use in clinical trials in which patients are observed
under two or more treatment periods. We initially focus on
settings in which a baseline period of observation is followed
by a period in which randomized treatments are administered.
The methods are developed to address problems arising from
type I right censoring due to variable durations of observation
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(Lawless, 2003). Extensions to deal with more complicated
situations arising in crossover trials are then described.

The remainder of the article is organized as follows. In Sec-
tion 2 we define notation, describe frameworks for inference,
and examine asymptotic relative efficiency of different meth-
ods of analysis for mixed-Poisson processes. In Section 3 we
review marginal methods based on rate functions and derive a
new robust pseudoscore statistic based on a working assump-
tion of a mixed-Poisson formulation. The frequency properties
of the proposed test are studied via simulation in Section 4
and contrasted with those of some standard marginal analy-
ses. Extensions for crossover trials are developed in Section 5
and applied to data from a recent asthma trial. Concluding
remarks are made in Section 6.

2. Relative Efficiency

Here we investigate the relative efficiency of three methods of
analysis for data from mixed-Poisson processes observed over
a baseline period and a treatment period. We consider anal-
yses based on relatively simple parametric models to provide
some motivation for the developments that follow.

Consider a trial in which subjects undergo a common base-
line period of observation denoted (—7g, 0], during which they
receive standard care. Let R; denote the number of events ex-
perienced by subject i over the baseline period,i=1,2,...,m.
Following this baseline period is a common treatment period
denoted (0, 7], during which subjects receive either the exper-
imental treatment or standard care as assigned by a balanced
randomization scheme. Let x; = 1 if subject 7 is randomized
to receive the experimental treatment and z; = 0 otherwise,
and let NV; denote the number of events subject i experiences
over (0, 7].

We assume R;|v; ~ Poisson(v;p) and that N;|v; ~
Poisson(v; Aexp(Bz;)), where R; and N; are independent given
vi, © = 1,...,m. The term v; is often thought of as a la-
tent subject-specific effect which is introduced to characterize
extra-Poisson variation. Typically v;, ¢ = 1,...,m, are as-
sumed to be independent random variables arising from a
distribution G(v;; ¢) where E(v;) = 1 and var(v;) = ¢, ¢ > 0,
i = 1,...,m. The gamma distribution is perhaps the most
common choice because it is conjugate to the Poisson model.
Here it leads to a negative trinomial joint probability mass
function for (R;, N;) and a marginal negative binomial prob-
ability mass function for N; (Lawless, 1987). Specifically,

Plrasnsipo B ) — L0 i)

F((;S’l)r,'n,'
p"i (A exp(Bz;))™ (1)
(1+ 6 + Aexp(Ba)))? rivm
where r;, n; =0, 1, 2,..., and
—1 . )74
P(nish, B,0) = 0 tni) __ (GAexp(fr.)) 2)

F(¢71)nl‘ (1 + (ﬁ)\ exp(ﬁxi))qfhrni ’

where n; = 0, 1,.... Cook and Wei (2003) explore efficiency
gains realized by use of (1) instead of (2) for estimation of the
regression coefficient.
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A third valid probability mass function may be derived by
recognizing that if we write
(vip)"* exp(—vip)
’f'i!
" (vi A exp(Bz;))"™ exp(—v; A exp(Bx;))

P(Tivni | Uz’?lﬁ)\:B) =

)

r; + m; is a minimal sufficient statistic for v; and that one may
therefore eliminate vy, ..., v, by conditioning on r; + n;, i =
1,...,m, respectively. Straightforward calculations give

T+ n; 1 )
P 3y TV i iy O = 1+ exp(a + Bz;)
(ri,ni | s +ng; a, B) ( n )<1+exp(a+5mi)>

( eXp<a+ﬂmi>))”ﬂ 3)

1+ exp(a+ Bx;

where a« = log (A\/p) and n; = 0, 1,...,¢q;, with ¢; = r; + n;,
i = 1,...,m. This conditioning argument suggests a logistic
regression analysis based on m binomial samples where the
ith sample has r; + n; trials and n; successes with the prob-
ability of success given by exp(a + Sz;)/(1 + exp(a + Bz;))
(Diggle et al., 2002; Jones and Kenward, 2003). Elimination
of v; means that the necessary distributional assumptions are
somewhat weaker under this model.

