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SUMMARY. This research develops nonparametric strategies for sequentially monitoring clinical trial data 
where detecting years of life saved is of interest. The recommended test statistic looks at integrated differ- 
ences in survival estimates during the time frame of interest. In many practical situations, the test statistic 
presented has an independent increments covariance structure. Hence, with little additional work, we may 
apply these testing procedures using available methodology. In the case where an independent increments 
covariance structure is present, we suggest how clinical trial data might be monitored using these statis- 
tics in an information-based design. The resulting study design maintains the desired stochastic operating 
characteristics regardless of the shapes of the survival curves being compared. This offers an advantage over 
the popular log-rank-based design strategy since more restrictive assumptions relating to the behavior of 
the hazards are required to guarantee the planned power of the test. Recommendations for how to sequen- 
tially monitor clinical trial progress in the nonindependent increments case are also provided along with an 
example. 
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1. Introduction 
In clinical trials, we are ethically obligated to periodically 
monitor the performance of the treatments under study. It 
is important, for instance, to detect overly toxic effects that 
may occur and to protect the patients in the study accord- 
ingly. Also, if the new treatment under study performs sub- 
stantially better than standard treatments, interim analyses 
of the data detect these differences early. For instance, this 
is a motivation for sequential analysis in most AIDS clinical 
trials, where there is a strong need to identify life-enhancing 
treatments quickly. In one such pivotal study described by 
Fischl et al. (1990), patients were randomized to high-dose 
(n = 262) versus low-dose AZT (n = 262) with wide reaching 
effects on standard of care for AIDS patients upon the study’s 
conclusion. The higher dose of AZT, which was the standard 
of care prior to the 1990 publication, had been shown to be 
an effective treatment compared to placebo but with substan- 
tial toxicity. The results observed by Fischl et al. suggested 
that a lower dose of AZT was more effective and less toxic 
than the standard. The scientists agreed at the design phase 

of the study that repeated analyses would preserve the best 
interests of the patient population. 

However, a statistical price must be paid for this monitor- 
ing process. By repeatedly looking at the data, we increase our 
type I error probability. Hence, when analyzing data in this 
way, we must make adjustments in the sequential boundaries 
of our test statistics to maintain our type I error. Among pop- 
ular stopping methods for sequential clinical trials are those 
suggested by Pocock (1977) and O’Brien and Fleming (1979). 
More recently, flexible error spending functions have been pro- 
posed by Lan and DeMets (1983) to maintain the type I error 
throughout the trial. 

One important requirement for using error spending func- 
tions in repeated analyses is an understanding of the joint 
distribution of the repeated statistical tests. For instance, the 
joint distribution of sequential log-rank (LR) tests as well as 
a framework for analyzing these repeated tests were studied 
by Tsiatis (1981, 1982), Slud (1984), and later Gu and Lai 
(1991). Because sequential methodology has been developed 
and studied for the LR test, it has become the primary non- 
parametric test applied to survival data in repeatedly moni- 
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tored trials. In fact, this methodology was used in the high- 
dose versus low-dose AZT study described above. The LR 
test is especially useful in situations where the treatment dif- 
ference can be expressed as a hazard ratio assumed constant 
over time. For such proportional hazards alternatives, the LR 
test is the optimal nonparametric test. However, it often be- 
haves poorly when hazards are not proportional. In fact, in 
the nonproportional hazards setting, the LR test statistic does 
not have a useful interpretation with respect to any treatment 
difference of particular interest. 

An alternative to relative risk is to express treatment differ- 
ences in terms of years of life saved (YLS) between treatments. 
That is, regardless of the behavior of the survival hazards 
across time, an alternative of interest in the AZT study could 
be defined through the YLS on the superior treatment. Since 
most clinical trials have limited follow-up, we would define 
years of life, by necessity, up to some fixed point in time after 
treatment. This quantity can be estimated easily with dif- 
ferences between areas under estimated survival curves. This 
resulting YLS test statistic, 7, belongs to a larger class of 
statistics studied by Pepe and Fleming (1989) for the nonse- 
quential setting. 

