
Epilepsia, 35(Suppl. 4):S41-S50, 1994 
Raven Press, Ltd., New York 
8 International League Against Epilepsy 

Mechanisms of Action of Currently Prescribed and Newly 
Developed Antiepileptic Drugs 

*?Robert L. Macdonald and *Kevin M. Kelly 

Departments of *Neurology and ?Physiology, University of Michigan Medical School, Ann Arbor, Michigan, U.S.A. 

Summary: Clinically available antiepileptic drugs (AEDs) 
decrease membrane excitability by interacting with neu- 
rotransmitter receptors or ion channels. AEDs developed 
before 1980 appear to act on sodium (Na) channels, 
y-aminobutyric acid, (GABA,) receptors, or calcium 
(Ca) channels. Benzodiazepines and barbiturates enhance 
GABA,-receptor-mediated inhibition. Phenytoin, car- 
bamazepine and, possibly, valproate (VPA) decrease 
high-frequency repetitive firing of action potentials by en- 
hancing Na channel inactivation. Ethosuximide and VPA 
reduce a low threshold (T-type) Ca-channel current. The 
mechanisms of action of recently developed AEDs are 
less clear. Lamotrigine may decrease sustained high- 

frequency repetitive firing of voltage-dependent Na ac- 
tion potentials, and gabapentin (GBP) appears to bind to 
a specific binding site in the CNS with a restricted re- 
gional distribution. However, the identity of the binding 
site and the mechanism of action of GBP remain uncer- 
tain. The antiepileptic effect of felbamate may involve 
interaction at the strychnine-insensitive glycine site of the 
N-methyl-D-aspartate receptor, but the mechanism of ac- 
tion is not yet proven. Key Words: Anticonvulsants- 
Phenytoin-Carbamazepine-Barbiturates-Benzo- 
diazepines-Valproate-Ethosuximide-Lamotrigine- 
Gabapentin-Felbamate. 

A limited number of antiepileptic drugs (AEDs) 
currently are available for use in treatment of pa- 
tients with epilepsy: phenytoin (PHT), carbam- 
azepine (CBZ), barbiturates and primidone (PRM), 
benzodiazepines (BZDs), valproate (VPA), etho- 
suximide (ESM), and trimethadione (TMO). Re- 
cently, several additional AEDs have or will soon 
become available, the most promising of which are 
lamotriyine (LTG), gabapentin (GBP), and felbam- 
ate (FBM). It is likely that these standard and new 
AEDs have as  their primary targets of action neu- 
rotransmitter receptors or ion channels, primarily 
y-aminobutyric acid, (GABA,)-receptor channels, 
voltage-dependent sodium (Na) channels, and volt- 
age-dependent calcium (Ca) channels. The basic ac- 
tion of the identified AEDs on neurotransmitter re- 
ceptor channels or  ion channels may be responsible 
for their clinical actions; these interactions are the 
subject of this review. 

Address correspondence and reprint requests to Dr. R. L. 
Macdonald at Neuroscience Laboratory Building, 1103 East Hu- 
ron, Ann Arbor, MI 48104-1687, U.S.A. 

BZDs AND BARBITURATES 

BZDs and barbiturates enhance GABAergic inhi- 
bition at free-serum concentrations found in ambu- 
latory patients (Macdonald, 1989). Both BZDs and 
barbiturates interact with the GABAA receptor 
(GABAR), which is a macromolecular protein con- 
taining binding sites for, at least, GABA, picro- 
toxin, neurosteroids, barbiturates, and BZDs, and 
with a chloride (Cl-) ion-selective channel (DeLo- 
rey and Olsen, 1992). GABARs appear to be com- 
posed of combinations of different subtypes (a 1-6, 
pl-p4, yl-y3,6, and pl-p2) of polypeptide subunits 
(Schofield et al., 1987; Pritchett et al., 1989~; Shiv- 
ers et al., 1989; Cutting et al., 1991). Table 1 con- 
tains a summary of some biochemical properties of 
the different GABAR subunit subtypes, which all 
share similar structural features and basic func- 
tional properties. There is a differential regional ex- 
pression in the CNS and spinal cord of various sub- 
unit subtype messenger RNAs (mRNAs) (Laurie 
et al., 1992; Wisden et al., 1992). Some subtype 
mRNAs were expressed only in specific cell types 
(a6 mRNA was demonstrated only in cerebellar 
granule cells), whereas other subtype mRNAs, such 
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TABLE 1. GABAR subunit subtype biochemistry 

