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Summary. In order to develop better treatment and screening programs for cancer prevention programs,
it is important to be able to understand the natural history of the disease and what factors affect its
progression. We focus on a particular framework first outlined by Kimmel and Flehinger (1991, Biometrics,
47, 987–1004) and in particular one of their limiting scenarios for analysis. Using an equivalence with a
binary regression model, we characterize the nonparametric maximum likelihood estimation procedure for
estimation of the tumor size distribution function and give associated asymptotic results. Extensions to
semiparametric models and missing data are also described. Application to data from two cancer studies is
used to illustrate the finite-sample behavior of the procedure.
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1. Introduction
In screening studies involving cancer, the goal is to detect the
cancer early so that treatment can lead to a consequent re-
duction in mortality of the disease. Evaluating the impact of
a screening program is difficult. The gold standard for evalu-
ation is a randomized clinical trial in which participants are
randomized to either a screening or control protocol. However,
such trials are expensive and of long duration. As a result, this
necessitates consideration of data from observational studies
and cancer databases.

One such example comes from data from the Surveillance,
Epidemiology and End Results (SEER) database analyzed by
Verschraegen et al. (2005) for breast cancer. Their focus was
on modeling the effect of tumor size on breast cancer sur-
vival. They consider data on women diagnosed with primary
breast cancer between 1988 and 1997 with a lesion graded
T1-T2. We focus on an alternative question than that posed
by Verschraegen et al. (2005), that of associating tumor size
with cancer progression.

An important example of a progression endpoint in can-
cer is metastasis. There have been proposals for correlating
size of tumor with the probability of detecting a metastasis
(Kimmel and Flehinger, 1991; Xu and Prorok, 1997, 1998).
These authors focused on estimation of the distribution of
tumor size at metastatic transition. Kimmel and Flehinger
(1991) gave two limiting cases in which the distribution is
identifiable. They then provided estimators of this quantity.
Xu and Prorok (1997, 1998) developed estimators based on
slight modifications of the assumptions utilized by Kimmel
and Flehinger (1991).

We focus on the second limiting scenario of Kimmel and
Flehinger (1991). It turns out that for this problem, estimat-
ing the distribution function of tumor size at metastatic tran-
sition corresponds to using a binary regression model with
monotonicity constraints. Based on this regression model, we
characterize nonparametric maximum likelihood estimation
(NPMLE) procedures. Although the estimation procedure
dates back to Ayer et al. (1955), no method of variance as-
sessment has been given in the work of Kimmel and Flehinger
and of Xu and Prorok. The structure of this article is as fol-
lows. In Section 2, we describe the observed data structures
and probability model of Kimmel and Flehinger (1991). In
Section 3, we describe the NPMLE procedure, along with the
associated asymptotic results. In Section 3.3., three methods
of confidence interval construction are also provided. Exten-
sions for parametric effects and missing data are discussed in
Section 4. We next describe a monotone smoothing spline ap-
proach given by Ramsay (1998) that is used for comparison.
The finite-sample properties of the estimators are assessed
using simulation studies, reported in the Web Appendix. In
addition, the proposed methodologies are applied to datasets
from two cancer studies in Section 6. We conclude with some
discussion in Section 7.

2. Kimmel and Flehinger Framework
and Previous Work

We begin by providing a review of the proposal of Kimmel
and Flehinger (1991). Let S denote the size of the tumor
of detection and δ be an indicator of tumor metastasis (i.e.,
δ = 1 if metastases are present, δ = 0 otherwise). We observe
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the data (Si, δi), i = 1, . . . ,n, a random sample from (S, δ).
We now state the model assumptions utilized by Kimmel and
Flehinger (1991). First, primary cancers grow monotonically,
and metastases are irreversible. Let λ1(x) denote the hazard
function for detecting a cancer with metastasis when the tu-
mor size is x. Let λ0(x) denote the hazard function for de-
tecting a cancer with no metastases when the tumor size is
x. Assume that λ1(x) ≥ λ0(x). Finally, the cancer samples are
characterized by the primary tumor sizes at which metastatic
transitions take place. We will denote Y as the random vari-
able for this quantity. Let the cumulative distribution function
(cdf) of Y be denoted by FY.

The goal is to estimate FY. Based on the observed data
(S, δ), Kimmel and Flehinger (1991) proposed two scenar-
ios in which FY is estimable. Xu and Prorok (1997) showed
the general nonidentifiability of the Kimmel–Flehinger model
through some simple numerical examples. In this and later
work (Xu and Prorok, 1998), they provided some further as-
sumptions needed to guarantee the general identifiability of
the distribution functions.