In our remaining discussion, we have three scientific goals. 
We shall first set up the framework for sequential methods 
using the 7 statistic. An important step in establishing the 
sequential nature of the 7 statistic is characterizing the joint 
distributions of the tests and survival estimates computed 
at different interim analyses. This will enable us to compute 
stopping boundaries for preserving desired operating charac- 
teristics. Jennison and Turnbull (1985) studied sequentially 
computed Kaplan-Meier (KM) survival estimates. Notation 
required in the sequential framework and results relating to 
the KM estimate at two separate analysis times are presented 
in Section 2. Subsequently, we develop methods for adapting 
the 7 statistic to the sequential trials setting in Section 3. In 
particular, we will discuss under what circumstances the 7 
statistic has a joint independent increments structure. This 
is important because, if this is the case, we can immediately 
apply standard group-sequential methods to this problem. 

As a second scientific goal, we shall indicate in Section 4 
through simulation the performance of the 7 statistic in an 
information-based monitoring design when the interim test 
statistics have independent increments. This information- 
based monitoring technique introduced by Lan and Zucker 
(1993) and recently formalized by Kim, Boucher, and Tsiatis 
(1995) and Scharfstein, Tsiatis, and Robins (1997) follows pa- 
tients until the total information (TI) required to achieve the 
desired power is collected. During the course of the trial, error 
spending functions are defined according to the proportion of 
information collected at each interim analysis. In defining the 
TI required for the 7 statistic to achieve a particular power, 
the alternative to be detected is defined in terms of the YLS 
between the two treatments without any additional assump- 
tions regarding the shapes of the underlying survival curves. 

Finally, this research instructs practitioners on use of the 
7 statistics in the more general nonindependent increments 
setting, where information-based monitoring is difficult to im- 
plement. An example in the context of the aforementioned 
AIDS clinical trial comparing low-dose versus high-dose AZT 
is given along with further simulation results in Section 5. A 
discussion follows in Section 6. 

2. Sequential Methods for the Kaplan-Meier 

To understand concepts relating to sequential theory, we re- 
quire an explanation of notation. We borrow notation used by 
Tsiatis, Boucher, and Kim (1995). Assume that n individu- 
als will enter the trial at times E l , .  . . ,En during the accrual 
period. These possibly different entry times will be bounded 
positive random variables measuring calendar time from the 
start of the study, which are independently and identically 
distributed with distribution function G(e)  = P(E  5 e ) .  
Each individual i has an internal survival time, Ti, measured 
from the time of entry to the study. Individuals who have 
not failed at the time of analysis are censored. For instance, 
if the data are analyzed at calendar time t ,  we censor all 
individuals i such that Ti > t - Ei. The notation Vi, mea- 
sured in internal patient time from study entry, refers to the 
potential censoring time due to random loss to follow-lip. 
We assume that Ei,  Vi, and Ti are independent within each 
treatment group. If the data are analyzed at  calendar time 
t ,  then the observable internal patient time random variahles 
are { X , ( t ) ,  Ai( t ) }  for all i = 1,. . . , n such that Ei 5 t ,  where 
X i ( t )  = min(Ti,V,,t - Ei) is the observed time on study at 
analysis time t and Ai(t)  = I{Ti 5 min(t - Ei,V,)} denotes 
the failure indicator at time t .  

Define the KM estimate of the survival function S ( x ) ,  if 
we used the survival data available at time t ,  as S( t ,  x). We 
emphasize that the first index, t ,  refers to calendar time mea- 
sured from the start of the study. The second index, x, refers 
to the internal patient time measured from a patient's entry 
into the study. Let tl denote the calendar time of the first 
analysis and t2  a later analysis time. In the Appendix, we 
show that 

Estimate 

where X(z) is the hazard function at internal patient time x, 
n(t) = Cp==, I(& 5 t )  is the total sample size enrolled at cal- 
endar time t ,  and H ( t ,  x) = P(Ei < t - x, V, > x ) / P ( E i  5 t )  
is the censoring survival distribution among individuals en- 
tered by calendar time t .  This is the usual covariance of the 
KM estimate at the later interim look time conditional on 
those entered by time t 2 .  

