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ANATYSIS OF THE ROLLING-BALI, VISCOMETER
by
John S. McNownt

UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN

I. INTRODUCTION

Analysis of the motion in the rolling-ball viscometer provides an ad-
ditional method of determining absolute viscosity. In practice, the instrument
is used comparatively in that a set of balls with various clearances is cali-
brated using standard liquids of known viscoslty. Because the diameters of the
spheres are only slightly smaller than that of the cylinder, the primary resis-
tance to flow 1s concentrated in the vicinity of the region of smallest clear-
ance., Consequently, the forces and the flow can be sufficiently simplified to
make possible a theoretical analysis similar to that used for the theory of
lubrication., For small clearances, the viscosity can be directly determined if
sufficient precision is maintained in the manufacture of the cylinder and the
balls and in the determinations of their diameters.

For the slow motions specified for these viscometers, the flow through
the space between the ball and the cylindef is laminar. The liquid moves pri-
marily in the upward direction, the net upward flow compensating for the down-
ward motion of the ball. The tube is inclined from the vertical. Consequently,
the ball rolls or simultaneously slides and rolls along the lowermost element
of the cylinder, and the opening at the minimum section is crescent shaped. The
gradually-varied flow is assumed to take place in meridional planes. Because
the changes in piezometric head between points below and above the ball are the
same regardless of the path followed by the fluid, the rate of flow per unit of
circumference varies from zero at the point of contact to a maximum st the oppo-
site side. The longitudinal force resulting from the difference in piezometric
head counterbalances the component of immersed weight. Other effects such as
shear can be shown to be negligible if the clearance is small.

The simpler case of a sphere falling along the axis of a vertical cy-
linder has already been treated [1].* Other aspects of the performance of these
viscometers have been discussed extensively, e.g., [2]. Comparisons of the re-
sults from the analysis of the unsymmetrical case with calibration data for com-
mercial instruments indicate the reliability of the analysis for comparatively
small clearances.

+At Towa Institute of Hydraulic Research when investigation was performed.
*¥Numbers in brackets refer to the bibliography at the end of the paper.
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ITI. ANALYSIS

Basic to the analysis of the flow is the relationship for the gradi-
ent of piezometric head. 1In addition, relationships for continuity, geometry,
and the aforementioned balance of longitudinal forces are required. Because
of the involved geometry of the flow passage, definition of the variables is
complicated. With reference to Fig. 1, x is the spacing between the ball and
the cylinder and y the distance along the axis of the cylinder. At the equa-
tor (i.e., the section of minimum clearance), y is zero and the variable spac-
ing is denoted as Xge The angle 6 designates position around the sphere. The
fluid velocity v varies with y and 6 and with position across the flow passage.
The maximum ordinate of the parabolic curve of velocity distribution for any
value of y (and ©) is designated as vy, and that for y = O as Vp. The velocity
of the center of the sphere is Vg.

The familiar expression for flow between parallel plates [3] can be
written in the form

dh 8uv.
T 1)

in which [h = (p/7)+ z] denotes piezometric head, and p and y are the dynamic
viscosity and unit weight of the fluid, respectively. Both vy and x are con-
sidered in this instance to be variable with y but only gradually so. From
Fig. 1, to the second order of small quantities,

X=Xo+-};—2: (2)
and
Xg = {D-4) (1 + cos ©). (3)

2

If the quantity of flow between two closely-spaced meridians is a constant,

If these values are substituted into (1) and the expression is integrated, a
relationship is obtained between Ah, the change in piezometric head across the
sphere, and Vp:
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The upper limit of o is used for convenience. Any moderately large upper limit
would produce the same result for the integration of this rapidly converging
function.

The appropriate equation of continuity relates the net upward flow
of the fluid (at the equator) to the downward motion of the ball:

1d2Vg 24 %
—T‘s- = '-3— VmXOd@ .

The integration if performed after Vp has been expressed in terms of Xg from
(k) and x; in terms of ¢ from (3). Thus,

LAyAhd €52
Ve = ___2'___‘5____, (5)
bl

in which € is the average relative spacing,

c - D-4a
2D

)

and A is a constant,

A=52—8—*/——2-= 0.h27 .