Kimmel and Flehinger (1991) make two simplifying as-
sumptions under which FY becomes identifiable. The first
situation is when detection of the cancer is not affected by
the presence of metastases. The second is when cancers are
detected immediately when the metastasis occurs. They re-
fer to these situations as case 1 and case 2, respectively. As
shown by Ghosh (2006), these correspond to the situations
in which tumor size is treated as an interval-censored and a
right-censored random variable, respectively. Here we focus
on the case 1 scenario. We focus on case 1 rather than case 2
because Ghosh (2008) has recently shown that restrictive as-
sumptions are needed for validity of the case 2 situation, such
as tumor growth being a deterministic function of time.

3. Nonparametric Isotonic Regression Procedures
3.1 Data and Model
We study the effects of the tumor size on the risk of metastasis
through the following nonparametric regression model:

Pr(δ = 1 |S) = G(S), (1)

where G is assumed to be monotonically increasing and
continuously differentiable on [0, ∞) with G(0) = 0 and
limz→∞G(z) = 1. We are interested in making inferences on
G.

In comparing our framework to that of Kimmel and
Flehinger (1991), it turns out that the model we have written
down corresponds exactly to the case 2 scenario. Note that
the quantity on the left-hand side in model (1) can be equiv-
alently expressed as Pr(Y < S | S) = FY (S). Because we are
restricting the right-hand side of (1) to be monotone increas-
ing in S, the quantity we are modeling here is precisely the
distribution function of tumor size at metastatic transition,
that is, G = FY. The main advantage of expressing it in the
form of (1) is that regression extensions are immediate; we
consider them further in Sections 4.1 and 4.2. Note that we
are modeling the effect of S on δ using a binary regression
model with identity link. We will comment on the choice of
the link in the discussion in Section 7.

A referee raised a comment about the feasibility of estimat-
ing FY directly based on the observed data. Using the likeli-

hood construction given in Kimmel and Flehinger (1991), we
can write

G(s) =
g(s, 0)

g(s, 0) + g(s, 1)
,

where g(s, 0) = λ0(s) exp{−
∫ s

0 λ0(u) du}{1 − FY (s)} and

g(s, 1) = λ1(s)

∫ s

0

exp

[
−

∫ y

0

λ0(u) du −
∫ s

y

λ1(t) dt

]
fY (y) dy .

Note that estimation of FY based on G, while making no para-
metric assumption on {λ0(s), λ1(s)}, is not possible because
of the inherent nonidentifiability of the problem. Although it
seems that adding the constraint of monotonicity of G should
help in improving the estimation of FY, it appears that the
model is still not identifiable. Differentiation of G and impos-
ing the monotonicity constraint is equivalent to requiring that
g ′(s, 0)g(s, 1) > g ′(s, 1)g(s, 0), with g ′ being the derivative of
g. By the product rule, this leads to ordering conditions on
products of the densities corresponding to (λ0, λ1) and FY. As
described in Xu and Prorok (1997), sufficient conditions for
identifiability require even stronger conditions on λ0, λ1, and
FY . We thus consider the case 2 limiting scenario of Kimmel
and Flehinger (1991) and treat FY and G interchangeably
here and in the sequel.

Let (δ1, S1), (δ2, S2), . . . , (δn , Sn) be n independent and
identically distributed (i.i.d.) observations from the model in
(1). The joint density of (δ, S) is given by

p(δ, s) = {G(s)}δ{1 −G(s)}1−δ h(s), (2)

where h(·) is the density function of S. The likelihood function
for the data, up to a multiplicative constant not involving h,
is given by

Ln

(
{δi, si}ni=1

)
= Πn

i=1 {G(si)}δi{1 −G(si)}1−δi . (3)

Observe that we must constrain G to be monotone increasing,
which will complicate the NPMLE procedure.

Before giving the characterization of the NPMLE, we note
that an alternative approach to estimation in model (1) is non-
parametric smoothing techniques, such as those proposed in
Ramsay (1998). However, there are limitations to such proce-
dures. First, these procedures involve a smoothing parameter,
whereas the procedure described in Section 3.2 does not. Be-
cause of the presence of the smoothing parameter, it is difficult
to provide asymptotic results associated with the smoothing-
based estimators. In Section 5, we describe the smoothing-
spline-based method of Ramsay (1998). We compare it to
the NPMLE procedure in a small simulation study in Web
Appendix B.

In Section 3, we provide several theoretical results con-
cerning the NPMLE. Although Kimmel and Flehinger (1991)
also gave the NPMLE, we provide it here for completeness
and also to motivate the proposed confidence set construc-
tion methods.