3. Sequential Methods for the 7 Statistic 
The sequential notation from the last section will be employed 
in this section as well. Temporarily, however, let us consider 
the case where one analysis is conducted at the end of a study. 
Since in this case only one analysis is performed, we submerge 
the calendar time subscript, t ,  and focus our attention on the 
internal patient time subscripts and random variables. 

The mean survival time, E(T) ,  is equal to J r S ( u ) d u .  
Hence, if consistent survival estimates were available for u E 
(0,  00), the area under this survival curve would consistently 
estimate the mean survival time in the presence of censored 
survival data. However, both theoretical and practical argu- 
ments might dictate an upper limit of integration, 7, different 
from 00. For instance, clinical investigators might be inter- 
ested in studying internal patient survival time during the 
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first r years on study. On a more practical note, the study 
design may not allow for estimating S(z) beyond the study 
time frame so that T mjght be the last point where a consis- 
tent survival estimate S ( r )  may be defined. 

In both of these cases, it would be useful to consider a trun- 
cated mean, E{min(T, r)}= Jl S(z)dz. One interpretation of 
this truncated mean is that the area under the survival curve 
from 0 to 7 is the average years of life lived during T years on 
study. Hence, if ng is the sample size in group g at the end of 
the study, n = 7x1 + 122, and Sg is the KM survival estimate 
in group g at the end of the study, the test statistic 

nonparametrically compares YLS between treatments 1 and 
2 during the first r years on study. Note that, notationally, 
with one only analysis at time t ,  the censoring survival func- 
tion H ( t ,  z) = H ( z ) .  To ensure that the variance of this test 
statistic is bounded, we shall always require that r satisfy the 
requirement &(r) > 0, where &(z) estimates H ( z ) .  When r 
is chosen close to the minimum of the largest event times from 
groups 1 and 2, this test statistic belongs to a larger class of 
statistics studied by Pepe and Fleming (1989). 

Define H g ( z ) ,  g = 1,2,  as the probability of remaining un- 
censored at time z for group g. Also, let A'(z) = f,' S(u)du. 
When only one statistical analysis is performed, Pepe and 
Fleming (1989) showed that I-+N(O, 02) ,  where, under the 
null hypothesis of no treatment difference, o2 = 7r3-g 

x JG(S(u)H,(u)}-' { A ' ( u ) } ~  X(u)du, ng is the probability of 
falling in group g, and X(z) and S(z) are the hazard and sur- 
vival functions, respectively, -common to both groups under 
the null hypothesis. Define S(z) as the pooled KM estima- 
tor from groups 1 and 2. Let A'(2) = J,'S(u)du, fig be 
the estimate for the censoring time survival probability, s(z) 
be the observed number of deaths at time z, Y ( z )  be the 
observed number of individuals still at risk at time z, and 
eg = ng/n. Then the variance o_f t heA7  statistic ma7 be es- 
timated by oz = ki=l ?3-, J~{S(u)Hg(u)Y(u)}-1{AT(u)}2 
&(u). This corresponds to the variance estimate recom- 
mended by Pepe and Fleming (1989). 

Note that, under the alternative hypothesis, A = f;{S1(u) 
-Sz(u)}du has a nonzero mean, A = fG{Si(u) - S 2 ( u ) ) d u ,  

which measures the true integrated differences between sur- 
vival curves in the two groups. Suppose we want to detect a 
clinically important treatment difference A with power 1 - p 
and size a using the standardized test statistic T / S E ( I )  = 
L/SE(A), where SE denotes standard error. This would re- 
quire {var(A)}-' = A-2(z,/2 + Z P ) ~ ,  where Z+ represents 
the 1 - * quantile of the standard normal distribution. The 
right-hand side of this equation is known as the total statis- 
tical information (TI) required to achieve power 1 - p. If test 
statistics computed at different analysis times have an inde- 
pendent increments covariance structure, the left-hand side of 
the equation suggests a natural way to measure the degree of 
information in a test statistic monitored across time, i.e., the 
inverse of the estimated variance for A can be monitored until 
it matches the TI required at the last analysis time. Since the 
TI required to achieve power 1 - p is defined in terms of A, 
or the average YLS that is clinically important to detect, it 
is robust to the actual shapes of the survival curves. 