Note that (1) is indexed by p, A\, 3, and ¢, (2) by A, 38, and
¢, and (3) by o and 8. We refer to the models based on (1),
(2), and (3) as joint, marginal, and conditional, respectively,
and we let Bl, BQ, and Bg denote the consistent estimators
obtained by maximizing the respective likelihood functions.
The expected information matrices arising from these likeli-
hoods lead to the following expressions for the limiting vari-
ances based on the joint, marginal, and conditional models,
respectively:

2 f1 1 26
asvar(fh) = o {x FXew(® "1 +¢p}’ W
asvar(By) = = {§ + Sow 2¢} , (%)
asvar(,é'g):%-{iijjL%}, (6)

One can see that asymptotically the joint model is uniformly
more efficient than the marginal and conditional models, and
so this approach has considerable appeal on the basis of ef-
ficiency. Our ultimate goal, however, is to consider robust
methods and it is challenging to consider robust analogues
to (1) because joint distributions typically require a fuller
model specification. It is, therefore, worthwhile to consider
the relative efficiency of inferences based on the conditional
and marginal models. To this end, we define

RE, — asvar(f) _ _p(+exp(B)) + 2X exp(B) -

asvar(f,)  P(1+exp(B)) + 2¢pAexp(B)
as the relative efficiency function for the conditional versus the
marginal approaches. Inspection of (7) reveals that whenever
¢p > 1 the conditional analysis leads to more efficient estima-
tion of 8 than the marginal analysis. Further insight can be
gained by considering the 100f% relative efficiency contours
defined as points in the parameter space where RE3, = f > 0.




694
n
3]
2]
0
1]
o]
010 0‘.2 0.‘4 0.‘6 018 1‘.0
exple) / (1+exp(a))
Figure 1. Contour plots of the relative efficiency of condi-

tional versus marginal analyses under a mixed-Poisson model
(p+ A =4, exp(B) = 0.75).

Suppose we set exp(3) = 0.75 to represent a moderate
treatment effect, and let p + A = 4 to represent a moderate
total number of events among control patients over the base-
line and follow-up observation periods. Figure 1 displays a
plot of the 60%, 80%, 100%, and 120% relative efficiency con-
tours for 3 as a function of exp(a)/(1 + exp(a)) = A/(A + p)
and ¢, for this scenario. The points for which the asymptotic
variance under the conditional model is 20% lower than the
asymptotic variance under the marginal model are denoted by
the 80% relative efficiency contour. The asymptotic variance
under the conditional model is 20% greater than the marginal
model for points on the 120% contour. From Figure 1 it is clear
that there is a large region in the parameter space in which
the conditional analysis is more efficient than the marginal
analysis and this region represents scenarios that one might
reasonably expect to encounter in many biomedical settings.
As the baseline mean becomes small (i.e., p — 0) the marginal
analysis leads to more efficient estimates than the conditional
analysis, even when ¢ is large. Moreover, with very small ¢,
the marginal analysis is generally preferred. When the mean
number of events in the follow-up period is comparable or
smaller than the mean number of events in the baseline pe-
riod (i.e., A/(A + p) < 0.50), however, even when the extent
of extra-Poisson variation is relatively modest (i.e., ¢ < 1.0)
there can be as much as a 20% lower asymptotic variance
under the conditional analysis. As one might expect, for any
given « the gains from the conditional analysis become more
substantial as ¢ increases.

3. Semiparametric Methods for Censored Data
3.1 Robust Marginal Models

Consider the setting in which patients are observed over a
common baseline period (—7g, 0], are assigned to a treat-
ment group, and are then followed for a treatment period of
intended duration 7. The actual duration of observation dur-
ing this treatment period may be less than this and vary from
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subject to subject due to serial patient accrual, administra-
tive censoring, or early withdrawal, typical features of studies
involving long-term follow-up. The aim in these settings is of-
ten to make robust inferences about treatment effects, and a
common strategy is to employ robust marginal methods based
on semiparametric analogues to (2) formed by multiplicative
rate function models (Andersen and Gill, 1982; Lawless and
Nadeau, 1995).

Let 7; denote the time of last contact for subject ¢ where
7; < 7, and let Y;(¢) = I(t < 7;) indicate that subject i is
under observation at time ¢, 0 < ¢ < 7. Let N;(¢) be a right-
continuous counting process that records the number of events
experienced by subject ¢ over the interval (0, #] such that
dN;(t) = 1 if subject i experiences an event at time ¢ and
dN;(t) = 0 otherwise. Let A;(t) = E(N;(t)|x;) and dA,(t) =
E(dN;(t) | z;) denote the mean and rate functions for subject
i, where dA;(t) = A;(t) — Ay (t7), ¢ = 1,...,m. Multiplicative
marginal models for treatment effects based on rate functions
often take the form

dAz (t) = dA(t) exp(,ﬁxi)7 t> 07

where dA(t) is a baseline rate function of an unspecified
form, and [ reflects the effect of treatment on the event rate.
Andersen and Gill (1982) and Lawless and Nadeau (1995) pro-
posed the use of estimating functions derived under the work-
ing assumption that the events are generated from a Poisson
process. If sq,...,s; denote the k unique event times over all
subjects in the sample we obtain estimating equations of the
form

U(B,A()) = > Uni(B,A()), (8)

UQJ(ﬂ,A()) = ZUQJZ(ﬂvA())7 (9)

where Uy, (3, A(+)) :ﬁ; Yi(s){dN;(s) — dA(s) exp(Bz;)}z; and
Usji(B,A(-)) = Yi(s;){dNi(s;) — dA(sj)exp(Bzi)}, i =1,2,...,
k,i=1,...,m. These estimating functions may be shown to
be unbiased under mild regularity conditions regarding the
censoring distribution. As a result they provide consistent es-
timators for 8 and dA(t), 0 < t < 7.

