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SUMMARY. We extend the proportional hazards model to a two-level model with a random intercept term 
and random coefficients. The parameters in the multilevel model are estimated by a combination of EM 
and Newton-Raphson algorithms. Even for samples of 50 groups, this method produces estimators of the 
fixed effects coefficienh that are approximately unbiased and normally distributed. Two different methods, 
observed information and profile likelihood information, will be used to estimate the standard errors. This 
work is motivated by the goal of understanding the determinants of contraceptive use among Nepalese 
women in the Chitwan Valley Family Study (Axinn, Barber, and Ghimire, 1997). We utilize a two-level 
hazard model to examine how education and access to education for children covary with the initiation of 
permanent contraceptive use. 
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1. Introduction 
Grouped data occurs in a wide variety of applications, e.g., 
in smoking cessation trials where individuals are in support 
groups, in educational trials where children are grouped into 
schools, in community-based studies where individuals are 
grouped into neighborhoods, and in genetic studies in which 
individuals are grouped into families. In many of these same 
applicatioris, the response is the time until an event, such as 
the time until relapse, the time until marijuana use initia- 
tion, time until use of permanent methods of contraception, 
or time until appearance of a disease. Consequently, there 
has been considerable interest in survival analysis models for 
grouped or multilevel data (e.g., see Clayton, 1978; Oakes, 
1982; McGilchrist and Aisbett, 1991; Yashin, Vaupel, and Ia- 
chine, 1995; Sastry, 1997; Sinha and Dey, 1997; Vaida and 
Xu, 2000). Statisticians have recognized that two individu- 
als within the same group will have responses that are more 
similar than two individuals in two different groups. This in- 
creased similarity in responses may be conceptualized as due 
to a shared group-level covariate (Kreft, Leeuw, and Aiken, 
1994). 

For example, in the Chitwan Valley Family Study (CVFS), 
neighborhoods of women are sampled in Chitwan Valley, 
Nepal (Axinn, Barber, and Ghimire, 1997; Axinn and Bar- 
ber, 2001). A primary goal of this study is to understand the 
determinants of changing fertility patterns. Of particular in- 
terest is the association between a woman's schooling and the 

timing, relative to the birth of their first child, of initiation 
of a permanent method of contraception. Some women initi- 
ate contraceptive use quickly, averting potential births, while 
others initiate use late, after bearing many children. Edu- 
cation is expected to increase the opportunity costs of child- 
bearing, motivating more rapid initiation of contraceptive use. 
The multiple links between the spread of education and con- 
traceptive behavior, including both neighborhood-level effects 
of schools and individual-level effects of schooling, motivate 
multilevel models of the variation in contraceptive use tim- 
ing (Axinn, 1993; Axinn and Barber, 2001). Additionally, al- 
though research has made great advances in the measurement 
of all neighborhood information that may correlate with the 
timing of initiation of permanent contraceptive use (Axinn et 
al., 1997), i t  is clear that women in the same neighborhood 
are likely to have more similar timing patterns than women 
across neighborhoods. 

To allow dependency of response times within a group, 
shared frailty models were developed (Vaupel, Manton, and 
Stallard, 1979; Clayton and Cuzick, 1985; Oakes, 1989; Guo 
and Rodriguez, 1992; Klein, 1992). The shared frailty model 
is a multilevel extension of the proportional hazards model 
(Cox, 1972) whereby a frailty (random intercept) term, which 
varies from group to group, is introduced in the regression 
model. In effect, different groups experience the event at pro- 
portionately different baseline rates. In the shared frailty 
model, within-group comparisons of hazard rates at  differeIlt 
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levels of an individual-level covariate must be the same across 
groups. In the CVFS, researchers hypothesized that women 
who have received formal education initiated a permanent 
method of contraception at a higher rate than women with- 
out formal education (Axinn and Barber, 2001). Furthermore, 
it is plausible that, in some neighborhoods, there may be lit- 
tle difference in initiation rates between women of different 
education levels and, in other neighborhoods, women of dif- 
ferent educational levels may vary greatly in their initiation 
rate. Thus, to consider this type of question, we extend the 
shared frailty model to allow for random coefficients. 

This article will discuss a two-level proportional hazards 
model that incorporates random variability in the baseline 
rate and random coefficients for an individual-level covariate. 
Next, we derive the likelihood and elucidate the assumptions 
behind the likelihood. Parameter estimates will be based on 
maximum likelihood using a combination of the EM algorithm 
and Newton-Raphson. Standard errors will be estimated us- 
ing two different methods, observed information and profile 
likelihood information. A simulation study will follow to em- 
pirically demonstrate properties of the model. The CVFS data 
will be used to  illustrate the applicability of this two-level haz- 
ard model. Last, advantages, disadvantages, and areas in need 
of further research will be discussed. 

2. Two-Level Hazard Model 
2.1 Hazard Model 
We formulate a two-level hazard model for continuous event 
time data; this model will allow a nonparametric specification 
of the baseline hazard function. First, the hazard model will 
be developed and then the likelihood will be given along with 
a statement of assumptions. Finally, estimation procedures 
for point estimates and standard errors will be presented. 