135x

If the concept of equilibrium of forces is to be utilized, an expres-
sion for the integrated shear force S must be examined:

s = eéwéﬂ (+d) dedy ,

in which the local shear stress v can be closely approximated by means of the
relationship,

- o= Mg
X
Hence,
2 5/2 2
g = 87Ahd € L L (l+cosyg)d dyde = 7&3@..@5 .
O 37) L3

Finally, from the equilibrium of forces in the longitudinal direction,

v X _E_ (1 + § €) = E%E-Aq cos O . (6)

The order of magnitude of the force due to shear is less than the primary terms.
This and several other second-order effects are omitted in the following rela-
tionships. These are considered briefly at the end of this section.
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The last step in the analysis is the evaluation of a resistance coef-
ficient K as a function of €. The quantity K is a coefficient to be applied to
the Stokes law:

F d2 Ay cos @
K = —e = 272088 (7)
SnuVg 4 pr,VS

From (5), (6), and (7),

-5/2

K = 0.153 e-5/2 = 0.868 (D - 4) . (8)
D

Several contributions of second order were considered in addition to the
term for shear. For these, Vg is not negligible with respect to V,, and d is not
approximately equal to D, but rather,

d = D (1-2¢).

Consequently, the continuity equation must be modified. Also, a reduction must
be included for varilation of pressure on the curved surfaces, a contact force
myst be considered, and the question of siiding versus rolling must be resolved.
Thus (%), (5), and (6) are modified by the inclusion of additional terms. The
combined effect for a rolling contact 1s a reduction in the value of K by a fac-
tor of 1 - 5.5e€. However, the motion is too complex for one to be certain that
all second order effects have been lncluded.

If the ball were to move in such a way as to be near the wall but not
in contact with it, a different type of second-order effect would occur. The
spatial relationship in (3) for xp would have to be modified:

Xg = ig_é_él (1 + 8 cos 6) ,

in which & varies from unity for the case already treated to zero for the symme-
trical one. Use of this modified expression in the continuity relationship
leads to a more complex form of (5) involving elliptic integrals. The results
of the integration are shown in Fig. 2 in which the modified coefficient K' is
compared to the value obtained from (8).

Although the gradually varied Poiseuille flow is considered to be lo-
cally independent of the geometrical variations, the integrated result is di-
rectly affected by the complex geometry of the space between the moving and
fixed boundaries. Various aspects of the problem contribute to the final result
in quite different ways. The shape of the longitudinal passage, as viewed in Fig.
la, determines the exponent of the clearance. For example, a long cylindrical
object used in place of the spheres would require the exponent of -3 rather than
-2.5. The position of the sphere in the cylinder (Fig. la) determines the value
of the coefficient as shown in Fig. 2. The rolling or sliding motion, the force
of friction at the wall, the integrated shear, and the more complicated aspects
of continuity affect the result only to the second order (i.e., to e-3-2).
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ITI. COMPARISON WITH RESULTS OF VISCOMETER CALIBRATIONS

Upon consideration of the results of the foregoing analysis, one is
struck by the practical difficulties inherent in its experimental verification.
The theory holds only for small clearances, and small clearances require ex-
treme precision in the manufacturing of the instrument. The best data for com-
parison are those obtained during the calibrations of commercial viscometers.
Sets of data for Hoeppler viscometers were obtained from the laboratories at
the Iowa Institute of Hydraulic Research, the University of Illinols, the Uni-
versity of Texas, and the California Institute of Technology. Still more val-
uable were data from the Exline Engineering Company of Tulsa, Oklahoms, which
were obtained during the recent development of a more precise instrument.

In the original calibrations of the various instruments standard
liquids were used, and ball constants were determined for each sphere. These
constants, designated as B, are conventionally defined as

B = ¥ P)
T (Sb -Sf)

in which p' is the viscosity in centipoises, T is the time required for the
ball to travel a specified distance L along the tube, and sy, and sg are the
specific gravities of the ball and fluid, respectively. It follows directly
that

Bt = 981 x 100 42 cos &
18 IX

in which B' represents the theoretical value of B; the numerical coefficients
are included to provide consistent units, d2 and L are in centimeters, and K

is dimensionless, The tubes for the Hoeppler viscometer are inclined 10° from
the vertical so that cos @ = 0.985; various positions are used in the Exline

" instrument.

From the tube and ball diameters furnished with each calibrated vis-
cometer, values of B were computed and are compared in Fig. 3a with those ob-
tained by calibration.