Subunits a P Y 6 P 

No. of subtypes 6 4 3 I 2 
No. of splice variants 0 1 1 0 0 
AA sequence size range (kDa) 48-64 51 48 48 52 
% AA homology intrafamily 70-80 70-80 70-80 N A  70-80 
% AA homology interfamily 3 0 4 0  3 0 4 0  3 0 4 0  30-40 3 0 4 0  

GABAR, y-aminobutyric acid, receptor: kDa, kilodalton; AA, amino acid; NA,  not applicable. 
From Macdonald and Olsen, 1994. 

as for the p2 subtype, had a more widespread dis- 
tribution. Therefore, differential expression and as- 
sembly of various subunit subtypes could produce a 
multitude of GABAR isoforms. 

GABA binds to GABARs to regulate gating 
(opening and closing) of the C1 ion channel. The 
single-channel gating properties of the main- 
conductance state of the native GABAR in murine 
spinal cord neurons in culture have been character- 
ized (Macdonald et al., 1989~; Weiss and Magleby, 
1989; Twyman et al., 1990). Binding of GABA in- 
creases the probability of channel opening, and the 
open channel can close and rapidly reopen to create 
bursts of openings. To explain this complex gating 
behavior, the single-channel activity of the main 
conductance state has been modeled using a reac- 
tion scheme that incorporates 2 sequential GABA 
binding sites, 3 open states, and 10 closed states 
(Macdonald et al., 1989~; Twyman et al., 1990). 

Barbiturates and BZDs can modulate GABAR 
current by regulating the single-channel properties 
of the receptor. To enhance the current, a drug may 
increase the channel conductance, increase the 
channel open-and-burst frequencies, and/or in- 
crease the channel open-and-burst durations. The 
kinetic model of the GABAR has been used to study 
the mechanisms of action of AEDs that act on the 
GABAR. 

Barbiturates enhance the GABAR current by 
binding to an allosteric regulatory site on the recep- 
tor (Olsen, 1987). Results from fluctuation analysis 
suggest that phenobarbital and pentobarbital in- 
crease the mean channel-open duration of GABAR 
currents without altering channel conductance 
(Study and Barker, 198 1). Single-channel record- 
ings of barbiturate-enhanced single GABAR cur- 
rents directly demonstrate that barbiturates in- 
crease mean channel-open duration but do not alter 
receptor conductance or opening frequency (Mac- 
donald et al., 1989b; Twyman et al., 1989). 

For alp1 receptors expressed in Xenopus  
oocytes or Chinese hamster ovary (CHO) cells, cur- 
rents were increased by pentobarbital (Moss et al., 
1990; Verdoorn et al., 1990). Furthermore, the con- 
centration dependence for the effect was the same 

for receptors with different (Y and p subunits coex- 
pressed with y2 and with p2y2 alone in Xenopus 
oocytes (Verdoorn et al., 1990). These results di- 
rectly demonstrate that the (Y and p subunits contain 
the allosteric regulatory site for barbiturates. 

GABARs have a high-affinity binding site for 
BZDs, and BZD and GABAR binding sites have 
been demonstrated to be allosterically coupled 
(Olsen, 1987). BZDs increase GABAR current. Re- 
sults from fluctuation analysis suggest that the BZD 
diazepam increases GABAR current by increasing 
opening frequency without altering channel conduc- 
tance or open duration (Study and Barker, 1981). 
Single-channel recordings have confirmed that 
BZDs increase receptor-opening frequency without 
altering mean open time or conductance (Vicini et 
al., 1987; Rogers et al., 1989). 