3.2 Nonparametric Maximum Likelihood Estimation
and Asymptotic Results

We now consider estimation in (1) by nonparametric max-
imization of (3). Results from the literature on isotonic re-
gression (Ayer et al., 1955; Robertson, Wright, and Dykstra,
1988) allow us to characterize the NPMLE of G. Let S(i)
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denote the ith smallest value of the tumor size and let δ(i)

denote the corresponding indicator (i = 1, . . . ,n). For arbi-
trary points P0 ≡ (0, 0), P1 ≡ (p1,1, p1,2), . . . ,Pk ≡ (pk,1, pk,2)
in R2, we will denote by slogcm {Pi}k

i=0 the vector of slopes
(left derivatives) of the greatest convex minorant (GCM) of
the piecewise linear curve that connects P0, P1, . . . ,Pk in
that order, computed at the points{pi,1}ki=1. One character-

istic of the NPMLE of G, Ĝn, is the right-continuous piece-
wise constant increasing function that satisfies G(S(i)) = ûi
where

(û1, û2, . . . , ûn) = slogcm

{
i,

i∑
j=0

δ(j)

}n

i=0

,

and S(0) = δ(0) = 0. Note that NPMLE is uniquely determined
only up to its values at the Si, i = 1, . . . ,n; this is analogous
to the ordinary empirical cdf. We now state the asymptotic
distribution of the MLE of G(s0) in model (1). This follow-
ing result can be proven using arguments paralleling those in
the proof of Theorem 5.1 of Groeneboom and Wellner (1992,
p. 89).

Lemma 1. The MLE Ĝn(s0) has the following limiting dis-
tribution:

n1/3{Ĝn(s0)−G(s0)} →d

[
4g(s0)G(s0){1 −G(s0)}

h(s0)

]1/3

Z ≡ CZ ,

where g(s0) is the derivative of G evaluated at s0, and Z is the
location of the minimum of W(t) + t2; here W is a standard
two-sided Brownian motion starting from 0.

Lemma 1 yields a complicated form for the limiting dis-
tribution of the MLE. By contrast, for most statistical esti-
mation problems in which classical regularity conditions are
satisfied, the MLE converges at an n1/2 rate. In addition, the
limiting distribution of the NPMLE, properly normalized, is
much more complicated than the normal distribution found
for regular estimation problems. We will later consider con-
struction of Wald-type confidence intervals based on this re-
sult.

To construct likelihood ratio-based confidence intervals,
which we discuss in Section 3.3, requires characterization of
the constrained MLE of G subject to G(s0) = θ0, which
we denote as Ĝ0

n. Define a ∧ b and a ∨ b to be the min-
imum and maximum of two real numbers a and b. We
construct the vector of slopes of the GCM: (ũ0

1, . . . , ũ
0
m) =

slogcm{i,
∑i

j=0 δ(j)}mi=0, and

(
ũ0
m+1, . . . , ũ

0
n

)
= slogcm

{
i,

i∑
j=0

δ(m+i)

}n−m

i=0

,

where m is the number of values no greater than z0. The con-
strained estimate Ĝ0

n is the right-continuous piecewise con-
stant function that satisfies G(S(i)) = ũ0

i ∧ θ0 for 1 ≤ i ≤
m and G(S(i)) = ũ0

i ∨ θ0 for m + 1 ≤ i ≤ n. In order to
state results about the asymptotic distribution of the like-
lihood ratio statistic for testing H0 :G(s0) = θ0, we will
need some more notation. For positive constants a and b,

define the process Xa,b(s) ≡ aW(s) + bs2, where W(s) is
the standard two-sided Brownian motion starting from zero.
Let ga,b(s) denote the GCM of Xa,b(s). Let Ga,b(s) be the
right derivative of Ga,b(s); this can be shown to be a piece-
wise constant (increasing) function with finitely many jumps
in any compact interval. We construct G0

a,b(s) in the fol-
lowing manner. When s < 0, we restrict ourselves to the
set {s < 0} and compute Xa,b(s). G0

a,b(s) is the GCM of
Xa,b(s), constrained so that its slope (right derivative) is
nonpositive. When s > 0, we restrict ourselves to the set
{s > 0} and compute Xa,b(s). G0

a,b(s) is the GCM of Xa,b(s),
constrained so that its slope (right derivative) is nonnegative.