Let Tij be the event time for the j t h  individual ( j  = 
1,. . . ,ni) nested in the i th group (i = 1,. . . , N ) ,  where the 
event times are measured with enough precision to msume 
there are no ties. Furthermore, let &(t) denote a vector of 
grouplevel covariates at time t ,  X i j  ( t )  denote a pdimensional 
vector of individual-level covariates at time t ,  and Ri = 
(Rio, Ril) denote ( p  + 1)-dimensional vector of unobserved 
group-level random effects. For a study of duration M ,  on 
each individual, we observe the minimum of the event time, 
Tij , and the censoring time, Cij, and an indicator A,, where 
Aij = 1 if Tij < Cij and 0 otherwise. Thus, for group 
i, we observe (Tij A Cij,Aij, { X i j ( t ) , t  E [0,Tij A Cij]}, 
j = 1, ..., n i , { Z i ( t ) , t ~  [O,M]}),andthegroupsareassumed 
to be a random sample from the population. 

Note that the above 2 is assumed to be measured up to 
time M .  In this article, we consider only group-level covariates 
(2’s) that are measured independently of the sampled 
members of the group. Thus, the group-level covariate exists 
independently from the individuals of the group and, although 
2-values will not be used after the last person in the group 
experiences the event or is censored, the group values do exist. 

To facilitate the analysis (in Section 4) of the timing of 
initiation of a permanent method of contraception in the 
CVFS data, we require that the hazard model incorporates 
the following multilevel features. First, the hazard model 
should allow static and time-varying covariates on both the 
individual and group levels. Additionally, the model should 
accommodate interactions between the individual- and group- 

level covariates. Second, the hazard model should allow the 
effect of individual-level covariates to vary between groups. 
Third, the baseline hazard rates should be permitted to vary 
between the groups. Finally, if there is no systematic variation 
in the hazard rates between the groups after accounting for 
the observed covariates, the model should reduce to Cox’s 
proportional hazard model. 

We assume a proportional hazards model for Ti given 
Ri of 

where X,( t )  is the baseline hazard function. Because the 
above hazard is conditional on the random effects, the Pz 
coefficients reflect a comparison of responses within the 
same or identical groups. The variance of Rio measures the 
heterogeneity of the baseline rate between the groups. The 
variance of Ril measures the heterogeneity in the coefficient 
of the individual-level covariates Xi? between the groups. We 
assume that the marginal distribution of the random effects is 
multivariate normal with mean zero and arbitrary covariance 
matrix C. If C is zero, then the responses of individuals 
within a group are independent and this model reduces to 
the proportional hazards model. We use normally distributed 
random effects for two reasons. The normal distribution 
family is closed under linear combinations and matches our 
view that unexplained variation in hazard rates between 
groups is due to a large number of unobserved group-level 
covariat es . 

In addition to the shared frailty model, other multilevel 
survival models include Hedeker and Gibbons’ (1996) 
development of a multilevel hazard model for interval-time 
survival data and Barber et a1.k (2000) development of 
a multilevel hazard model for discrete-time survival data. 
Yashin et al. (1995) developed a correlated frailty model 
to study the role of genetics versus environmental factors 
in influencing individual mortality. Sastry (1997) developed 
a three-level shared frailty model to study the mortality of 
children in Brazil. Gilks et al. (1993), Sinha and Dey (1997), 
Gustafson (1997), and Sargent (1998) have taken a Bayesian 
approach to modeling grouped survival data. 

Vaida and Xu (2000) also consider the proportional hazards 
model with random effects in the hazard function 

where X;.’s are the group- and individual-level covariates 
and Wt3 is the covariate vector for the random effects, R,. 
There are two main differences between the hazard models 
in (1) and (2). First, in our hazard model (l) ,  WZ3 = 
(1, Xz3 ) , while Vaida and Xu’s model allows for a more general 
random effects structure. Second, our model allows time- 
varying covariates on both the individual- and group-level 
covariates. As in our model, the vector of random effects, R,, 
in (2) is assumed to follow a multivariate normal distribution 
with mean zero and unknown covariance matrix. Vaida and 
Xu use an EM algorithm with MCMC integration in the E- 
step to estimate the parameters and they use Louis’s (1982) 
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formula to obtain the observed information matrix. Our 
article provides an alternative procedure for point estimation 
and computing standard errors and makes the underlying 
assumptions explicit. 

2.2 Likelihood 
We follow the likelihood derivation of Nielsen et al. (1992) 
to provide a partial likelihood for the parameters, /? = 
(&,,&) (the fixed effects), C (covariance matrix of random 
effects), and A0 = 16 Xo(s)ds (the cumulative baseline hazard 
function). The likelihood derivation and assumptions can be 
made rigorous by using counting process terminology (Aalen, 
1976) and the methods developed by Andersen et al. (1993) 
and Arjas and Haara (1984). Our primary purpose is to 
provide an intuitive explanation of the assumptions that are 
made in addition to classical survival analysis assumptions. 