The GABARs expressed in Xenopus oocytes and 
CHO cells formed from alp1 subunits are insensi- 
tive to BZDs (Pritchett et al., 1989b; Moss et al., 
1990). The basis for this insensitivity was deter- 
mined when two forms of a third GABAR subunit, 
the y and y2 subunits, were isolated from a human 
fetal brain complementary DNA (cDNA) library 
(Pritchett et al., 1989b). When the y2 subunit was 
transiently coexpressed with a1 and pl subunits in 
human embryonic kidney cells, fully functional 
GABARs were formed that were sensitive to BZDs, 
p-carbolines, barbiturates, and picrotoxin. 

Analysis of binding of various BZDs to purified 
GABARs from brain regions revealed the existence 
of two subclasses of BZD binding sites, type I and 
type I1 (Klepner et al., 1978; Braestrup et al., 1981; 
Lipa et al., 1981; Garret et al., 1985; Eichinger and 
Sieghart, 1986). The basis for this heterogeneity 
was clarified after the identification of multiple 
GABAR subunit families. The molecular basis of 
types I and I1 BZD-binding sites was determined 
using transient expression of a x  (x = 14)ply2S 
subunit combinations in human embryonic kidney 
293 cells (Pritchett et al., 1989~; Pritchett and See- 
berg, 1990). The combination of alply2S GABAR 
subtypes produced type I BZD-binding sites, and 
expression of a2ply2S, a3,ply2S, or aSply2S 
GABAR subtype combinations produced type I1 
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BZD-binding sites. These receptor isoforms were 
differentiated based on binding of the type I BZD- 
selective compounds, zolpidem and CL 218872. Ex- 
pression of the a4 or a6 subtype with pl and y2S 
subtypes produced less-characterized BZD-binding 
sites, thought previously to be an artifact (Sieghart 
et al., 1987; Wisden et al., 1991). These receptor 
isoforms did not bind the prototypical BZDs, diaz- 
epam and flunitrazepam, or P-carbolines, but did 
bind the “alcohol antagonist” Ro 15-4513 and the 
BZD antagonist flumazenil (Ro 15-1788). Binding of 
GABA agonists (muscimol) was not impaired. BZD 
receptor pharmacology was not altered by substi- 
tuting any other p subtype. Therefore, BZD phar- 
macology of recombinant GABARs appeared to de- 
pend on the a subtype. The original types I and I1 
BZD classification was further segregated into type 
I (al), type IIA (a2 and a3), type IIB (aS), and type 
I11 (a4 and 016) BZD sites (Pritchett et al., 1989a; 
Doble and Martin, 1992). Therefore, despite the 
finding that the y subunit confers BZD sensitivity to 
GABARs, the a subunit appears to determine the 
type of BZD receptor expressed. 

PHT AND CBZ 

In patients being treated for epilepsy, PHT and 
CBZ have been shown to interact with voltage- 
dependent Na channels at concentrations found 
free in plasma (Macdonald, 1989). These AEDs 
were demonstrated to reduce the frequency of sus- 
tained repetitive firing of action potentials in neu- 
rons in cell culture (McLean and Macdonald, 1983, 
19866). Their characteristic property was no reduc- 
tion of the amplitude or duration of single action 
potentials but reduction of the ability of neurons to 
fire trains of action potentials at high frequency. 
The limitation of high-frequency repetitive firing 
was voltage dependent, with limitation of firing in- 
creased after depolarization and reduced after hy- 
perpolarization. Once developed, the limitation of 
firing was prolonged, lasting several hundred milli- 
seconds. AED action appeared to be caused by a 
shift of Na channels to an inactive state that was 
similar to the normally occurring inactive state but 
from which recovery was delayed. 