Setting (9) equal to zero and solving for dA(s) gives the
Breslow estimate

D Yi(s)dNi(s)

dAP(s) = , (10)

> Yils) exp(Bz;)
i=1
which may be inserted into (8) to obtain
ALES / Yi(s){dNi(s) — dA® (s) exp(Bos) b, (1)
i=1 V0

This may in turn be rewritten as
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where

ZY
ZY

A robust estimate of the variance of (11) may be derived by

noting that
,12 / /

and that this can be estimated consistently (Lawless and
Nadeau, 1995) by

s) exp(Bzi)z;
Wi(s;8) = § =5 —

exp(fz;)

var(\/_ U (B Wi (w; B)W;(v; B)

x cov(dN ;(u), dN ;(v)),

m

:mlz{[n(u)m(u;m

=1

\Ta\r(\/ﬁilUl(ﬁ))

x {dN ;(u) — dA(u) exp(ﬂxi)}} .

(12)
A marginal pseudoscore statistic for testing the hypothe-
sis Hy : B = [y is obtained by noting that as m — oo,
UZ(By)/var(U,(By)) follows a chi-squared distribution with
one degree of freedom under Hj, so that large values may be
interpreted as providing evidence against the null hypothesis
(Cook, Lawless, and Nadeau, 1996).
If interest lies in estimation, a consistent estimate for (3,
denoted f, is obtained by solving U(8) = 0 where U;(8) is
given by (11). A Taylor series expansion gives

var(v/m(f — B)) = E(m™'U,(8)/08) “var(vim 'UL(8)).
(13)

Interval estimates may be obtained by inserting a consistent
estimate for § into the right-hand side of (12) leading to

(m)? (B — B) ~ N(0,C?%), where

:m—lz/

is an empirical estimate of E(

(u; B) dA(u)z; exp(Ba;)
m1oU,(8)/98) and

,12/ )

var(f Ui (B

— dA(u) exp(Ba;)}?
is an empirical estimate which we denote by 3.

3.2 Robust Semiparametric Conditional Methods

Let t;1,%:2, . . ., tin, denote the times of the n,(7;) = n; events
experienced by subject i over (0, 7;], ¢ = 1,...,m. Under
the assumption that the data are generated by mixed-Poisson
processes the joint distribution of R; and {N;(t), 0 < ¢ < 7;}
given v;, is
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P(R;, {N;(t),0 <t < 7i}|vis p, A(+), B)

(v:p)" exp{vip}  (vili(7:))™ exp(—vihi(m:)) T (tu)

Jj=1

where A;(1;) = foﬂ' dA(s) exp(Bz;) = A(1;) exp(Bz;) and
Ni(t;) = n;, © = 1, 2,...,m. Conditioning on r;+mn;
eliminates v; and gives

P(R;,N; |r; +n4;p,A(), B)

_ T + n; 1 "
S\ 1+ exp(log A(7;) — log p + f;)

o exp(log A(7;)
1+ exp(log A(7;)

—log p + Bz;) '
— log p + Bz.) ’

which is analogous to (3). Note that under a time-
homogeneous model (i.e., dA(t) = Adt) (14) reduces to (3)
but with linear predictor o + Bx; + log7; where logT; is an
offset for subject 4, ¢ = 1,...,m. The validity of this adapta-
tion depends on time homogeneity of the rate function dA(?),
however, and the developments that follow are directed at
relaxing this assumption for greater generality.

Differentiating the log likelihood resulting from (14) with
respect to § gives

ZUM B, A(-

{ (ri +my)

o (—expllogA(ri) — logp+ f) \| -
1+ exp(log A(r;) —logp+ Bz;) ) [

(15)

(14)

HMS

which may be viewed as a pseudoscore function for § in the
same sense as (11). To conduct inference about 3, however,
one must again deal with the nuisance parameters p and A(-)
n (15). Natural estimates of these parameters are obtained
by the introduction of the following auxiliary estimating
functions,

Uzo(p

Z Ui (p

(16)

U2g 57

Z Usjs(B; A(4)),

where Us;(p) = 1 — p and Usji (85 A()) =
AN(5)exp(B)}, § = 1. ks i = 1, m. T8 1 = (p, A())
and 0 = (ﬁ, ’ll)),, let Ugl(e) = (Ugoi(e), Um(e), ey ngl(e))l
denote the vector of auxiliary estimating functions for sub-
ject 4, U2(0) = (Un(0), U21(0), ..., U (0)), Us(0) = (Ui:(0),
U,.(0)), and U(0) = (U1(0),U4(0))". Setting (16) and (17)
equal to zero and solving leads to consistent estimates p =7
where 7 =Y r;/m and dAP(s) given by (10). These may
be inserted into (15) to give an estimating function U, (8, 9°)

Yi(s){dNi(s;) —
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where 97 = (p,dA?(-)), which may be used to obtain a con-
sistent estimate of the regression coefficient.