We have that G0
a,b(s) will almost surely have a jump dis-

continuity at zero. Let g0
a,b(s) be the slope (right derivative) of

G0
a,b(s); this, like ga,b(s), is a piecewise constant (increasing)

function, with finitely many jumps in any compact interval
and differing almost surely from ga,b(s) on a finite interval
containing zero. Thus, g1,1 and g0

1,1 are the unconstrained and
constrained versions of the slope processes associated with
the canonical process X1,1(s). The following result describes
the joint limit behavior of the unconstrained and constrained
MLEs of G, the constraint being imposed by the null hy-
pothesis H0 :G(s0) = θ0. This can be proven using arguments
similar to those in the proof of Theorem 2.6.1 of Banerjee and
Wellner (2001):

Lemma 2. Consider testing the null hypothesis H0 :G(s0) =
θ0 with 0 < z0 < ∞ and 0 < θ0 < 1 and assume H0 holds. Let

Xn(t) = n1/3
{
Ĝn

(
s0 + t n−1/3

)
− θ0

}
and

Yn(t) = n1/3
{
Ĝ0

n

(
s0 + t n−1/3

)
− θ0

}
.

Suppose that G is continuously differentiable in a neighborhood
of s0 with g(s0) > 0 and that h is continuous in a neighborhood
of s0 with h(s0) > 0. Let

a =

[
G(s0){1 −G(s0)}

h(s0)

]1/2

and b = g(s0)/2. Then

{Xn(t), Yn(t)} →
{
ga,b(t), g

0
a,b(t)

}
≡d

[
a (b/a)1/3g1,1{(b/a)2/3t}, a(b/a)1/3g0

1,1{(b/a)2/3t}
]

finite dimensionally and also in the space Lp[−K,K] ×
Lp[−K,K] for every K > 0 (p ≥ 1), where Lp[−K,K] is the
set of functions that are Lp integrable on [−K, K].

Based on this result, we can develop the asymptotic theory
for the likelihood ratio test statistic H0 :G(s0) = θ0, whose
inversion leads to confidence intervals for G(s0).

Theorem 1. If λn denotes the likelihood ratio, that is,

λn =
Πn

i=1{Ĝn(si)}δi{1 − Ĝn(si)}1−δi

Πn
i=1

{
Ĝ0

n(si)
}δi

{
1 − Ĝ0

n(si)
}1−δi

,

then the limiting distribution of the likelihood ratio statistic for
testing H0 :G(s0) = θ0 is

2 log λn →d D ≡
∫ [

{g1,1(z)}2 −
{
g0

1,1(z)
}2]

dz.
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A heuristic proof of this theorem is given in the Web Ap-
pendix. Note that the limiting distribution of Theorem 1 is
much different from that in regular statistical problems, where
2 logλn converges to a χ2 distribution. The random variable
D can be thought of as an analog of the χ2 distribution to
nonregular problems. Although the pdf of D is of a compli-
cated form, it can be tabulated or simulated relatively easily.
For further details, see Banerjee and Wellner (2001).

3.3 Confidence Interval Construction
Three methods for confidence set construction are now de-
scribed: (i) the Wald-based method; (ii) the subsampling-
based method; and (iii) the likelihood-ratio-based method.

Recall the limiting distribution of Ĝn(s0) from Section 3.2:

n1/3{Ĝn(s0)−G(s0)} →d

[
4 g(s0)G(s0){1−G(s0)}

h(s0)

]1/3

Z ≡ CZ .

Then it is fairly straightforward to construct a 95% confidence
interval for G(s0):{

Gn(s0) − n−1/3Q̂.975, Gn(s0) + n−1/3Q̂.975

}
,

where Q̂.975 is a consistent estimator of Q.975, the 97.5th per-
centile of the limiting symmetric random variable CZ. Using
the results from Groeneboom and Wellner (2001), the 97.5th
percentile of Z is 0.99818. We can then estimate C by

Ĉn =

[
4ĝn(s0) Ĝn(s0) {1 − Ĝn(s0)}

ĥn(s0)

]1/3

,

where ĝn and ĥn are estimates of g and h. An asymptotic 95%
confidence interval is then given by{
Ĝn(s0) − n−1/3Ĉn × .99818, Ĝn(s0) + n−1/3Ĉn × .99818

}
.

The major drawback of the Wald-based intervals is the need
to estimate g(s0) and h(s0). Because S is observed for all in-
dividuals, nonparametric density estimation methods can be
used to estimate h(s0). In this article, we use kernel density
estimation for h, where the bandwidth is chosen by maximiz-
ing an asymptotic mean squared error criterion (Lehmann,
1999, Section 6.4). On the other hand, g(s0) is much more dif-
ficult to estimate consistently. Due to the monotonicity con-
straints, we can only estimate G at Op(n1/3) support points,
which means that we will never have sufficiently large sample
sizes for estimating the derivative of G consistently. Here, we
chose to use kernel density estimation of the NPMLE where
the bandwidth is chosen as before. In simulations not given
here, this approach gave better coverage probabilities for the
95% confidence intervals for the Wald approach relative to
other proposals from the literature, such as a Weibull model
(Keiding et al., 1996) and smoothing splines (Heckman and
Ramsay, 2000).