V 

Using the results of the sequentially computed KM estima- 
tor, we now derive the sequential distribution of the I statis- 
tic using previous notation. If we define the 7 test evaluated 
at time t ,  as 7 ( t 3 )  = {n*(t,)}; ~ : {S l ( t , , u )  - S 2 ( t , , u ) ) d u ,  

where n*(t,) = nl(t,)n2(t3)/n(t,), j = 1,2,  then under the 
null hypothesis, the asymptotic distribution of 7 ( t l )  and 
I ( & )  is multivariate normal with mean zero and asymptotic 
covariance to be derived later in this section. In particular, 
we investigate two scenarios involving the upper limits of in- 
tegration at analysis times t l  and t 2 ,  where either rl = 7 2  or 
r1 < 7 2 .  These two special cases shall drive the asymptotic 
behavior of the sequentially evaluated statistics. The special 
case where r1 = r 2  = r may occur in any scenario where a 
particular window of time within a study is of interest. This 
would occur, e.g., in a clinical trial with a long accrual pe- 
riod and quick event times or in a case where therapy is given 
over a short period of time with a treatment effect expected 
to be realized over some time r smaller than the duration of 
the study. For example, patients who have experienced a my- 
ocardial infarction may be given anticoagulants for a period 
of 30 days with survival benefit not expected to extend be- 
yond an initial 6-month period of high risk for the patients in 
the study. After 6 months, survivors should have similar risk 
regardless of initial treatment. In such a case, the data may 
be monitored periodically after 6 months using r = 6. When 
primary interest lies in detecting YLS during the entire study 
period for an event that takes a longer time to be observed, 
we may increase r 2  at interim analysis time 22 to compensate 
for an increase in the range of data observed beyond time T I .  

For a 5 r1 5 r 2 ,  consider the expression 

LJo 

which becomes the asymptotic covariance of T(t1) and T ( t 2 )  

in the case a = 0. Under the null hypothesis, this expression 
becomes 
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To simplify notation, define ATj (z) = 12 S(u)du,j = 1,2, 
which at any particular analysis time t would be estimated 
with A T j  ( t , z )  = J2 S(t,u)du. Continuing from (3.1), we ar- 
rive at 

(3.2) 
This covariance converges in probability to the variance iden- 
tified by Pepe and Fleming (1989) in the only one analysis 
case where a = 0, tl = t 2 ,  and TI = 5. 

In the special case where a = 0 and TI = T2,  result (3.2) 
reveals the asymptotic covariance of 7 ( t l )  and l ( t 2 )  to be 
{n*(tl)}1/2{n*(t2)}-1/2~ar{7(t2)}, so that this term relates 
directly to the variance of the 7 statistic at interim look time 
t 2 .  This statistic can easily be redefined with an indepen- 
dent increments structure. To see this, consider the statis- 
tic I* ( t )  = { n* ( t )  } 'I2 [var { I( t )  }] - t 7 ( t ) .  The standardized 
statistics 'T(t)/[var{7(t)}] 4 and l * ( t ) / [ ~ a r ( l * ( t ) } ] ~ / ~  are al- 
gebraically equivalent definitions. Hence, for testing purposes, 
we may use them interchangeably. Also note that cov{7*(tl), 

= n*(tl)[var{l(tl)}]-l = var{l*(tl)} fulfills the standard 
definition of independent increments. Most of the test statis- 
tics currently used in group sequential monitoring have an in- 
dependent increment structure. Hence, with little additional 
effort, the 7 test statistic may be adapted for sequential tri- 
als using currently available software based on the recursive 
numerical integration strategy of Armitage, McPherson, and 
Rowe (1969). 