The estimating functions derived in the previous section are
motivated by a mixed-Poisson model, but g is interpretable
more generally provided E(dN;(s)|xz;) = dA(s)exp(Bz;).
Robust variance estimates are therefore required for this re-
sult to be useful however. Let A= E(-mtoU/80') and
B = E(UU"), which take the form

A= |:A11 A12:|
A?l A22
E(-m™oU,/0B) E(-m™'oU,/oy)
E(-m'0U,/08) E(—m'oU,/oy')
and

E(hU,)
E(U-UY)

)

B— |:Bu

B E(U,U)
o o) |

By E(U,Uy)

respectively. If 6 denotes the solution to U(6) = 0, then one
can show by Taylor series expansion (Breslow, 1990) that

asvar(\/mflUl (é)) = B]] - A]QA;;B‘Z] — B]QI:A;;:I/AIIQ

+ A Ay Bn[A5)] AL, (18)
If we denote asvar(y/m 'Uy(8)) by Sy, then /m 'Uy(8) ~
N(0,%y) and m'/2(3 — B) ~ N(0,%5) asymptotically where
Y = A'Sy A7l. Estimates for ; and ¥4 can be obtained
by using empirical estimates in place of the terms of A and
B.

A robust pseudoscore test of Hy: 3 = [y versus Hy: [ #
Bo can be carried out based on the above results. For ex-
ample, if 9™ denotes the solution to Us (B, 1) = 0, then
asvar(v/m Ui (B, %™)) is given as above but with variance
estimates computed at 3, and 9. A pseudoscore statistic of
Hy: B8 = By versus Hy: 8 # [y is, therefore, given by

Ul (607 {bﬁo )

0(607lzﬁ0) = = —
mEU (ﬁ(h ,lpﬁ())

(19)

which asymptotically follows a standard normal distribution
under the null hypothesis. Large absolute values provide evi-
dence against the null hypothesis.

4. Simulation Studies
4.1 Mized-Poisson Processes

Here we report on the design and results of simulation studies
denoted at assessing the frequency properties of the proposed
pseudoscore test. In this section we suppose baseline counts
and events during the follow-up period are generated accord-
ing to mixed-Poisson processes and described in Section 2.
Specifically we randomly assign subjects to receive either the
experimental or control treatment during the follow-up phase
with equal probability. We simulate v; for subject ¢ as gamma
distributed with mean 1 and variance ¢. The baseline count
is simulated from a Poisson distribution with mean v;p and
the event times during the follow-up phase are simulated from
a time-homogeneous Poisson process with rate v;Aexp(8z;).
The maximum follow-up time is set at 7 = 1, but variable du-
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rations of follow-up are induced by an exponential censoring
rate of log(10/9) implying that 10% of the sample will have
less than 1 unit of follow-up. Sample sizes of m = 50, 100,
200, and 400 are considered.

We consider p = A = 1 and 4 to represent scenarios with
relatively infrequent and more frequent events and g = 0,
log(0.7) and log(0.50) to correspond to no treatment effect,
moderate, and strong treatment effects, respectively. We set
¢ = 0.5, 1, 2, and 4 to represent mild to extreme forms of
extra-Poisson variation. Note that the asymptotic relative ef-
ficiency findings of Section 2 suggest that in the absence of
censoring, the conditional test of Section 3.2 would potentially
lead to greater power when ¢ > 1 because p = 1.

For each simulated trial, the data were analyzed by testing
the null hypothesis Hy: 3 = 0 versus Hy:3 # 0 at the 5%
significance level. Robust marginal (MARG) analyses were
carried out based on the methods described in Section 3.1
(Cook et al., 1996), as well as via the robust pseudoscore test
based on the conditional semiparametric model (COND) of
Section 3.2. For each parameter configuration 2000 datasets
were simulated and the proportion of trials for which the null
hypothesis was rejected was recorded. This represents the em-
pirical type I error rate when exp(3) = 1.0 and the empirical
power when exp(8) < 1.0.

The results reported in Table 1 for p = A = 1 confirm that
the marginal pseudoscore statistic has an empirical type I er-
ror rate consistent with the nominal rate of 0.05 and that the
proposed test based on (18) performs well even for samples
comprised of as few as 50 subjects. In terms of the empirical
power, the results are broadly consistent with what one would
expect based on the asymptotic results. When 8 = log(0.70),
for example, under mild extra-Poisson variation (¢ = 0.50)
the conditional test leads to lower power than the marginal
tests, but when ¢ = 1 the empirical powers of the tests are
comparable, and when ¢ > 1 there can be substantially higher
power with the conditional test. The findings are broadly sim-
ilar when p = A = 4 so we do not report on them here.