B _ BL (D - 4,-572
B' 6190 @2 cos & D

The solid points are the several almost equal values for various inclinations

of the Exline tube. The trend of the results as indicated in Fig. 3a is poorly
defined, and is particularly unsatisfactory in that the theoretical value is not
approached as (D—d)/D approaches zero. It is, however, closely approached for
the results of the more precise Exline instrument. Even for this instrument the
values begin to diverge from the ideal value of unity for very small clearances.



As (D-d)/D approaches zero each of the assumptions made in the theo-
retical derivation becomes more precise, but the calculation also becomes more
critically dependent upon the accurate determination of D - d. In fact, an
error in the determination of D would cause the computed and measured results
to diverge as d =» D as shown in Fig. 3(a). Consequently, the effect of an er-
ror in the measurements of the diameters was examined in an attempt to explain
why the predicted trend was not found for very small clearances. Because of
the greater difficulty of measuring precisely an inside diameter, an arbitrary
correction to each value of D was assigned such that the most nearly consis-
tent correspondence between theory and experiment was obtained for all the
balls used with that tube.

The tube diameters for all instruments were slightly less than 1.6 cm,
and were given to the nearest 10-5 cm. The required corrections varied from 3
x 10-4 to 9 x 10™% cm for the four Hoeppler instruments, but was only 2 x 10~ 5
em for the Exline instrument. Approximate data on maximum and minimum diam-
eters of the tube used for the latter were made available. Because the overall
variation was more than ten times the arbitrary adjustment required to produce
excellent agreement, the original discrepancy can very likely be ascribed to a
very slight error in evaluating the effective mean diameter of the tube.

The small adjustments in the tube diameter brought about the marked
improvement in the results shown in Fig. 2b. For large clearances the points
were changed very little. For small clearances the corresponding values of
B/B' were considerably altered; even the values of (D - d)/D were changed ap-
preciably in some cases. Two factors make these arbitrary adjustments rather
convincing evidence of the reliability of the theory for small clearances.

For each set of data only the value of D was changed, computations for all
balls in the set being based on the same value of D. Also, the change for the
most precise set of data was well within the limits of accuracy to which the
diameter could be manufactured or measured. For relative clearances of 0.0l
or less, the theory is evidently more reliable than the available data. For
relative clearances between 0.01 and 0.1, second-order effects become appre-
ciable, and values up to 1.05 occur for the Hoeppler data and down to 0.96 for
the Exline instrument.

The solid line in the Fig. 3b is the value of B/B' to be expected if
the second-order calculation was complete and no slipping occurred. The corre-
sponding correction is too large. Also included in Fig. 2b are the dotted
lines which indicate the effect of changes of + 10-5 in the relative clearance
(+ 1.6 x 10-5 cm). These lines show the increase in the effect of an error in
measurement as the relative clearance decreases.

The facts that the ball rolled and remained in contact were examined
carefully because a question had been raised on this point in other work (k).
The motion of a marked ball was examined both as the mark was in contact and
over the entire distance of travel. No slippage was evident and the mark on
the ball returned to exactly the same spot after a double traverse of the tube.
The remarkably close correspondence between the results of theory and the most



precise data is further confirmation that a contact was maintained. Visual
evidence is sufficient to say that the ball is very nearly in contact. The
calculation of the effect of a variation in space indicates that a thin film
between the tube and the sphere would not alter the results significantly.
Finally, the results for various inclinations of the Exline tube would dif-
fer if contact were not maintained. Such a difference was found only for
one set of tests at rather large Reynolds numbers.

The several possible discrepancies mentioned in the foregoing do
not necessarily reflect adversely on the accuracy of this type of viscometer.
Errors in measurement of diameter would have no effect whatever on the cali-
bration. Conversely, differences such as that for the largest value of
(D - d)/D can only result from a different type of error such as one in some
aspect of the calibration. The nature of the theoretical prediction is such
that a smooth curve should result from the reduction of the data, in the ab-
sence of errors of measurement, even if the coefficients of higher-order
terms are unknown,

IV. CONCLUSION

From a combination of theory and calibration-type experiments, the
available results for rolling-ball viscometers have been systematized. The
use of this Instrument for the absolute determination of viscosity is suggested,
subject to the attainment of extremely precise measurement and manufacture of
both the tube and the spheres. Also implicit in the foregoing is a method for
the measurement of the bore of precision tubing by means of comparison with
precisely-measured spheres, Because of known limitations to the accuracy of
both theory and measurement, the results are perhaps not entirely conclusive;
but they indicate strongly that a reliable means of predicting the occurrence
has been found.
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