The actions of PHT and CBZ also have been 
studied on mammalian myelinated nerve fibers 
(Schwarz and Grigat, 1989). Both drugs produced a 
voltage-dependent block of Na channels that could 
be removed by hyperpolarization. PHT produced a 
shift of the steady-state Na-channel inactivation 
curve to more negative voltages. PHT and CBZ 
both reduced the rate of recovery of Na channels 
from inactivation. In control solutions, Na channels 

recovered from complete inactivation in a few mil- 
liseconds after a 500-ms depolarization to 25 mV. In 
the presence of 100 p M  PHT or CBZ, recovery was 
prolonged to 90 or 40 ms, respectively. At 50 p M ,  
PHT and CBZ each produced a frequency- 
dependent block. At 50 p M ,  PHT produced an ini- 
tial block of 50%. With repetitive stimulation at 10 
Hz, the block increased to about 80% over 2.5 s. 
Recovery from this block required approximately 
2.5 s. At 100 p M ,  CBZ also produced a frequency- 
dependent block that was somewhat less pro- 
nounced than that produced by PHT. Thus, PHT 
and CBZ produced voltage- and frequency- 
dependent block of Na channels. Because the con- 
centration-response curves could be fitted assum- 
ing a first-order reaction, it was suggested that one 
drug molecule binds to one receptor near or at the 
Na channel. The data are also consistent with PHT 
and CBZ binding with higher affinity to inactivated 
Na channels than to open or resting Na channels. 
Of interest was the finding that PHT had a longer 
time dependence for frequency-dependent block 
and for recovery from block than did CBZ, resulting 
in a more pronounced frequency-dependent block 
for PHT than for CBZ. Therefore, although PHT 
and CBZ have qualitatively similar actions on Na 
channels, the actions are quantitatively somewhat 
different. This may explain, at least in part, differ- 
ences in efficacy for these two AEDs in different 
patients. 

Similar voltage-clamp experiments were per- 
formed on isolated mammalian brain neurons 
(Wakamori et al., 1989). Hippocampal pyramidal 
neurons from the CA1 region were obtained from 1- 
and 2-week-old rats. At 200 p M ,  PHT produced a 
20-mV negative shift in the steady-state inactivation 
curve for Na channels and produced frequency- 
dependent block of Na channels. Frequency- 
dependent block was shown at frequencies as low 
as 1 Hz; the block increased to 50% at 10 Hz. 
Therefore, the ability of PHT to enhance inactiva- 
tion in neurons in cell culture and in mammalian 
myelinated nerve fibers also was present in isolated 
mammalian neurons. 

The effect of PHT on human Na channels has 
also been examined (Tomaselli et al., 1989). Total 
mRNA was extracted from human brain and in- 
jected into Xenopus oocytes. The human brain Na 
channels expressed in oocytes were also blocked by 
PHT in a voltage-, frequency-, and time-dependent 
fashion. The effects of PHT on human Na channels 
were very similar to those on cultured mouse neu- 
rons, rat myelinated nerve, and rat hippocampal 
pyramidal neurons. 

Evidence from voltage-clamp experiments has 
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therefore confirmed the basic mechanism of action 
of PHT and CBZ. Both appear to stabilize the in- 
active form of the Na channel in a voltage- 
dependent fashion, the effect being lessened at large 
negative membrane potentials and increased at less 
negative membrane potentials. Both AEDs slow the 
rate of recovery from Na-channel inactivation and 
shift the steady-state Na-inactivation curve to more 
negative voltages. This stabilization of the inactive 
form of the receptor results in a frequency- 
dependent block of Na channels and in the blockade 
of sustained high-frequency repetitive firing of ac- 
tion potentials evoked from reduced membrane po- 
tentials. It is notable that PHT has a stronger slow- 
ing effect than CBZ; therefore, these AEDs have 
slightly different actions under different conditions 
of repetitive firing. 

ESM AND TMO 

A number of AEDs have been demonstrated to 
modify the properties of voltage-dependent Ca 
channels (Macdonald, 1989b). PHT, barbiturates, 
and BZDs reduce Ca influx into synaptic terminals 
and block presynaptic release of neurotransmitter. 
However, these actions have been demonstrated 
only at concentrations that are above therapeutic 
free-serum concentrations in patients treated for ep- 
ilepsy. Therefore, it has been concluded that the 
primary actions of AEDs are not on Ca channels. 
Ca channels, however, have been shown to be het- 
erogeneous (Snutch et al., 1990, 1991; Hui et al., 
1991; Mori et al., 1991; Starr et al., 1991; Williams 
et al., 1992). At least four different types of voltage- 
dependent Ca channels have been described: 
L-type, T-type, N-type, and P-type (Nowycky et 
al., 1985; Mintz et al., 1992). These four Ca chan- 
nels have different voltage ranges for activation and 
inactivation and different rates of activation and in- 
activation. Each channel type has been cloned and 
shown to be composed of several subunits: L-type 
channel (Campbell et al., 1988; Catterall, 1988); 
N-type channel (Williams et al., 1992; Fujita et al., 
1993); P-type channel (Mori et al., 1991); and T-type 
channel (Soong et al., 1993). In addition, many sub- 
types of channels have been identified. It is also 
likely that these are not the only types of Ca chan- 
nels present on neurons. 