We also consider the setting in which the baseline period
of observation is used to screen subjects for inclusion in the
study (Cook and Wei, 2002). In such settings patients are
typically selected if r; > ¢z where cp is a specified selection
threshold. Here we focus on settings p = 1 and ¢ = 1.0 and
consider A = 1, 2, and 4 and cg = 1 and 2. The frequency
properties are examined under the same treatment effects as
Table 1 to study both empirical type I error and power. The
results, given in Table 2, indicate that the conditional test
retains good control over the type I error in the presence of
selection criteria, even when m = 50. By comparing the re-
sults in Table 2 with the results of Table 1 for ¢ = 1, one can
also see an appreciable gain in the empirical power from the
introduction of the selection criteria. Moreover, when selec-
tion criteria are used, the conditional test often has greater
power than the marginal test in settings where the reverse is
true in Table 1 (see line 6 of Table 1 and lines 3 and 4 of
Table 2).

4.2 Mized Renewal Processes

The proposed test was derived under a working assumption
of a mixed-Poisson model, but variance estimation is carried
out to ensure robustness. Here we report on simulation studies
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Table 1
Empirical rejection rates of robust marginal and conditional pseudoscore statistics under
mized-Poisson models (p = X = 1; 7 = 1; 10% censoring)

m = 50 m = 100 m = 200 m = 400
exp(8) ¢ MARG COND MARG COND MARG COND MARG COND
1.0 0.5 0.055 0.058 0.048 0.057 0.041 0.050 0.046 0.055
1.0 1.0  0.050 0.043 0.051 0.056 0.054 0.051 0.052 0.048
1.0 2.0 0.068 0.057 0.057 0.053 0.049 0.054 0.051 0.046
1.0 4.0  0.049 0.054 0.052 0.044 0.050 0.050 0.047 0.047
0.7 0.5 0.162 0.128 0.263 0.215 0.463 0.355 0.763 0.650
0.7 1.0 0.144 0.118 0.195 0.218 0.371 0.350 0.652 0.626
0.7 2.0 0.108 0.119 0.146 0.203 0.262 0.344 0.489 0.624
0.7 4.0 0.077 0.112 0.094 0.197 0.183 0.348 0.314 0.610
0.5 0.5 0.407 0.308 0.483 0.627 0.782 0.902 0.974 0.995
0.5 1.0 0.337 0.287 0.319 0.591 0.570 0.883 0.847 0.994
0.5 2.0 0.242 0.284 0.194 0.569 0.360 0.868 0.622 0.992
0.5 4.0 0.152 0.239 0.107 0.495 0.206 0.806 0.372 0.977

MARG: marginal pseudoscore test; COND: conditional pseudoscore test.

designed to assess the robustness of the proposed test to de-
partures from mixed-Poisson processes.

Data were simulated according to mixed renewal processes
as follows. Subjects were randomly assigned to receive either
the experimental or control treatment during the follow-up
phase, as in Section 4.1. We let z; = 1 if subject i is assigned
to the treatment arm and z; = 0 otherwise, i =1, 2,...,m. A
subject-specific random effect was generated from a gamma
distribution so that E(v;) = 1 and var(v;) = ¢. A sequence of
interevent times wyy, wys, ..., were then simulated such that

where v = (71,72)". For a subject with v; = 1 then, E(w; |v; =
1) = v1y2. We generate w;;, wi,..., until Zf’zl wy > T; at
which point we record R; = k; — 1 as the baseline count
observed over the interval (—7g, 0]. For simplicity we ignore
the backward recurrence time at ¢ = 0 and simulate a sequence

of follow-up interevent times i, u;,...,such that
ult ! exp(—u / (viy2 exp(B:)))
flug |vi, 2337, 8) = Y u; >0
R ¥ O [T (7)) K

until Z?;l uy; > 7; where 7; is the follow-up time for subject

7-1 j
Flws |vi,) = wi' " exp(—w;;/(vir2)) we >0 i,i=1,2,...,m. At this point we record t; =Y 7 _ wk, j =
) (3] - b % b h -
! I'(y1) (wiye)m ! 1, 2,...,n;, as the event times during the follow-up phase.
Table 2