We begin by considering one group only. To keep the 
notation simple, omit the subscript i, denoting group. Also let, 
Yj denote the observed minimum of the event and censoring 
time for an individual, Yj = Tj A Cj. Thus, the observations 
for a group are (Yj, b j ,  {Xj ( t ) ,  t E [0, Tj A Cj]}, j = 1,. . . , n, 

First, we make a conditional independence assumption. 
Let Ft- = {R,TjI{Tj < t } ,  I { T j  < t } ,  {Xj(s), s E 
[0, Tj A t ) } ,  j = 1,. . . , n, { Z ( s ) ,  s E [0, maxj Tj A t ) } ) } ,  where 
I { A }  is one if the event A is true and zero otherwise. This 
conditional independence assumption may be expressed in 
terms of conditional probabilities given Ft-. We assume that, 
for each j, 

{W), t f P,m=j  y31)). 

P[t 5 Tj < t + dt I Ft-] M hj(t)l{Tj 2 t }  dt (3) 

for small dt and where hj ( t )  = Xo(t)exp(Ro + RTXj(t) + 
,@Xj(t)  + pFZ(t)},  as in the previous section. Thus, 
conditional on R, the hazard of Tj remains the same whether 
or not we include information on the other subjects in 
the group up to time t. This assumption is the analog of 
the conditional independence assumption made in multilevel 
linear and nonlinear models, i.e., given the random effects, 
responses within a group are assumed independent (e.g., 
see the conditional likelihoods in Rodriguez and Goldman 
(1995, equation (7)) or Hedeker and Gibbons (1994, equation 
(2))). Note that our parameterization of hj involves only 
the j t h  individual's covariates and not the covariates of 
other individuals in the group. Thus, if we believe that 
individual j " s  covariate, given by X31, is predictive of the 
j t h  individual's response, then Xj l  needs to be included in 
the j t h  individual's covariate vector. 

Following the likelihood derivation given by Nielsen et al. 
(1992) for shared frailty model, we assume 

(3) conditional on R = r ,  censoring is independent, 
(4) conditional on R = r ,  censoring is noninformative of r ,  

( 5 )  conditional on R = r ,  the covariates are noninformative 
and 

of r. 

These three assumptions plus the conditional independence 
assumption (3) and the conditional proportional hazards 
assumption (1) imply that the group's contribution to a 
partial likelihood for (P, C, Ao) is 

To form the partial likelihood for the N groups, we subscript 
L(P, C, Ao) by i to denote the contribution by group i and 
multiply across groups to get 

N 

i=l 

Assumption (3), independent censoring, is commonly made 
in the estimation of single-level hazard models and has been 
discussed by many authors (Kalbfleisch and Prentice, 1980; 
Andersen et al., 1988; Liang, Self, and Chang, 1993). To 
extend this work to the multilevel setting, we make the 
additional assumptions (4) and (5). Assumptions (4) and 
(5) are surprisingly stringent. They concern the conditional 
distribution given the past of the censoring process and the 
covariate process, respectively. To illustrate the stringent 
nature of these assumptions, we focus on assumption ( 5 ) .  If 
all of the covariates are time independent, then assumption 
( 5 )  is simply that the covariates are independent of R. 
Marginal independence between the covariates and the 
random effects is commonly made in multilevel analyses (Bryk 
and Raudenbush, 1992; Guo and Rodriguez, 1992; Hedeker 
and Gibbons, 1996). Define E!'" to be Ft- but adjusting 
for the loss of information due to censoring, i.e., E? = 
{R,YjI{Y,. < t} ,  cijI{Yj < t} ,  I{Yj < t ) ,  ( X + ( s ) , s  E - -  
[o,Y,"A tj}, j = 1 , . . . ,  12, { z ( s ) , s  i [0,max3%"A t ) ) ) } .  
Suppose all time-dependent covariates are exogenous in the 
sense that the conditional proportional hazards assumption, 
conditional independence assumption, and assumptions (3) 
and (4) continue to hold even if we include the entire history 
of the covariate over the interval [O,M] in Ft-,E?. Then, 
as before, assumption ( 5 )  is simply that the covariates are 
marginally independent of R (we have included the entire 
history of the covariate over the interval [O, M ]  in Ft-, ep). 

Assumption ( 5 )  is most stringent when the time-dependent 
covariates do not satisfy the above exogeneity conditions; 
e.g., marginal independence of R and X does not imply that 
assumption ( 5 )  is satisfied. This is because assumption ( 5 )  
requires conditional independence of R and X( t )  given past 
observations on T .  In order to ensure that ( 5 )  is a reasonable 
assumption, we should try to include all common correlates of 
both the Tj's and the covariates in our model, and similarly, in 
order to ensure that (4) is a reasonable assumption, we should 
try to include all common correlates of both the T j ' s  and the 
censoring times. In the Appendix, we illustrate how marginal 
independence of R and X is insufficient for assumption ( 5 )  to 
hold. 