In the case where TI < r 2 ,  the covariance of T(t1) and 
l ( t 2 )  from (3.2) for a = 0 can be described in two pieces. 
The first piece uses a = 0 and TI = 7-2 so that currently 
available software can be used in estimation; the remaining 
piece is identified using (3.2) with a = 71. Hence, in this case, 
the covariance of 'T(t1) and T(t2) is estimated under the null 
hypothesis with 

I* ( t 2 ) )  = n* (it )[var{=~(tl [var{l( tz)}I- l~~{7(tz))  

where the integral in C2 has 7-1 as an upper limit and the 
pooled estimator of survival is used in calculating ATJ ( t ,  x). 
This second scenario results in a statistic that does not have 
an independent increments structure. 

To calculate sequential boundaries in the nonindependent 
increments case, we may use simulation techniques. First, a 
suitable spending function is selected, such as the O'Brien- 
Fleming (OF) style of spending using the function cr,f = 

2 - 2 @ ( ~ , / ~ / v ' / ~ ) ,  where v corresponds to some surrogate for 
the proportion of information collected at an interim analysis 
time. Then we estimate the covariance structure between the 
current and all previous 7 test statistics calculated during 
the course of the trial using the observed data. Multivariate 

normal random variables with the observed covariance struc- 
ture are simulated to estimate appropriate cutoff points for 
the statistics at the different analysis times that spend the 
predetermined type I errors as described above. An example 
is given in Section 5. Alternatively, software called MULNOR 
written by Schervish (1984) can be used to calculate sequen- 
tial boundaries of the 7 statistic that satisfy the study design. 

4. Application of Information-Based Design 

We illustrate this methodology via a simulation experiment 
where a new treatment is compared to a standard in a ran- 
domized clinical trial. We expect treatment benefit to extend 
for a period of 2 years. Clinical investigators indicate that 3 
months of life saved over the 2-year period (A = .25 years) 
is a clinically important difference to detect with 90% power 
at the 5% level of significance. We assume a slow but con- 
stant accrual rate of 75 eligible patients each year so that 
monitoring of the trial will not begin before we have at least 
2 years of follow-up on some patients. Hence, T = 2 years 
becomes a natural truncation point at each of the interim 
analyses resulting in an independent increments testing struc- 
ture where standard software can be employed for calculating 
error spending functions. A maximum information trial as 
recently studied by Kim et al. (1995) and Scharfstein et al. 
(1997) would plan the final analysis at a time when infornia- 
tion accrued matches the TI  needed at the end of the study to 
meet power and size requirements. Using an OF error spend- 
ing function with three planned analyses, the TI  required at 
the end of the study for 90% power and 5% size is approx- 
imately 1.05A-2(1.96 + 1.28)2, where T = 2 and 1.05 is an 
inflation factor typically used for this style of error spending. 
Note that no specific forms for the survival distributions of 
either therapy were used to determine A or the TI required to 
meet study design requirements. When the sequentially com- 
puted test statistic has an independent increments covariance 
structure, the information accumulated is approximated using 
(vyr A)-' at each analysis time so that dividing this quantity 
by the desired TI gives the information proportion for group 
sequential monitoring. At the last analysis time, we would like 
(vyr A)-' x TI. 

To plan analysis times and obtain a rough idea for how long 
the study will need to accrue patients before the the neces- 
sary TI  is collected, we may investigate various choices for 
the survival distribution of the experimental therapy. From 
past experience, we assume the standard treatment follows 
an exponential distribution with hazard one. For planning 
purposes, we assume the survival distribution for patients on 
the new treatment follows an exponential with hazard ,655, 
resulting in the desired A = .25 years. Using Maple software, 
we determine that (var A)-' N TI five years from the begin- 
ning of the study if information accrues at the anticipated 
rate. The stopping time for the trial will be the first anal- 
ysis time where the observed YLS statistic extends beyond 
the sequential boundaries provided from standard sequential 
software or the time at which we collect our TI  if no rejec- 
tion occurs before this time. With our first analysis planned 
for year 3, we monitor the percent of information accrued at 
monthly intervals from year 3 until the end of the trial. If at 
any time the TI is reached, a final analysis is performed. If 
the TI is not yet reached at year 4, a second interim analysis 

(Independent Increments) 



Comparing Years of Lafe Saved 1089 

0. .. 