Empirical rejection rates of robust marginal and conditional pseudoscore statistics under mized-
Poisson model with selection based onr; > cg (p = 1; ¢ = 1.0; 7 = 1; 10% censoring)

m = 50 m = 100 m = 200 m = 400
A exp(8) ¢ MARG COND MARG COND MARG COND MARG COND
1.0 1.0 1 0.059 0.059 0.047 0.056 0.047 0.059 0.054 0.062
1.0 1.0 2 0.063 0.060 0.066 0.055 0.048 0.045 0.050 0.048
1.0 0.7 1 0.187 0.209 0.324 0.358 0.577 0.622 0.851 0.885
1.0 0.7 2 0.256 0.278 0.433 0.469 0.709 0.767 0.939 0.961
1.0 0.5 1 0.496 0.535 0.788 0.823 0.977 0.986 1.000 1.000
1.0 0.5 2 0.635 0.665 0.907 0.925 0.997 0.997 1.000 1.000
2.0 1.0 1 0.069 0.041 0.060 0.043 0.058 0.052 0.048 0.053
2.0 1.0 2 0.059 0.045 0.057 0.054 0.057 0.043 0.057 0.051
2.0 0.7 1 0.236 0.264 0.390 0.493 0.665 0.809 0.921 0.978
2.0 0.7 2 0.306 0.354 0.516 0.626 0.797 0.903 0.976 0.997
2.0 0.5 1 0.596 0.701 0.871 0.944 0.993 1.000 1.000 1.000
2.0 0.5 2 0.724 0.811 0.946 0.986 0.999 1.000 1.000 1.000
4.0 1.0 1 0.060 0.043 0.056 0.047 0.051 0.049 0.050 0.041
4.0 1.0 2 0.067 0.052 0.053 0.060 0.053 0.055 0.061 0.043
4.0 0.7 1 0.238 0.399 0.422 0.711 0.697 0.942 0.947 0.999
4.0 0.7 2 0.293 0.486 0.508 0.781 0.805 0.976 0.979 1.000
4.0 0.5 1 0.651 0.884 0.915 0.997 0.996 1.000 1.000 1.000
4.0 0.5 2 0.746 0.938 0.959 0.999 1.000 1.000 1.000 1.000

MARG: marginal pseudoscore test; COND: conditional pseudoscore test.
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Table 3
Empirical rejection rates of robust marginal and conditional pseudoscore statistics under
mized renewal model (v = 2; 7 = 1; 10% censoring)

m = 50 m = 100 m = 200 m = 400
exp(—B) 72 ¢ MARG COND MARG COND MARG COND MARG COND
1.0 0.50 0.1 0.065 0.042 0.052 0.055 0.056 0.053 0.054 0.052
1.0 0.50 0.2 0.059 0.050 0.049 0.059 0.037 0.047 0.044 0.054
1.0 0.125 0.1 0.058 0.053 0.051 0.064 0.046 0.051 0.053 0.042
1.0 0.125 0.2 0.066 0.056 0.044 0.053 0.050 0.044 0.048 0.048
0.9 0.50 0.1 0.085 0.058 0.102 0.073 0.153 0.101 0.240 0.174
0.9 0.50 0.2 0.084 0.069 0.089 0.081 0.127 0.114 0.215 0.184
0.9 0.125 0.1 0.135 0.109 0.174 0.171 0.306 0.284 0.546  0.547
0.9 0.125 0.2 0.102 0.125 0.117 0.190 0.211 0.337 0.361 0.584
0.7 0.50 0.1 0.335 0.209 0.505 0.397 0.810 0.642 0.984 0.914
0.7 0.50 0.2 0.278 0.221 0.431 0416 0.752 0.702 0.958 0.930
0.7 0.125 0.1 0.684 0.647 0916 0926 0.999 0.997 1.000 1.000
0.7 0.125 0.2 0.489 0.683 0.745 0.932 0.951 0.998 0.999 1.000

MARG: marginal pseudoscore test; COND: conditional pseudoscore test.

As before we set T = 7 = 1 and have an exponential cen-
soring process following accrual with rate log(10/9). We set
~v1 = 2 and consider v = 1/2 and 1/8 to be roughly com-
parable to the scenarios of the mixed-Poisson simulations in
terms of the expected number of events. We consider § =
0, 0.97!, and 0.77! to represent no treatment effect and pro-
gressively stronger treatment effects induced by increasing the
mean interevent times. We consider ¢ = 0.1 and 0.2 to repre-
sent mixed renewal processes with mild and moderate degrees
of heterogeneity. Table 3 displays the empirical type I error
rates for the robust marginal and conditional tests in the first
four rows where exp(—3) = 1.0. The findings suggest that
even for a sample of 50 subjects, the empirical type I error
rate is in very good agreement with the nominal level for
mixed renewal processes.

The last eight rows of Table 3 report the empirical power
under the two levels of treatment effect. Here the robust condi-
tional analysis may be seen to have higher or lower empirical
power than the marginal analysis, depending on the degree
of heterogeneity. When there is mild heterogeneity (¢ = 0.1)
the marginal methods lead to greater or comparable power,
but when ¢ = 0.2, however, there can be substantial gains
in power with the conditional analysis. This is analogous to
the findings for the mixed-Poisson setting where the greater

the heterogeneity the greater the appeal of the conditional
analysis.