The subsampling technique followed here is due to Politis,
Romano, and Wolf (1999) and is part of a general theory for
obtaining confidence regions. The basic idea is to approximate
the sampling distribution of a statistic, based on the values of
the statistic computed over smaller subsets of the data. We
start by calculating the unconstrained MLE Ĝn(s0) for the
observed dataset. This leads to the following algorithm:

1. Create a dataset (δ∗1, S
∗
1), . . . , (δ

∗
b, S

∗
b), where (δ∗j , S∗

j )
(j = 1, . . . , b) are a subset of the original data obtained
by sampling without replacement, and b is the size of the
subsampled dataset.

2. Calculate the unconstrained MLE Ĝ∗
n(s0) for the sub-

sampled dataset.
3. Repeat steps (1) and (2) several times.

By Theorem 2.2.1 of Politis et al. (1999), it follows that if
b, n→ ∞, and b/n → 0, then the conditional distribution
of n1/3{Ĝ∗

n(s0) − Ĝn(s0)} converges to the unconditional dis-
tribution of n1/3{Ĝn(s0) −G(s0)} with probability one. This
allows us to use the empirical distribution of n1/3{Ĝ∗

n(s0) −
Ĝn(s0)} to construct confidence intervals. Although this ap-
pears to be a promising algorithm, a major issue is the
choice of b. For the data example, we use a calibration
algorithm, proposed in Delgado, Rodriguez-Poo, and Wolf
(2001):

(a) Fix a selection of reasonable block sizes between limits
blow and bup .

(b) Generate K “pseudo-sequences” (δ�ik, S
�
ik)

K
k=1,i=1n,

which are i.i.d. P̂n, with P̂n representing the empiri-
cal distribution function. This amounts to drawing K
bootstrap samples from the actual dataset.

(c) For each pseudodataset, construct a subsampling-based
confidence interval for θ̂n ≡ Gn(s0) for each block size
b. Let Ik,b be equal to 1, if θ̂n lies in the kth interval
based on block size b and zero otherwise.

(d) Compute ĥ(b) = K−1
∑K

i=1 Ik,b.

(e) Find b̃ that minimizes |ĥ(b) − (1 − α)| and use this
as the block size to compute subsampling-based con-
fidence intervals based on the original data.

The final method we consider is simple inversion of the like-
lihood ratio test statistic, whose limiting distribution under
H0 was derived in Theorem 1. Confidence sets of level 1 −
α with 0 < α < 1 are obtained by inverting the acceptance
region of the likelihood ratio test of size α; more precisely if
2logλn is the likelihood ratio statistic evaluated under the null
hypothesis H0 : G(s0) = θ, then the set of all values of θ for
which 2logλn is not greater than dα, where dα is the (1 − α)th
percentile of D, gives us an approximate (1 − α) confidence
set for θ0. Denote the confidence set of (approximate) level
1 − α based on a sample of size n from the binary regression
problem by Cn,α. Thus Cn,α = {θ : 2log λn ≤ dα}. Because
we are inverting the likelihood ratio statistic, it achieves the
correct coverage asymptotically.

4. Extensions
4.1 Adjustment for Covariates
In many situations, it might be the case that we need to ad-
just for other covariates in (1). Let us denote these by the
p-dimensional vector Z. We now consider extending the
methodology of Section 4. This would lead to a semipara-
metric version of (1):

Pr(δ = 1 |S,Z) = G0(S) + βTZ, (4)

where β is a p-dimensional vector of unknown regression co-
efficients. In (4), G0 is the distribution function of tumor size
at metastatic transition when Z = 0; βj is the difference in
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distribution functions associated with a one-unit change in
the jth component of Z, adjusting for the other covariates in
the model.

Suppose we wish to perform semiparametric MLE in (4).
For the purposes of estimation, we could use the method of
profile likelihood (Murphy and van der Vaart, 2000). When
Z is relatively low dimensional, we can use the arguments
of Staniswalis and Thall (2001) to show that the following
approach yields profile likelihood estimates:

1. For a given β, compute the residuals from a linear re-
gression of δ on Z;

2. Compute the estimator of G0 in (4) based on the residuals
using the NPMLE method described in Section 3.2.

Performing these two steps over a grid of β values will yield
the maximizers for the semiparametric likelihood correspond-
ing to (4). For this model, we can use profile likelihood (Mur-
phy and van der Vaart, 1997) to construct confidence intervals
for β.