2.3 Estimation 
To estimate the parameters, we maximize an empirical version 
of the partial likelihood as in Nielsen et al. (1992) and Murphy 
and van der Vaart (2000). We replace the X o ( t )  terms by 
jumps in the cumulative hazard, AAo(t) = Ao(t)  - A,(t-). 
The empirical version of the partial likelihood is then 

w, C, A01 
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(4) 

where yZ3 = Tz3ACzs and gz3( t )  = rzo+r,T1Xz3(t)+P,TXz3(t)+ 
,@Zz(t). We will maximize (4) over all nondecreasing Ao, all 
positive definite C, and real-valued vectors pz and pz. For 
any fixed value of ( p , C ) ,  the above partial likelihood will 
be maximized for ho(t), a nondecreasing function in t with 
positive jumps at the observed event times. 

The partial likelihood (4) is maximized over (p, C, no) by 
using a combination of EM (Dempster, Laird, and Rubin, 
1977) and Newton-Raphson. By using both EM and Newton- 
Raphson methods, the weaknesses of either algorithm are 
greatly diminished. We use the EM algorithm to first move 
close to a maximum and then switch to Newton-Raphson to 
take advantage of its quicker convergence rate. In general, 
maximizing (3) by EM requires the estimation of the con- 

where 8,s are the current estimates of (p, h o ,  C). We estimate 
these integrals using a 13-point Gauss-Hermite quadrature. 
Vaida and Xu (2000) also use the EM algorithm, but instead 
of using a Gauss-Hermite quadrature, they use MCMC t o  
approximate the integrals Once the expectations are formed, 
the M-step for p follows the usual log partial likelihood in the 
Cox model with known offsets and ARo( t )  is estimated by 

ditional expectations E[r,rT I y, 81 and E[erto+XtJTzl I y , &  

2.4 Standard Errors 
Standard errors can be estimated by at least two different 
methods, observed information and profile likelihood inform- 
ation. The estimated observed information is the negative of 
the Hessian matrix, 

where 8 = (p ,Ao,C) .  This matrix is used by the Newton- 
Raphson algorithm for parameter estimation. The asymptotic 
covariance matrix is then obtained by inverting fobs. Because 
the dimension of the observed information matrix is greater 
than the number of observed events in the data, it can be 
quite large. 

An alternative method to estimate the standard errors is to 
use the observed profile likelihood information as in Murphy 
and van der Vaart (1996). A profile likelihood for p is 

prlik(P) = max log L(8).  
Ao ,C 

This is treating A0 and C as nuisance parameters with respect 
to inference concerning p. An estimator of the asymptotic 
covariance matrix of 6 is obtained by inverting the observed 

profile information matrix, 

a2 
W ' P T  

fprof = --prlik (6) . 
In a similar fashion, we can form a profile likelihood for 
each component in C and then use the observed profile 
information matrix to form estimators of the asymptotic 
variance for the estimators of the components in C. Patefield 
(1977) has shown that the standard errors based on the full 
likelihood and the profile likelihood are equivalent for the 
reduced parameter space in parametric models. Although the 
profile likelihood method does not have an explicit expression, 
we approximate the second derivative through a combined 
forward and backward finite difference (Murphy and van der 
Vaart, 1996). 

The maximum likelihood estimates and their standard 
errors (from either the profile likelihood information or the 
observed information) can be used to create z-statistics. In 
the next section, we assess how well the distribution of the 
z-statistics can be approximated by a normal distribution. 

3. Simulations 
In this section, a simulation study is used to assess the 
performance of the point estimators and standard errors. 
Because the primary use of the estimated standard errors is 
to construct a z-statistic or confidence interval, the accuracy 
of the standard errors is assessed indirectly by examining the 
coverage level of confidence intervals based on the estimated 
standard errors. All of the simulations use the hazard model 
hij(t)  = X o ( t )  exp{Rio + (p+ R i l ) X i j } ,  where Xi j  is a single 
individual-level static covariate. We consider parameter values 
that lead not only to nonproportionality but also crossing of 
the marginal hazard rates. 

Each simulation consists of 1000 generated datasets of 
50 groups, with each group having uniformly random 4- 
10 subjects. We consider two covariate distributions, a 
Bernoulli(.5) and a skewed distribution-X = E - 1, where 
E N exponential(1). The failure-time distribution is a Weibull, 

We use two values of p :  p = 1 (flat baseline hazard, X ( t )  = 1) 
or p = 1.5 (increasing baseline hazard, X ( t )  = t1/2).  For each 
group, the values for the random effects are drawn from a 
bivariate normal(0, C). The variance-covariance matrix, C, 
will have equal entries on the diagonal. Two censoring levels, 
10 and 20%, are considered. The event times are censored 
at the 90th or 80th percentile of the event-times distribution 
conditional on the covariate. 

Table 1 gives the parameters values for all six representative 
simulations. For each of the 1000 simulated datasets, 95% 
confidence intervals were created for each parameter using 
the profile likelihood information standard errors. The mean, 
empirical 95% confidence interval, and coverage probability 
are listed in Table 2. 

Simulations 1-4 represent a variety of situations in which 
we expect the point estimates and estimated standard errors 
to perform well. Because each simulation consists of 1000 
datasets, we expect the coverage percentages to be between 
93.6 and 96.4%. Only simulation 4 yields a coverage percent 
for p that falls outside of this interval. In this case, increasing 
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Table 1 
Simulated datasets& 

Censor 
rate Hazard Var. 