In view of the finding that neurons express mul- 
tiple Ca channels, it may be that AEDs act on spe- 
cific types of channels. Indeed, this has been dem- 
onstrated for ESM, TMO, and VPA, which are ef- 
fective in the treatment of generalized absence 
seizures. Generalized absence epilepsy is charac- 
terized clinically by brief periods of loss of con- 

sciousness and electrically by a generalized 3-Hz 
spike-and-wave EEG discharge. It has been sug- 
gested that thalamic relay neurons play a critical 
role in the generation of the abnormal thalamocor- 
tical rhythmicity that underlies the 3-Hz spike-and- 
wave discharge. Whole-cell voltage-clamp record- 
ings from acutely dissociated relay neurons from rat 
thalamus have demonstrated the presence of low- 
threshold (T-type) and high-threshold Ca currents 
(Coulter et al., 1989~).  The T-type currents had 
properties such that T-channel activation was nec- 
essary and sufficient to cause the generation of low- 
threshold Ca spikes in thalamic relay neurons. It 
was demonstrated that both ESM and dimethadi- 
one, the active metabolite of TMO, reduced the 
T-type current of thalamic neurons isolated from 
guinea pigs and rats (Coulter et al., 1989b,c). The 
reduction of the T-lype current was produced at 
clinically relevant concentrations of ESM and 
dimethadione. PHT and CBZ, which are ineffective 
in the control of generalized absence seizures, had 
minimal effects on T-type current. The ESM- 
induced reduction of the T-type current was volt- 
age-dependent . The reduction was most prominent 
at negative membrane potentials and less prominent 
at more positive membrane potentials. ESM did not 
alter the voltage dependency of steady-state inacti- 
vation or the time course of recovery from inacti- 
vation. Dimethadione reduced T-type current by a 
mechanism similar to that of ESM. Another antiep- 
ileptic succinimide, a-methyl-a-phenylsuccinimide, 
also reduced T-type currents, whereas an epileptic 
succinimide, tetramethylsuccinimide, reduced the 
T-type current only at very high concentrations 
(Coulter et al., 1990). These results suggest that an- 
ticonvulsant succinimides and dimethadione, com- 
pounds effective in the treatment of generalized ab- 
sence epilepsy, may have their primary action in the 
reduction of the T-type Ca current in thalamic relay 
neurons. 

VPA 

The effect of VPA on Na channels has been stud- 
ied less extensively. Although VPA blocked sus- 
tained high-frequency firing of neurons in culture 
(McLean and Macdonald, 1986u), detailed voltage- 
clamp experiments of VPA actions on Na currents 
have not been performed. It cannot be determined 
whether VPA has a mechanism of action similar to 
that of PHT and CBZ until these studies have been 
performed. 

VPA is one of the most effective AEDs against 
generalized absence seizures. Interestingly, initial 
studies of VPA did not demonstrate any effect on 
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the T-type Ca current, but subsequently VPA was 
shown to reduce T-type currents in primary afferent 
neurons (Kelly et al., 1990). The effect was pro- 
duced over a concentration range of 10&1,000 p M .  
However, the magnitude of the effect was modest: 
a 16% reduction was seen at 1 mM VPA. It is un- 
clear whether this modest reduction in T-type Ca 
current is sufficient to explain the effect of VPA on 
generalized absence seizures. Furthermore, the ba- 
sis for the discrepancy between the results obtained 
in rat thalamic neurons and rat primary afferent 
neurons remains uncertain. It may be that different 
neuron types have different sensitivities to these 
AEDs or  that the small effect is difficult to  charac- 
terize. Whether this a relevant mechanism of action 
for VPA will have to be determined by future in- 
vestigation. 