One limitation of the model is that the fitted probabili-
ties from (4) might fall outside the interval [0,1]. This can be
avoided by incorporating a link function for the probability in
(4). However, the nonlinearity introduced into the model will
make finding MLEs in the model more difficult and is beyond
the scope of the article.

4.2 Two-Phase Sampling
We now consider the case where data have only been collected
on a subset of tumors; this was also done in the work of Kim-
mel and Flehinger (1991) and Xu and Prorok (1997, 1998).
The problem is reformulated similar to the case–control de-
sign with supplemented totals described in Scott and Wild
(1997). We assume that there are N0 tumors without metas-
tases and N1 tumors with metastases. At the first stage of
the study, we collect information on N0 and N1. The second
stage involves sampling a fraction of both classes of tumors
(n0 and n1 sampled from the N0 and N1 tumors) and col-
lecting (Si, Zi), i = 1, . . . ,n, at the second stage. Note that
n = n0 + n1.

What Scott and Wild (1997) were able to show was the
equivalence of the retrospective likelihood for case–control
sampling with a prospective “likelihood” in which the case–
control sampling entered as offset terms. Assume model (1).
Our application of the Scott–Wild algorithm is the following:

1. Let µ̂0 = n0/N0 and µ̂1 = n1/N1.
2. Calculate

G̃(s) =
µ̂0Ĝ(s)

µ̂0(1 − Ĝ(s)) + µ̂1Ĝ(s)
.

Step 2 involves utilizing the estimation procedure described
in Section 3.1, where the sampling design is taken into ac-
count by treating the sampling fractions (n0/N0 and n1/N1)
as weights. A related estimator is given by Jewell and van
der Laan (2004) for interval-censored data. We can use the
subsampling scheme described in Section 3.3 to construct a
confidence interval for G. Although the Wald-based or likeli-
hood ratio test is implementable in theory, it is beyond the
scope of this article.

Now suppose we wish to perform estimation in model (4).
Then we could approximately adapt the approach of Sec-
tion 4.1 by estimating residuals, followed by calculation of
G̃. Subsampling could be used to construct intervals for the
nonparametric component, whereas profile likelihood could be
used to construct confidence intervals for β.

5. Nonparametric Monotonic Smoothing Procedures
An alternative approach to NPMLE estimation in (1) is to
use smoothing splines, as suggested by Ramsay (1998). Be-
cause we compare this approach to NPMLE estimation in
Section 6, we describe it briefly here. For ease of discussion,
we work with (1). Let D{f(t)} ≡ f ′(t) denote the derivative

operator and D−1{f(t)} =
∫ t

−∞ f(s) ds the integration opera-
tor. By Theorem 1 of Ramsay (1998), one can represent G in
(1) as

G(s) = C0 + C1D
−1[exp(D−1{w(s)})],

where C0 and C1 are constants and w(s) is the solu-
tion to the differential equation D(Df(s)) = w(s)Df(s).
This reparametrization allows one to use an unconstrained
parametrization for w using the penalized likelihood:

n∑
i=1

(δi − α0 − α1m(Si))
2 + λ

∫ T

0

{w2(t)} dt , (5)

where m(t) = D−1exp{D−1w(t)} and λ > 0 is a smoothing
parameter. Note that m is uniquely determined by w and vice
versa. Ramsay (1998) proposes using B-splines as a basis func-
tion space for estimation of w. Given λ, (α0, α1) are estimated
by penalized least squares. The parameter λ can be estimated
by cross-validation.

In terms of inference regarding G, two types of intervals
are output from the estimation algorithm. The first is a fre-
quentist standard error that assumes G to be a fixed unknown
function. The second is a Bayesian standard error that is con-
structed by assuming that G is a random quantity with a
Gaussian process prior. In the simulation studies, we take
the latter approach, as Wahba (1983) has shown this to give
better coverage probabilities than those based on the former
method.