Sim. P (%) shape RE Corr. Covariate 

1 1  10 Flat .1827 0 Bernoulli 
2 1  10 Flat 1 0 Bernoulli 
3 .25 20 Increasing .4112 .5 Bernoulli 
4 -0.25 20 Increasing .4112 -.5 Exponential 
5 1  10 Flat 0 0 Bernoulli 
6 1  10 Flat .1827 0 Bernoulli 

a Parameter values for the simulation study. In simulation 6, the 
random effects come from a demeaned gamma distribution rather 
than a normal distribution. Simulation 2 has converging hazard 
functions. Simulations 3 and 4 have crossing hazard functions. 

the sample size to 100 yields a coverage percent falling 
in the interval. Because all of the 50-group simulations 
had a coverage slightly less than 95% and the point 
estimators appear to be unbiased, this may be an indication 
that, in small samples, the profile likelihood information 
slightly underestimates the standard error for P. In all four 
simulations, the standard deviations of the random effects are 
underestimated. The downward bias was typically larger for 

the random coefficient than the random intercept. This bias 
can be expected because the estimators do not take into 
account the loss in degrees of freedom from the estimation 
of ,8 (Fahrmeir and Tutz, 1994, Chapter 7). 

For simulations 5 and 6, the assumptions behind the model 
are violated and we thus examine the robustness of the model. 
In simulation 5, C = 0, the variance matrix for the random 
effects, is on the boundary of the parameter space and thus 
we do not expect the point estimates and estimated standard 
errors to behave well. In simulation 6, the setup is again 
identical to simulation 1 except that the random effects are 
generated from independent demeaned gamma distribution 
W - 1, where W has mean 1 and variance .1827. Simulation 
5 showed the most problems, which was to be expected. 
However, the estimator of p had only a slight positive bias 
and the approximate 95% confidence intervals performed 
well. Unlike the negative bias exhibited by the estimated 
standard deviations in simulations 1-4 and 6, the estimated 
standard deviations are positively biased in simulation 5. This 
positive bias is expected because the estimation algorithm 
forces the parameter estimates to stay within the interior of 
the parameter space. With the exception of the covariance 
term, the point estimates and estimated standard errors 
performed well in simulation 6, even when the random effects 
distribution was misspecified. 

Table 2 
Simulation results 

No. True Mean 95% Coverage 
Sim. groups Parameter value value Conf. int. percent 

1 50 P 
SD( int .) 

SD(coef.) 

SD( int .) 

SD(coef.) 

SD(int.) 

SD( coef.) 

SD(int.) 

SDfcoef.) 

SD (int .) 

SD(coef.) 

SD (int .) 

SD (coef. ) 

SD( int .) 

SD(coef.) 

cov 

2 50 P 

cov 

3 50 P 

cov 

4 50 P 

cov 

4(a) 100 P 

cov 

5 50 P 

cov 

6 50 P 

cov 

1 

0 

1 
1 
0 
1 

.427 

,427 

.25 

.641 

.206 

.641 

,641 

.641 

,641 

.641 

-.25 

-.205 

-.25 

-.205 

1 
0 
0 
0 
1 

0 
.427 

.427 

1.007 
.409 

-.008 
,395 
.999 
.970 
.023 
.947 
.253 
,629 
.185 
.615 

-.242 
.620 

-.202 
.611 

-.249 
,627 

-.199 
,618 

1.017 
.155 

.231 

.996 

.410 
-.018 

,400 

-.004 

(.997, 1.016) 
(.401, ,418) 

(.382, ,407) 
(-.015, -.002) 

(.987, 1.012) 
(.959, ,980) 
(.007, .039) 
(.934, ,961) 
(.242, .263) 
(.62l, .638) 
(.186, .204) 
(.602, ,629) 

(.613, .627) 

(.602, ,620) 

(.620, .633) 

(.608, .627) 
(1.008, 1.026) 

(.147, ,162) 

(.221, .242) 
(.987, 1.006) 
(.401, .419) 

(.387, .413) 

(-.251, -.235) 

(-,209, -.195) 

(-,256, -.242) 

(-.207, -.191) 

(-.005, -.003) 

(-.025, -.011) 

.946 

.947 
,986 
.943 
.939 
,937 
.938 
,954 
.941 
.961 
,982 
.919 
,925 
,980 
.966 
.919 
,953 
,925 
.923 
.983 
,945 
,913 
.992 
.869 
.948 
.938 
.988 
.935 
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Table 3 
Comparison of standard errors f o r  p 

Number of 
True Coverage Coverage datasets obs. 

Sirn. value (prof. like.) (obs. info.) info. problemsa 

1 1  .946 .946 7 
2 1  .939 .938 6 
3 .25 ,941 .942 17 
4 -.25 ,925 .920 2 

5 1  .945 ,947 29 
6 1  .948 ,946 10 

4(a) -.25 ,953 .953 3 

a Datasets in which the Hessian matrix used in calculating the 
observed information was not positive definite. 