FBM 

FBM, 2-phenyl- 1,3-propanediol dicarbamate, is a 
dicarbamate with a structure similar to  that of me- 
probamate, an antianxiety agent. In experimental 
animals, it was effective in blocking seizures in- 
duced by maximal electroshock (MES), pentylene- 
tetrazol (PTZ), and picrotoxin (Swinyard et  al., 
1986). FBM inhibited bicuculline-induced seizures 
at high concentrations but was ineffective against 
strychnine-induced seizures (Sofia e t  al., 1991). 
These results suggest that FBM increases seizure 
threshold and prevents the electrical spread of sei- 
zure activity (Swinyard et  al., 1986). In clinical 
studies, FBM has been effective for treatment of 
partial seizures with and without becoming second- 
arily generalized in adults and for partial and gen- 
eralized seizures associated with the Lennox- 
Gastaut syndrome in children. 

FBM has  been tested for interaction with the 
GABAR complex as a possible mechanism of anti- 
epileptic activity. In rat brain cortical membranes, 
FBM did not affect ligand binding to the GABA-, 
BZD-, or  picrotoxin-binding sites of the GABAR 
complex. In addition, in radiolabeled C1- influx 
studies in cultured mouse spinal cord neurons, 
FBM did not affect GABA-induced 36Cl influx 
(Ticku et al., 1991). These results suggest that FBM 
may not have a direct effect on the GABAR com- 
plex. However, FBM in subprotective doses en- 
hanced the protective effects of diazepam against 
seizures induced by MES, PTZ, and isoniazid, but 
not by bicuculline, suggesting that it has indirect 
effects on the GABAR complex or is involved in 
other mechanisms of action (Gordon et al., 1991). 
FBM reduced sustained repetitive firing of voltage- 
dependent Na  channels in mouse spinal cord neu- 

rons, producing 50% inhibition at 67 pg/ml com- 
pared with a control population of neurons, of 
which 72% responded with sustained repetitive fir- 
ing (White et al., 1992). It remains to  be determined 
whether these results indicate a direct interaction of 
FBM with voltage-dependent Na channels. 

FBM has also been tested for a possible effect on 
excitatory amino acid receptors. It inhibited 
N-methyl-D-aspartate (NMDA)- and quisqualate- 
induced seizures in mice but did not significantly 
inhibit MK-801 binding (Sofia et al., 1991). How- 
ever, FBM has been shown to inhibit the binding of 
[3H]-5 ,7-dichlorokynurenic acid, a competitive an- 
tagonist, at the strychnine-insensitive glycine site of 
the NMDA receptor (McCabe et al., 1993). FBM 
also reduced the ability of glycine to  enhance 
NMDA-induced Ca currents in cerebellar granule 
cells measured by the fluorescent probe indo-1. In 
other studies, D-serine, a glycine-site agonist, was 
administered cerebroventricularly in audiogenic 
seizure-susceptible mice and produced a parallel 
right shift in the FBM anticonvulsant dose- 
response curve (Harmsworth et al., 1993). Although 
not conclusive, these results suggest that FBM ac- 
tivity at the glycine site of the NMDA receptor may 
be related to the antiepileptic mechanism'of action. 

GBP 

GBP, 1-(aminomethy1)cyclohexaneacetic acid, is 
a cyclic GABA analogue originally designed to  
mimic the steric conformation of GABA (Schmidt, 
1989), to have high lipid solubility that permits pen- 
etration of the blood-brain barrier, and to be a cen- 
trally active GABA agonist with potential therapeu- 
tic value (Rogawski and Porter, 1990). GBP has 
been shown to have anticonvulsant activity in a va- 
riety of animal seizure models (Bartoszyk et al., 
1986) and is effective in the treatment of human 
partial and generalized tonic-clonic seizures. 