6. Numerical Examples
6.1 Lung Cancer Data Revisited
In Web Appendix B, we describe the results of several sim-
ulation studies to assess the finite-sample properties of the
various confidence set construction methods described in the
article. We now apply the proposed methodologies to the
lung cancer data examined by Kimmel and Flehinger (1991).
The lung cancer data were collected on a population of male
smokers over 45 years old enrolled in a clinical trial involving
sputum cytology. There are two types of lung cancer diag-
nosed, adenocarcinomas (cancers that originate in epithelial
cells) and epidermoid cancer (cancers that originate in the
epidermis). For the adenocarcinomas, they were detected by
radiologic screening and by symptoms; the epidermoids were
detected by sputum cytology or by chest X-ray. Presence or
absence of metastasis was determined using available stag-
ing, clinical, surgical, and pathological readings. There are
141 adenocarcinomas, of which 19 have metastases; of the 87
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Table 1
Summary of missing values for lung cancer data

Epidermoids Adenocarcinomas

Status Metastatic Nonmetastatic Metastatic Nonmetastatic

Measured 6 81 19 122
Not measured 12 12 15 8

Note: Status refers to whether the tumor size is measured; “not measured” tumors are treated as missing in
the analysis. Cell entries are the number of samples under each classification. Using the notation from Section 4.2,
N0 = 223,N1 = 52, n0 = 203, and n1 = 25.

epidermoid cancers, 6 have metastases. As addressed in Sec-
tion 4.2, a fraction of the tumors were not measured. We have
included this information in Table 1.

We start by estimating model (1) separately for the ade-
nocarcinomas and epidermoids. This is given in Figure 1. We
notice that the smoothing-spline-based estimator tends to be
negatively biased relative to the NPMLE estimators. Given
this finding and the results in the simulation study, we chose
to focus on the NPMLE-based procedures here.

Next, we treat site of origin (adenocarcinoma/epidermoid)
as a single covariate in a semiparametric regression model.
It is coded 1 for epidermoids and zero for adenocarcinomas.
We first ignore the missing data aspect and fit the model
(4). Based on the estimation procedure in Section 4.1, we ob-
tain an estimated regression coefficient of 0.22 with a 95%
CI of (0.01,0.36). This suggests that there is a marginally
significant effect of site of origin on risk of metastasis; epider-
moid tumors are associated with increased risk of metasta-
sis relative to adenocarcinomas. We also have summarized
the estimate of G in (4) at three points and have pro-
vided 95% confidence limits based on the subsampling and
likelihood ratio inversion methods. We find that the likeli-
hood ratio method gives slightly smaller intervals than the
subsampling.

Then we consider the two-phase strategy outlined in Sec-
tion 4.2. Using profile likelihood to estimate β, we get an
estimated regression coefficient of 0.19 with a 95% CI of
(0.02,0.27). The estimate of G in (4) under the case–control
sampling scheme, along with associated 95% confidence in-
tervals, is given in Table 2. We qualitatively get the same
conclusions here as in the previous paragraph.

In terms of the analysis of these data relative to those by
previous authors (Kimmel and Flehinger, 1991; Xu and Pro-
rok, 1997), our novel contributions are to provide confidence
intervals for the distribution functions as well as regression co-
efficients and standard errors summarizing the effect of site of
origin on the tumor size distribution at metastatic transition.

6.2 Breast Cancer Dataset
Although we have discussed modeling the distribution func-
tion for tumor size at metastasis so far, the approach
described in Sections 3 and 4 can be incorporated with
other histopathological variables. As an example, we con-
sider breast cancer, in which lymph node status is consid-
ered to be one of the most important prognostic factors for
overall survival (Amersi and Hansen, 2006). Lymph node sta-

Table 2
Estimator of G from (4) for lung cancer data

95% 95% 95%

s0 Ĝ(s0) CI (S) CI (LRT) G̃(s0) CI (S)

0.2 0.00 (−0.09,0.08) (−0.07,0.06) 0 (−0.12,0.13)
3 0.02 (−0.05,0.07) (−0.03,0.04) 0.01 (−0.06,0.09)
9 0.15 (0.01,0.32) (0.03,0.28) 0.09 (0.01,0.18)

tus is typically treated as a binary variable; positive lymph
node status is associated with poorer patient survival in
breast cancer and breast cancer metastasis. Here, we will
take δ to be an indicator of nodal involvement (δ = 1 in-
dicates nodal involvement or node-positive breast cancer; δ
= 0 represents no nodal involvement or node-negative breast
cancer). In this example, what we will be modeling is the
distribution function for tumor size for transition to nodal
involvement.