2- 

g 2. 

g x -  

0 m 

2 I 
n - 

2- 

2- 

do not depend on these assumptions being true in the inde- 
pendent increments setting. However, the duration of the trial 
may be affected by information being collected at a different 
rate than anticipated in the design, a s  we shall witness in 
simulations described later in this section. 

We simulated the monitoring strategy mentioned above 500 
times (1) under the null hypothesis, (2) under the hypothe- 
sized exponential alternative used for planning purposes, and 
(3) using a Weibu11(.737,1.5) alternative that also gives us 
.25 YLS so that the YLS alternative is unchanged (see Fig- 
ure 1). Note that the median survival for (2) and (3) also 
match exactly. In planning a sequential analysis using the LR 
test, currently available software queries the user for median 
survival in the groups being compared and makes the same 

. exponential distribution assumptions. Using the LR test with 
00 0.5 1 .o 1.5 2:o OF-style boundaries, the TI required for 90% power and 5% 

.-.___ 

Table 1 
Power and frequency of stopping times (with frequency of times maximum information 

reached in parentheses) for  500 replications using O'Brien-Fleming (OF) spending function 
in mazimum information design an the case where the alternative is truly exponential. 

Frequency of stopping times 

<4.00 years 
[4.00,4.25) years 
[4.25,4.50) years 
[4.50,4.75) years 
[4.75,5.00) years 
[5.00,5.25) years 
[ 5.25,5.50) years 
25.5 years 

YLS (power = ,904) Log rank (power = ,904) 

Reject Ho 
Yes No Yes 

0 (0) 214 (0)  
0 (0) 205 (19) 
1 (1) 

1 (6) 
6 (6 )  

18 (18) 0 (0) 
0 (0) 
0 (0) 

7 (7) 
0 (0)  

18 (232) 
14 (195) 

16 (16) 

No 
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Table 2 
Frequency of stopping times (with frequency of times maximum information reached 
in parentheses) for  500 replications using O’Brien-Fleming (OF) spending function 

in maximum information design when the alternative turns out to be Weibull. 
~~ 

YLS (power = ,916) Log rank (power = ,738) 

Reject Ho 

Frequency of stopping times Yes No Yes No 

<4.00 years 
[4.00,4.25) years 
[4.25,4.50) years 
[4.50,4.75) years 
[4.75,5.00) years 
[5.00,5.25) years 
[5.25,5.50) years 
25.5 years 

261 
163 

5 
19 
9 
1 
0 
0 

0 
7 

16 
15 
4 
0 
0 
0 

198 
142 
22 
7 
0 
0 
0 
0 

0 
19 
96 
16 
0 
0 
0 
0 

from the AIDS clinical trial mentioned in the introduction, 
in which patients were assigned low-dose (n = 262) or high- 
dose (n  = 262) zidovudine regimens. We have recreated the 
data that would have been available for interim analyses in 
1987, 1988, and 1989. Of statistical interest at each of these 
analyses is the average YLS on study, i.e., for the analysis 
in 1987+i,i = 0,1,2, we would like to know if there is a 
statistically significant difference in the average years of life 
lived from study entry to the end of 1987fi dependent on 
treatment. Since the AIDS patients in this study are likely 
to live longer than 1 year, our upper limit of integration in 
the 7 test statistic will increase with each additional interim 
analysis. Since we do not have an independent increments 
testing structure, the methods discussed toward the end of 
Section 3 for the more complex covariance structure are em- 
ployed. In particular, we use the OF spending function for 
type I error recommended earlier where we use calendar time 
as a surrogate for u. Hence, we plan to  spend approximately 
(.0007, ,0157, ,0336) type I error at the three respective anal- 
ysis times. 