In Table 3, a comparison between the two standard error es- 
timation methods, profile likelihood information and observed 
information, is made. We focus on the estimated standard er- 
rors for /3 and compare the coverage of the 95% normal-theory 
confidence intervals. The two methods have nearly identical 
coverage properties; however, in some of the datasets where 
the parameter estimates for the covariance matrix of the ran- 
dom effects were on the boundary of the parameter space, the 
Hessian matrix was not positive definite. 

4. Chitwan Valley Family Study 
The Chitwan Valley Family Study (CVFS) was designed to 
measure dynamic changes in socioeconomic context from a 
sample of 171 neighborhoods in south-central Nepal and to 
link these changes to individual-level life histories for the pur- 
pose of explaining marriage timing, childbearing, and contra- 
ceptive use (Axinn et al., 1997). Neighborhoods are defined as 
clusters of 5-15 households, which fits the settlement pattern 
in Chitwan (Axinn et al., 1997). The retrospective histories of 
change in each neighborhood were collected with the aid of the 
neighborhood history calendar method (Axinn et al., 1997). 
In each sampled neighborhood, CVFS interviewed every resi- 
dent aged 15-59. Residents were asked to provide complete life 
histories of childbearing, contraceptive use, education, and re- 
lated behaviors. Building on the life history calendar method 
(Freedman et al., 1988), the investigators developed an ad- 
vanced form of the life history calendar, including memory 
cues from the neighborhood history data (Axinn, Pearce, and 
Ghimire, 1999). 

A central aim of the CVFS was the examination of the tim- 
ing of initiation of permanent contraceptive use. The vast ma- 
jority of contraception in Nepal is used for stopping childbear- 
ing rather than spacing births. For the purposes of this ex- 
ample, we consider initiation of the use of intrauterine device 
(IUD), Norplant, and depo-provera to  be permanent methods 
(see Axinn and Barber (2001) for a more complete list and dis- 
cussion). Because permanent contraceptive use among women 
who have no children is extremely rare in this setting, we will 
only estimate rates of initiation of permanent contraceptive 
use for women who have given birth to at least one child. The 
time of first use of a permanent method of contraception is 
measured in months from the birth of a woman’s first child. 
If a woman had not used contraceptives at the time of the 

interview, then the censoring time was measured in months 
from the birth of the woman’s first child to the interview. 

We use this study to illustrate the usefulness of the pro- 
posed methodology. More complete multilevel analyses can 
be found in Axinn and Barber (2001) and Axinn and Yabiku 
(2001). Because this particular substantive application is de- 
signed as an illustration of the multilevel model, we do not 
provide a comprehensive examination of other potential meth- 
odological issues relevant to the substantive subject, such as 
problems of retrospective recall (see Diamond, McDonald, and 
Shah, 1986) or bias due to differential death rates. 

Access to  schooling for children, the level of education of 
the woman, and birth cohort are among the factors that may 
predict the rate at which women start to use contraceptives. 
The main hypotheses that will be tested here are as follows: 

Hypothesis 1. Do women with some formal education have a 
higher rate of initiating a permanent method of contra- 
ception compared with uneducated women within their 
neighborhood? 

Hypothesis 2. Does the effect of women’s education on the 
time of initiation of a permanent method of contracep- 
tion vary across the neighborhoods? 

Hypothesis 3. Do women who are located in neighborhoods 
closer to schools have a higher rate of initiating a per- 
manent method of contraception compared with women 
in neighborhoods further away from schools? 

We considered a sample of 81 neighborhoods, all within 9.7 
miles of the Narayanghat, the major town in Chitwan Valley. 
Within the neighborhoods, we considered all women between 
the ages of 25 and 44 (born between 1952 and 1971) at the 
time of the 1996 interview, each of whom had given birth to at 
least one child. This sample is composed of 488 ever-married 
women with a range of 1-15 women per neighborhood. 

In the simple model below, we use three covariates. The 
indicator (COHORT) is equal to one for the older women, 
who were between the ages of 35 and 44 during the inter- 
view (born between 1952 and 1961), and equal to zero for the 
younger women (born between 1962 and 1971). If the woman 
had any formal education prior t o  the birth of her first child, 
then the indicator for education, (EDU), equaled one. In the 
older cohort of women, 55 out of 196 (28.1%) had received any 
formal education prior to the birth of their first child. For the 
younger cohort of women, 160 out of 292 (54.8%) had received 
any formal education. To measure access to educational op- 
portunities for children, the indicator (DIST-SCH) was equal 
to one if if there was a school within a 5-minute walk of the 
neighborhood and zero otherwise. The distance to  the nearest 
school is a time-varying covariate at the neighborhood level. 
Prior to the 1950s, public schools were extremely rare in the 
Chitwan Valley area, but since, there has been a dramatic 
increase in the number of schools, thus increasing the educa- 
tional opportunities for children. 