Despite its demonstrated efficacy, the anticon- 
vulsant mechanism of action of GBP is not known. 
Early work suggested that  GBP may ac t  on  
GABAergic neurotransmitter systems; studies 
showed that it protected mice from tonic extension 
in chemical convulsion models using inhibitors of 
GABA synthesis (3-mercaptopropionic acid, isoni- 
cotinic acid, semicarbazide) or antagonists acting 
on the GABA,-receptor complex (bicuculline, pi- 
crotoxin) (Bartoszyk et al., 1983; Bartoszyk and 
Reimann, 1985). However, subsequent work has 
not clearly demonstrated a specific effect of GBP on 
GABAergic neurotransmitter systems. Inhibition of 
monoamine release by GBP in electrically stimu- 
lated rabbit caudate nucleus (Reimann, 1983) and 
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rat cortex (Schlicker et al., 1985) was not modified 
by GABA, baclofen, or bicuculline, suggesting that 
GBP did not act on GABA, or GABAB receptors. 

Binding experiments in rat brain and spinal cord 
have shown that GBP has no significant affinity for 
the GABA, or GABAB binding sites measured by 
[3H]muscimol and [3H]baclofen displacement, re- 
spectively. GBP did not significantly inhibit the 
binding of [3H]diazepam, had only a weak inhibi- 
tory effect on the GABA-degrading enzyme GABA- 
aminotransferase, did not elevate GABA content in 
nerve terminals, and did not affect the GABA up- 
take system (Bartoszyk et al., 1986). However, 
GBP has been shown to increase GABA turnover in 
several regions of rat brain (Loscher et al., 1991). 
Recent work has shown that GBP binds to the novel 
high-affinity site in the CNS (Hill et al., 1993; 
Suman-Chauhan et al., 1993) and is potently dis- 
placed by the anticonvulsant 3-isobutyl GABA 
(Taylor et al., 1993), but the identity of this binding 
site remains uncertain. In addition, GBP has been 
shown to be a substrate for a saturable L-amino acid 
transport system in rat gut tissues (Stewart et al., 
1993). These latter findings raise the possibility of 
an active transport process of GBP across neuron 
membranes. 

In electrophysiologic studies, GBP did not affect 
depolarizations elicited by iontophoretic applica- 
tion of GABA on cultured mouse spinal cord neu- 
rons (Taylor et al., 1988; Rock et al., 1993). In 
addition, GBP appeared to act by GABAR-inde- 
pendent mechanisms in studies with rat hippocam- 
pal slices (Haas and Wieser, 1986) and the feline 
trigeminal nucleus (Kondo et al., 1991). GBP has 
been shown to decrease inhibition evoked by 
paired-pulse orthodromic stimulation of pyramidal 
neurons in the hippocampal slice preparation 
(Dooley et al., 1985; Taylor et al., 1988); however, 
the specific effect of GBP is not known. 

GBP protected mice from convulsions caused by 
strychnine, a glycine-receptor antagonist, but was 
unable to displace [3H]strychnine in binding studies 
at the highest concentrations tested (Bartoszyk et 
al., 1986). Electrophysiologic studies showed no ef- 
fect of GBP on the response of spinal cord neurons 
to iontophoretically applied glycine (Rock et al., 
1993). 

GBP has been tested in animal seizure models 
where seizures are induced by administration of ex- 
citatory amino acids. GBP prolonged the onset la- 
tency of clonic convulsions and tonic extension and 
death in mice after i.p. injections of NMDA, but not 
of kainic acid or quinolinic acid. GBP did not have 
a clear effect on convulsions when these com- 
pounds or glutamate were injected into the lateral 

ventricle of rats (Bartoszyk, 1983). The i.p. injec- 
tions in mice of GBP or the NMDA-receptor com- 
petitive antagonist 3-(( + )-2-carbox ypiperazin-4- y1)- 
propyl- 1-phosphoric acid (CPP) antagonized tonic 
seizures. The effect of GBP, but not of CPP, was 
dose-dependently antagonized by the administra- 
tion of serine, an agonist at the glycine receptor on 
the NMDA receptor complex, suggesting an in- 
volvement of the strychnine-insensitive glycine site 
of the NMDA receptor in the anticonvulsant activ- 
ity of GBP (Oles et al., 1990). 