Using the YLS approach on the low-dose treatment arm, we 
observed an average of A = 14,34, and 63 days of life saved 
(DLS) from entry into the study until the analysis times in 
late 1987, 1988, and 1989, respectively. The observed covari- 
ance matrix for these estimated means at the various analysis 
times was 

68.17 385.23 341.17 . 
99.95 68.17 70.00 

( 70.00 341.17 655.74 ) 
In order to determine proper cutpoints for statistical signif- 
icance with these repeated tests, we generated 10,000 multi- 
variate normal random variables with means centered at zero 
and covariance equal t o  the observed covariance above. Es- 
timated quantile-based cutpoints for the average number of 
DLS corresponding to the type I errors allowed at each anal- 
ysis time were approximately 35, 49, and 55 days. Since we 
estimated 63 DLS on average from study entry to the analysis 
time in late 1989, we achieve statistical significance at the .05 
level at this analysis favoring the low-dose group. This same 
conclusion is reached using an LR-based sequential analysis, 

which maintains an independent increments structure in this 
case. Using the proportion of total deaths observed by the 
last analysis time to measure information accrued, the LR 
test with OF test-statistic boundaries (4.68,2.35,1.68} also 
rejects the null hypothesis at the 1989 analysis time, with 
observed test statistics { 1.27,1.65,2.04}. 

Simulations verifying the properties of the 7 test statistic 
used in conjunction with this type of study design and the OF 
spending function assumed uniform(0,l) entry times for pa- 
tients randomized to two treatment arms. Once entered, the 
exponential distribution was used to simulate survival times 
of the two treatment groups with common mean of 1 year 
under the null hypothesis and an exponential alternative con- 
ferring an average of roughly 3 months of life saved around 3 
years after patient recruiting began. Analyses planned at  1, 
2, and 3 years from beginning of patient recruitment used the 
same type I error allocations as in the above example. In order 
to detect 3 months of life saved using three interim analyses 
with 90% power, a sample size of 291 per treatment group 
is required. In calculating this sample size, we compared the 
inverted variance of A at the last analysis time for the distri- 
butions described to the TI required at the last analysis time. 
After 500 repetitions, we estimated a type I error of 4.6% and 
power of 89.8% under these conditions. 

6. Discussion 
We have indicated how the YLS statistic can be incorporated 
in the sequential clinical trials setting. In cases where the up- 
per limits of integration in the sequential tests are equivalent 
at the interim analyses, the sequential boundaries may be cal- 
culated with widely available software since an independent 
increments structure is present for these statistics. In cases 
where the primary event of interest takes a longer time to 
occur, the upper limits of integration of our sequential tests 
may increase with each additional analysis time to account 
for increases in the range of interesting observable survival 
differences. In this case, we may use a simulation strategy to 
calculate sequential boundaries for our tests. In either case lit- 
tle additional work is required to gain the benefits associated 
with each test in the sequential survival setting. 

The sequentially monitored 7 test statistic gives an alter- 
native to the LR test that may be more appropriate when 
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treatment differences are more readily described through YLS 
over some period of follow-up. Also Pepe and Fleming (1989) 
have demonstrated in their research that tests focused on dif- 
ferences between integrated survival curves are more powerful 
than the LR in many situations where proportional hazards 
assumptions are violated. In the presence of censoring, Mur- 
ray’s (1994) thesis introduces an adjusted YLS statistic that 
increases power when prognostic covariates are available. This 
modified version of the YLS statistic also reduces bias associ- 
ated with informative censoring when covariates related to the 
censoring mechanism are available. In Murray’s thesis, it has 
been shown that the adjusted version of the test has a similar 
theoretical structure to the original I test in the sequential 
trials framework, i.e., an independent increments structure to 
the adjusted test statistic is also available when the upper 
limits of integration T remain constant across analysis times. 
In her thesis, Murray has also completely specified the joint 
distribution of the adjusted 7 statistics across analysis times 
so that this test can be extended to more general scenarios. 
Since the adjusted test corrects power loss and bias in the 
presence of censoring, its use would be most advantageous 
during the early periods of a clinical trial when censoring is 
heaviest. 
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RESUME 
Cette recherche propose le dkveloppement de strategies non- 
paramktriques pour monitoriser de fason skquentielle les don- 
nkes d’essais cliniques, oh l’accent est mis sur la dktection 
d’annkes de vie gagnkes. Le test statistique propose est fo- 
calisk sur les diffkrences intkgrkes des estimations de survie 
durant la pkriode de temps considkrk. Dans de nombreuses 
applications pratiques, le test statistique prksente une struc- 
ture de covariances avec incrkments indkpendants. Dks lors, 
avec un peu d’effort, on pourrait appliquer ces tests avec les 
mkthodes existantes. Dans le cas oh une structure de covari- 
ances d’incrkments indkpendants existe, nous montrons com- 
ment les donnkes de l’essai clinique peuvent Gtre monitoriskes 
g r k e  aux tests statistiques proposks dans un protocole bask 
sur l’information. Le plan d’ktude qui en rksulte maintient les 
caractkristiques d’opkration stochastiques souhaitkes, quelle 
que soit la forme des courbes de survie comparkes. Ceci prk- 
sente un avantage sur la mkthode classique du logrank, puis- 
que des hypothkses plus restrictives en relation avec le com- 
portement des fonctions de risque sont nkcessaires pour garan- 
tir la finesse souhaitke du test. Des recommandations pour 
monitoriser skquentiellement les rksultats des essais cliniques 
dans le cas d’incrkments non-indkpendants sont Bgalement 
proposkes avec un exemple. 
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APPENDIX tingale processes with respect to the filtration that includes 