We now return to the breast cancer study referred to in
the Introduction. The data we consider are on n = 83,686
cases. They represent women diagnosed with primary breast

Figure 1. Estimated fits from model (1) for (A) adenocar-
cinomas and (B) epidermoids. Solid line on each plot repre-
sents NPMLE fit, whereas dashed line represents monotone
smoothing spline fit using the method of Ramsay (1998).
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cancer between 1988 and 1997 with a lesion graded T1-T2
but who did not have a metastasis based on the axillary node
dissection results. Of the 83,686 cases, 58,070 were node neg-
ative, whereas 25,616 were node positive. Because both states
(nonnodal and nodal-involved breast cancer) are typically
asymptomatic, the previously proposed framework would be
a reasonable assumption here. Note that we are now modeling
the distribution of tumor size at transition from nonnodal in-
volvement to nodal involvement. One issue in the analysis is
that there are many ties in the data; we jittered the data by
adding an independent N(0, 1) random variable.

In this analysis, we focus on the following covariates: es-
trogen receptor (ER) status (positive/negative), and proges-
terone receptor (PR) status (positive/negative). Plots of the
tumor size distribution for the overall population, along with
those stratified by ER and PR status, are given in Figure 2.
Note that there are no missing data here, so we will be fitting
the semiparametric regression models of the form (4) with
no case–control sampling. There will typically be no case–
control/two-phase sampling with data, such as those from the
SEER database.

We fit a series of three regression models of the form (4).
The first was fitting PR status as one covariate; the second
was fitting ER status as a covariate; the final model was in-
cluding both as covariates. The estimates are summarized in
Table 3. Based on the results, we find that ER-negative tu-
mors are associated with increased risk of metastasis rela-

Figure 2. Distribution function for tumor size at nodal transition for breast cancer SEER data. Figure 2a displays the
estimated distribution function for the entire population. Figure 2b shows estimated distribution function stratified by ER
status (solid line represents ER-positive cancers, dashed line represents ER-negative cancer). Figure 2c shows estimated
distribution function stratified by PR status (solid line represents PR-positive cancers, dashed line represents PR-negative
cancers).

Table 3
Single covariate and multiple covariate regression results

for breast cancer data

Univariate Multivariate

Biomarker β̂ 95% CI β̂ 95% CI

ER status −0.033 (−0.049, − 0.021) −0.01 (−0.024, 0.030)
PR status −0.019 (−0.029, − 0.009) −0.01 (−0.035, 0.020)

Note: ER status coded 1 for ER positive and 0 for ER negative. A
similar approach was taken for PR status. Univariate refers to fitting
each covariate separately, whereas multivariate refers to fitting one
model with both ER status and PR status.

tive to ER-positive tumors. Alternatively, the probability of
metastatic transition is on average 0.3 higher for ER-negative
tumors than for ER-positive tumors. Similarly, the proba-
bility of metastatic transition is on average 0.02 higher for
PR-negative tumors than for PR-positive tumors. Finally,
although the results of the univariate regression results are
statistically significant, the predictors are not significant in
the multiple regression results. This is because of the high
correlation between ER and PR status; the odds ratio be-
tween these two status variables is 38.8 and is highly signif-
icant. Given that the other variable is in the model, either
ER or PR status does not significantly add information on
prediction of metastasis.
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7. Discussion
In this article, we have developed general inference procedures
for monotonic regression models for the analysis of tumor
size-progression data in cancer databases. We have utilized
NPMLE estimation in this model and have provided theo-
retical results based on both Wald and likelihood ratio test
statistics in this model. Although the NPMLE method was
originally proposed by Ayer et al. (1955) and adapted to the
current setting by Kimmel and Flehinger (1991), the inferen-
tial procedures proposed in this article are new. In addition,
we have described novel extensions to case–control sampling
and semiparametric regression. Because we are using profile
likelihood methods throughout, we expect the methods to be
fully efficient. The simulation study seems to indicate that the
likelihood ratio test statistic tends to have better behavior in
small samples than does the Wald statistic. This observation
has also been made by Murphy and van der Vaart (1997) for
semiparametric models as well.

Here, we have assumed the identity link throughout the
manuscript. If we were to use a different link, then this would
lead to a different characterization for the NPMLE. Poten-
tially, a more interpretable link than the identity link in
(1) would be to use the logistic link. This would lead to a
more complicated form for characterizing the NPMLE in both
the nonparametric and semiparametric situations. Estimation
and inference in this setting are currently under investigation.

It should also be noted that we have incorporated the
monotonicity assumption in (1) and (4) in a very strong man-
ner. Thus, the data should be collected for subjects who have
not received any treatment. For example, in prostate cancer
studies, some men might receive hormone treatment; this has
the effect of reducing the size of the tumor in the prostate.
Thus, a model such as (1) would not be appropriate for this
scenario.

8. Supplementary Materials
Web Appendices, Tables, and Figures referenced in Sections
1, 3, and 6 are available under the Paper Information link at
the Biometrics website http://www.biometrics.tibs.org.
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