Assumptions (3) and (4) from Section 2.2 are trivially sat- 
isfied as censoring occurs a t  the number of months corre- 
sponding to the length of time from the birth of the woman’s 
first child to the time of the interview. Consider assump- 
tion (5). The only time-dependent covariate, distance to the 
nearest school, is a neighborhood-level variable. Because de- 
cisions concerning school placement were made by the central 
government, we believe that this covariate is exogenous in 



760 Biometrics, 

Table 4 
Results from analysis of CVFS 

Estimate SE 2-score (pvalue) 
~ 

Covariat es 
Education ,579 ,0461 12.56 (<.0001) 
Cohort -.121 .0473 2.55 (.0108) 
Edu cohort - .488 .0456 10.70 (<.0001) 
Dist school .193 .0372 5.18 (<.0001) 

Variance component 
SD (rod .571 .128 4.46 (<.OOOl) 
SD (%I ,381 .297 1.44 t.2005) 
Covariance -.132 .169 0.781 (.4348) 

December 2002 

Profile Likelihood plot for Education and Cohort 

N - .. . 

the sense that the distance from a neighborhood to a school 
is independent of past actions by women in the neighbor- 
hood. Thus, conceptually, we may include the entire history of 
the distance-to-nearest-school covariate in Ft- , qbs; i.e., in 
terms of forming the likelihood, we treat distance to the near- 
est school as a time-independent covariate. So assumption (5) 
reduces to assuming that the random effect R is marginally 
independent of all of the covariates. 

In order to address the three hypotheses, we fit the follow- 
ing hazard model: 

h,,(t) = Xo(t)exp{Ro, + (PI + R1,)EDU,, + PzCOHORTz 
+ p3EDU - COHORT,, 

+ &DIST - SCH,(t)}. 

The parameter estimates and standard errors are presented 
in Table 4. All of the covariates were significant in the model. 
From the model and Table 4, we can address the three main 
hypotheses for this analysis. Because the interaction between 
birth cohort and the woman’s education was significant, we 
must address hypothesis 1 for each cohort separately. In the 
younger cohort, the women with some formal education prior 
to the birth of their first child had a hazard rate epl = e 579 = 
1.78 times higher than women without any education (pvalue 
< .0001). However, for the older cohort of women, the hazard 
rate was ep1+p3 = eogl = 1.09 (SE(p1 + p3) = .059, p 
value = ,1231) times higher than the older women without 
any formal education, but this was not a significant difference. 
For a more complete discussion, including consideration of the 
availability of contraceptive methods and the relation between 
education and the use of permanent contraceptives, see Axinn 
and Barber (2001). 

The variance for the random coefficient (Rl,) for women’s 
education, used to test the second hypothesis is nonsignificant 
(pvalue = .2005), providing evidence that the covariation 
of education with initiation of a method of permanent con- 
traception is constant across neighborhoods. From the third 
hypothesis, women who lived in neighborhoods with schools 
nearby, within a 5-minute walk, had a 21% higher hazard rate 
(8“ = e = 1.21) for initiation than women in neighbor- 
hoods that did not have a school nearby (pvalue < .0001). In 
addition to the main hypotheses, the model also gives further 
insight into the data. The variance of the baseline hazard rate 
between the neighborhoods, var(Roz), is significant (p-value < 

~- 
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Figure 1. Profile likelihood surface for parameters /31 (ed- 
ucation) and 02 (cohort). The contour lines represent two 
times the difference in likelihood value from the maximum 
likelihood value at the MLE. Assuming normality, the dark- 
ened contour line of 6 represents a 95% joint confidence region 
for P1 and 0 2 .  

,0001). We will discuss credibility of these inferences, in par- 
ticular the credibility of the estimated standard errors, using 
profile likelihood surface plots. 

Examining the profile likelihood surface for a pair of param- 
eters can show how well the normal-theory 2-tests are work- 
ing. If the normality approximation holds, then the contours 
of the profile likelihood surface will be elliptical. The pro- 
file likelihood surface plot for (P I ,  p ~ ) ,  the effects of woman’s 
education and cohort, is shown in Figure 1. The contours rep- 
resent twice the difference in profile likelihood value from the 
maximum likelihood. The elliptical shape of the contour lines 
indicates that the standard errors should work well, i.e., the 
95% confidence set for (P I ,  /32) is quadratic. The profile like- 
lihood surface plot for (SD(Ro), SD(R1)) is shown in Figure 
2. In this plot, the contour lines do not have the nice ellipti- 
cal shapes as before. Viewing the plot from the y-axis, it is 
clear that the quadratic approximation of the likelihood does 
not hold for estimation of the standard deviation of the ran- 
dom coefficient; however, viewing the plot from the z-axis, 
we see that the surface of the profiled likelihood does appear 
quadratic in the standard error of the random intercept. Cer- 
tainly some skepticism is in order in interpreting the pvalues 
for the variance components. 