5. Extensions to Crossover Trials
5.1 Model Formulation and Inference

Multi-period long-term crossover designs represent a natural
setting in which to apply the conditional analyses proposed in
Section 3.2. There are, however, some unique features which
require consideration due to the particularities of crossover de-
signs. These include the facts that patients receive treatments
in an order determined by the assigned sequence group, the
duration of two or more treatment periods may vary among
subjects, and the fact that carry-over effects may arise. Here
we consider generalizations of the procedure described in Sec-
tion 3.2 to address these issues in the context of a two-period
placebo control crossover trial.

Suppose a total of m subjects are randomly assigned to
either sequence group 1, in which subjects receive the exper-
imental treatment during period 1 and the placebo control
during period 2, or sequence group 2, in which subjects receive
the treatments in the reverse order. We let g; = k if subject
1 was assigned to group k, k =1, 2,4 = 1,...,m. In long-
term crossover trials treatment periods have a nominal du-
ration, but there may be considerable variation in the actual

Table 4
Marginal and conditional robust analyses of data on the occurrence of coughing
episodes from Sears et al. (1990)

Marginal analysis

Conditional analysis

Sample Covariate Est. SE p-value Est. SE p-value
Overall  Treatment 0.294 0.115 0.011 0.284 0.108 0.008
Carry-over  0.377  0.298 0.205 0.230 0.102 0.025
Male Treatment 0.734  0.225 0.001 0.761  0.198 <0.001
Carry-over  0.299  0.618 0.628 0.455 0.305 0.135
Female Treatment 0.144 0.126 0.252 0.138 0.118 0.242
Carry-over  0.344  0.337 0.307 0.189  0.094 0.045
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durations of these periods due to complications in scheduling
visits that may be required for the crossover to take place
(i.e., if new medications are required), or due to early patient
withdrawal. It is, therefore, important to give careful consid-
eration to the actual treatment received at the time of events
rather than the scheduled treatment.

Suppose the two treatment periods each has a nominal du-
ration of 7 units, but let 7;; and 7, represent the actual
duration of periods 1 and 2 for subject i, respectively, and
let 7;, = 751 + T4, @ = 1,...,m. For subjects in sequence
group 1, we may specify an interval (7;1, 7,1 + ¢] over which
there may be a residual carry-over effect of the experimen-
tal treatment received during period 1. For subjects in se-
quence group 2 there is no need to consider such an interval
because for these patients a placebo treatment was received
during period 1. Let x;;(t) = 1 if subject i received the ex-
perimental treatment at time ¢ and x;;(t) = 0 otherwise, and
let zin(t) = 1ifg; =1 and 75 <t < 751 + ¢, and () = 0.
Therefore, x;(t) indicates whether the current treatment is
the experimental treatment and z;5(%) indicates whether the
potential for a carry-over effect of the experimental treatment
is present at time t. Given a subject-specific random effect v;,
we define the event rate at time s as E(dN;(s) |v;; zi(s)) =
v;dA;(s) where dA;(s) = dA(s) exp(B1x:1(s) + B2 xi2(s)) and
dA(s) is a baseline rate function. We define N;(0, 7;1) = Ny,
Ni(Ti1, Tir + ¢) = Nyoy, Ni(Ta1 + ¢, 73) = Ny, Ni(Ta1, 75) =
Ny (=N;21 + Ny), and N;(0, 7;) = N;, and use lower case
letters to represent the corresponding realized values. Finally,
we let A(s,t) = [LdA(u), Ai(s,t) = [ dA;(u) and write A(?)
and A;(?) for A0, ¢) and A;(0, ), respectively.

The analogue of (3) for patients in sequence group 1 is,

P(nil, 321, T422 | nz)

n;
317032170422

(A(Til)eﬁ] )nil (A(Til, Ti1 + C)eﬁz)nﬂl (A(Til +ec, ’7'1‘1))7”22
8 Ai(m)m ’

while for individuals in sequence group 2 we obtain

- ) (A(ra))™ (AT, m)e® )"
Ai(TZ‘)ni '

ULZY)

P(nihniQ'ni) = (

The estimating functions for 8; and 3, are obtained as score
functions from the resulting likelihood function and are given
by

Un =Y U
i=1

U =Y U,
i=1

where

— i [A (7)) "=V [A (71, 7) 197 exp(B1) /A (73)

is the contribution from the ith subject to the estimating func-
tion for B; and

Urgi = [nio — n A(Tin, Tin + ¢) exp(Ba) /Ai(73)) 1 (9: = 1)

Ui = Nig,;
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is the corresponding contribution to the estimating function
for B5. A supplementary estimating function, given by

UZj :ZUlzjz.]: 1727"'7k7
=1

where
Usij = Yi(s;)[dNi(s;) — dA(s)exp(Bizi (s5) + Paziz(s;))],

gives

3 Vilsy) dNi(s;)

D Yils;) exp(Biza(s;) + fowan(s)

=1

dAP (s5) =

(22)

which may be substituted into (20) and (21) to obtain 3, an
estimate of 3 = (8;,32). Asymptotic variances may be ob-
tained as in Section 3.2.