In the notational framework of Section 2, we define the se- 
quential behavior of S(t1, ”1) and S(tz,z2) using martin- 
gale methodology. We first note a result derived in Breslow 
and Crowley (1974) that n1/2[S(t ,z)  -exp{-&t,x)}] + 0, 
where A(t, z) denotes the Nelson-Aalen (NA) estimate of the 
cumulative hazard function. For the moment, we shall restrict 
the problem to the one-sample case. We may rewrite the NA 
estimator in counting process notation as 

P 

A(t,z) = IZ{Y(t,u)}-1dN(t,u), 

where 
n 

N(t,  x) = I { X i ( t )  5 z, A,@) = 1) for 0 5 z 5 t 
i= 1 

and 
n 

i=l 

so  

{A(t ,  2) - A(z)} = d M ( t ,  u ) /Y( t ,  2 1 1 1  IX 
I= 

where 

M ( t , z )  = N ( t ,  z) - X(u)Y(t, u)du. 

If we define 

Zn(t, z) = n1’2 Iz d M ( t ,  u) /y ( t ,  u) for z 5 t 

and t = t l ,  t 2 ,  then according to Tsiatis et al. (1995), the two 
processes Zn(t1,z) and Zn(t2,z) as functions of z are mar- 

the time of entry as well as all the failure and censoring infor- 
mation that is observed to occur for all the individuals within 
z units after they enter the study. This filtration is similar to 
that used by Sellke and Siegmund (1983). An application of 
the multivariate central limit theorem described in Fleming 
and Harrington’s (1991) theorems 5.3.4 and 5.3.5 shows US 

these processes are jointly normal mean zero processes with 

cov { Z n  (t 1 ) 9 Zn ( t 2  3 5 2  } 
min(z1,zz) 

n(Y(t2, u)}-lX(u)du I = lim 

= i m i n [ z ~  , x 2 )  

n-o3 

[P{X(t,)  > u}]- lx(u)du. 

Since X,( t z )  = min(Ti, V,, t2 - E,), P (X i ( t2 )  > z} = P(Tz > 
z,V, > x,t2 - E, > z) = S(z)C(t2,z) ,  where C(t2,z) = 
P(Ez < t2 - x, V, > x), we find that 

asymptotically. Note that n(t) /n  = I (Ei  5 t ) /n  con- 
verges in probability to P(E, < t )  = G(t). Using the delta 
method together with the Breslow and Crowley result gives 
us asymptotically 

cov [{S(h,zd - S(zd),{S(t2,z2) - Sb2) ) ]  
-1 

M n s (z i )S (z2 )~0~{zn( t1 ,  xi) ,  Z n ( t 2 , ~ 2 ) }  

= b( t2 ) ) - l s ( z l  )S(m)  
min(z1,zz) 

x (H(t2, ..)S(u)>F1X(4du, 

as claimed in Section 2. 