5. Discussion 
The two-level proportional hazards model allows for hetero- 
geneity between groups as well as for effects of individual- 
level covariates to vary by group, i.e., random coefficients. 
The fixed effects represent comparisons of individuals within 
the same or highly similar groups rather than a comparison 
between individuals from a variety of neighborhoods. In con- 
trast to the frailty model, this model allows us to examine 
the level of covariation between a subject-level covariate such 
as woman’s education and neighborhood. A combination of 
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Profile Likelihood plot for Std. Dev of random effects 

0.0 0.2 0.4 0.6 0.8 1 .o 
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Figure 2. Profile likelihood surface for standard deviations 
of TO (random intercept) and r1 (random coefficient). The 
contour lines represent two times the difference in likelihood 
value from maximum likelihood value at the MLE. Assum- 
ing normality, the darkened contour line of 6 represents a 
95% joint confidence region for the standard deviations of ro 
and T I .  

EM and Newton-Raphson algorithms are used to obtain pa- 
rameter estimates. Standard errors may be estimated using 
the observed information or a finite difference of the profile 
likelihood. 

When the fixed effect, p, is of primary scientific interest, the 
simulations in Section 3 provide evidence for the usefulness of 
this model and estimation method for datasets as small as 
50 groups. The estimators and standard errors for the vari- 
ance components need improvement, especially the estimator 
of the covariance term. It is easy to see how the model can be 
extended to accommodate any number of random coefficients 
and more complicated random effects design. However, com- 
putational issues in point estimation and standard errors must 
be carefully considered. The development of methods other 
than the traditional EM and Newton-Raphson are needed for 
these high-dimensional maximization problems. Alternatives 
include both Vaida and Xu’s (2000) use of MCMC integration 
and Raudenbush, Yang, and Yosef’s (2000) use of a multivari- 
ate Laplace approximation to the likelihood function. Further, 
asymptotic theory for the estimators in this model still needs 
to be developed. Finally, formal testing of the variance of the 
random effects being equal to zero needs to be explored, as 
this is often an important research hypothesis. 
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RESUME 

Nous proposons une extension du modkle de taux propor- 
tionnels B un modkle B deux niveaux avec un terme con- 

stant alBatoire et des coefficients alkatoires. Les paramittres 
de ce modkle B plusieurs niveaux sont estimBs par une com- 
binaison des algorithmes EM et de Newton-Raphson. M6me 
pour des Bchantillons de 50 groupes, la mBthode fournit pour 
les coefficients des effets fixes, des estimateurs h peu prks 
sans biais et normalement distribuBs. Deux mBthodes dis- 
tinctes, information observhe et information de la vraisem- 
blance des profils, seront utilisBes pour estimer les erreurs 
standards. Ce travail a BtB entrepris dans le but de compren- 
dre les determinants des habitudes contraceptives des femmes 
NBpalkses dans l’enquete sur les familles de la Vallke Chit- 
wan (Axinn, Barber et Ghimire, 1997). Nous avons utilisB ce 
moditle de taux proportionnels B deux niveaux pour Btudier 
la facon dont le niveau d’kducation et les possibilites d’accits 
B 1’Cducation des enfants varient avec l’initiation B un usage 
permanent de la contraception. 
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APPENDIX 

Example for Assumption 5 

The following example illustrates how R and X may be mar- 
ginally independent yet, given observation on T ,  R, and X,  
are dependent. There is no censoring. The covariate, X ( t ) ,  
is identically zero (with probability one) for t 5 t o  and is 
discrete valued thereafter. Furthermore, suppose that there 
is an unobserved binary comrnon correlate, say U ,  of both 
T and X ( t o  + dt ) .  The joint density of (R ,  U , S  = I { T  2 
t o } ,  X ( t0  + d t ) )  evaluated at (r,  u, s, Z) can be written as 

fR ( r )P[U = u]P[T 2 t o  I R = r,  U = u]’ 
x P[T < to I R = r, u = U ] ~ - ~ P [ X ( ~ ~  + d t )  = z I u = 4, 

P[U = 11 = 1/2, P[T 2 to I R = r,u = 11 = 2e-erto - 
where f R  is the density of R. To be concrete, lvt P[U = O] = 

, and P[T 2 to  I R = r,  U = 01 = e-2e’to. It is easy to 
see that X is marginally independent of R and U is marginal- 
ly independent of the random effect, R. The hazard model 
constrains the form of P[T 2 to  I R = r] = C, P[U = u ] x  

e-2e7 t o  
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P[T 2 to  I R = T,U = u] (in this case, P[T 2 t o  I R = 
= e--e7't~) and specifies that f~ is a normal distribution; 

the other assumptions impose no further constraints. Because 
both U and R are causes of T ,  we can expect that U and R 
are correlated given T 2 t o ,  i.e., 

depends on R = T .  However, U is also correlated with X ( t 0  + 
d t ) .  Thus, we can expect that X ( t o  +dt )  and R are correlated 
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given T 2 t o ,  i.e., 

P [ X ( t o  + d t )  = 5 I T 2 t o ,  R = T ]  

- - 1 / 2 e - 2 e r t o ~ [ ~ ( t o  + d t )  = 2 I u = 01 
e-erto 

1 / 2 ( 2 e - ~ ? ~ o  - e-2eTto)P[X(to + d t )  = 5 1 u = 11 + e-erto 

will generally depend on R = T .  In this case, assumption ( 5 )  
will be violated. 