5.2 Application to an Asthma Study

Sears et al. (1990) report on a two-period crossover trial of
asthma patients designed to compare the effects of regular use
of an active inhaled bronchodilator (fenoterol hydrobromide)
versus placebo for the treatment of symptoms of asthma. Pa-
tients were randomized to sequence groups. In one sequence
group patients administered fenoterol four times daily for
24 weeks followed by another 24-week period during which
they administered a matching placebo in a similar fashion;
the other sequence group administered the placebo during
the first 24 weeks followed by fenoterol. Patients recorded
morning and evening peak expiratory flow rates, sputum pro-
duction, chest tightness, use of rescue bronchodilators, and
episodes of daytime and nighttime coughing and wheezing.
Sixty-four patients were deemed eligible for inclusion in the
primary analysis reported in Sears et al. (1990); reasons for
subject exclusion are enumerated there. Among these patients
the unique crossover times (number of subjects) were 164 (1),
165 (1), 166 (3), 167 (7), and 168 (52) days, and the unique to-
tal follow-up times were 335 (59), 336 (3), 338 (1), and 343 (1)
days. Here we report on the analysis of data on a secondary
outcome of nighttime coughing. In previous analyses (Ng and
Cook, 1999) we found a difference in the effect of therapy for
males (m = 29) and females (m = 35), so we report here
on results overall and separately for males and females. Both
the robust marginal analyses of Lawless and Nadeau (1995)
and the robust conditional analyses based on Section 5.1 were
performed.

Table 4 displays the estimates, standard errors, and Wald-
based p-values arising from analyses based on the marginal
method of Lawless and Nadeau (1995) and the analysis based
on the robust conditional methods of Section 5.1. A 2-month
duration was selected for possible carry-over effects; alterna-
tive durations were considered but the conclusions regarding
the main treatment effect did not change so we simply report
on these here. The standard errors based on the conditional
analyses are smaller than from the robust marginal analysis
reflecting an empirical gain in efficiency for this trial. The
point estimate and 95% confidence intervals for relative risks
reflecting the overall direct treatment effects from the two
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Figure 2. Nelson—Aalen estimates of the cumulative mean
number of coughing episodes by sex and sequence group.

models are 1.34 (95% CI (1.07, 1.68)) and 1.32 (95% CI (1.07,
1.64)) for the marginal and conditional analyses, respectively.
For males alone, the respective relative risks are 2.08 (95%
CI (1.34, 3.23)) and 2.14 (95% CI (1.45, 3.16)), and for fe-
males they were 1.15 (95% CI (0.90, 1.48)) and 1.15 (95% CI
(0.91, 1.45)). Figure 2 displays plots of the Nelson—Aalen esti-
mates of the cumulative mean functions by sex over the course
of follow-up. Note that the Nelson—Aalen plots of the mean
functions for females in the two sequence groups are consis-
tent with the presence of substantial carry-over effects from
fenoterol received during period 1 because the mean functions
do not converge in the second treatment period.

6. Discussion

We have developed semiparametric methods for efficient es-
timation of treatment effects based on recurrent events use-
ful in long-term trials of patients observed over two or more
treatments periods. The estimating functions we propose are
derived under a “working” mixed-Poisson model but are valid
provided the mean specification of the model is correct. The
conditioning under the working model is motivated by the
elimination of subject effects and a desire to make assessments
of treatments based on within-subject comparisons as in the
classical Gaussian framework. Robust variance estimates en-
sure the proposed methods work well in a broad range of
contexts.

The study of the asymptotic relative efficiency revealed
that under a mixed-Poisson model, the conditional approach
is more efficient than the marginal approach when the baseline
mean is greater than the inverse of the random effect variance
and the simulation studies bear this out. When considering
analysis strategies at the design stage in such settings, one
can reduce the number of subjects required (e.g., Cook, 1995)
by using the appropriate method of analysis. Sample size for-
mulae have not been provided for the conditional model, but
they are relatively straightforward to derive.

In many contexts, events are not observed in continuous
time, but rather cumulative event counts are available from
periodic assessments. Examples include radiographic studies
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in rheumatology where x-rays are required to count the num-
ber of newly damaged joints between clinic visits (Gladman
et al., 1998) and studies of patients with cancer metastatic
to bone where the outcome may be the development of new
bone lesions only detectable upon bone scan (Hortobagyi
et al., 1998). When counts are only observed after randomiza-
tion, random effect models for data of this sort have been con-
sidered by a number of authors including Lawless and Zhan
(1998), Staniswalis, Thall, and Salch (1997), and Dean and
Balshaw (1997). The methods we propose could be adapted to
deal with interval-censored recurrent event data. In this case,
the estimate of the baseline mean function could be based on
simple parametric models, or possibly piecewise constant rate
functions possibly with the use of smoothing splines. Such ap-
proaches merit consideration in this context.
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