In unpublished studies cited by Chadwick (1992), 
GBP reportedly antagonized NMDA-induced, but 
not kainate-induced, depolarizations in thalamic 
and hippocampal slice preparations, and antago- 
nized NMDA-induced currents in the presence of 
glycine in cultured striatal neurons, an effect that 
was reversed by addition of serine or increased gly- 
cine. Other studies did not show a significant effect 
of GBP on neuronal responses to iontophoretic ap- 
plication of glutamate or on membrane depolariza- 
tions and single-channel currents evoked by NMDA 
with or without coapplication of glycine (Rock et 
al., 1993). These results, in part, are similar to the 
findings of others, in which GBP had no effect on 
spinal cord neuron depolarizations elicited by ion- 
tophoretically applied glutamate (Taylor et al., 
1988) or pressure-ejected NMDA (Wamil et al., 
1991a). In addition, in extracellular recordings from 
rat hippocampal slice preparations, GBP had no ef- 
fect on long-term potentiation, making it unlike 
NMDA-receptor antagonists (Taylor et al., 1988). 

GBP had no effect on sustained repetitive firing 
of action potentials in mouse spinal cord neurons 
(Taylor et al., 1988; Rock et al., 1993). In other 
experiments using the same neuron preparation, 
high concentrations of GBP (100 pM) reduced sus- 
tained repetitive firing of action potentials. After 
overnight exposure of the cultures to GBP, sus- 
tained repetitive firing of action potentials was re- 
duced by GBP 1 pM (Wamil et al., 1991b). The 
significance of these findings is nat fully established 
at this time. The different results of the studies done 
on mouse spinal cord neurons suggest that GBP 
does not directly interact with voltage-dependent 
Na channels or limit sustained repetitive firing of 
action potentials; therefore, the antiepileptic activ- 
ity of GBP is not attributable to this mechanism of 
action. 

Although most effective in the treatment of hu- 
man partial and generalized tonic-clonic seizures, 
the effect of GBP on absence seizures has been 
studied in both animal models and as add-on ther- 
apy in AED-resistant patients with epilepsy. In an- 
imal studies using PTZ-induced clonic seizures, 
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GBP protected mice from clonic convulsions in 
both the subcutaneous Metrazol test and the intra- 
venous threshold test (Bartoszyk et al., 1986). 
However, in a rat genetic model of absence epi- 
lepsy, GBP increased EEG spike-and-wave bursts 
in a dose-dependent manner (Foot and Wallace, 
1991). In human studies, GBP reduced >50% of 
absence seizures in half of the patients in one study 
(Bauer et al., 1989) and in another study reduced 
absence seizures and generalized spike-and-wave 
complexes in patients undergoing 24-h EEG moni- 
toring (Rowan et al., 1989). In studies of mouse 
spinal cord neurons, GBP blocked responses to Bay 
K 8644, an agonist at the dihydropyridine binding 
site of the L-type Ca channel (Wamil et al., 1991~): 
In other electrophysiologic studies, however, GBP 
did not significantly affect any Ca-channel current 
subtype (T, N, or L), suggesting that the basic 
mechanism of action was not on voltage-dependent 
Ca channels (Rock et al., 1993). 

In summary, the results of several studies have 
not demonstrated that GBP has a major effect on 
ligand- or voltage-gated channels. Further work on 
the high-affinity binding site of GBP should contrib- 
ute significantly to understanding its mechanism of 
action. 

LTG 
LTG, 3,5,-diamino-6-(2,3-dichlorophenyl)-us- 

triazine, a phenyltriazine with weak antifolate ac- 
tivity, was developed in response to observations 
that use of phenobarbital, PRM, and PHT resulted 
in reduced folate levels, and that folates could in- 
duce seizures in experimental animals (Reynolds et 
al., 1966). Initially, antifolate activity was thought 
to be related to anticonvulsant activity, but this has 
not been demonstrated by structure-activity studies 
(Rogawski and Porter, 1990). LTG has anticonvul- 
sant activity in several animal seizure models, in- 
cluding hind-limb extension in MES and maximal 
FTZ seizures in rodents (Miller et al., 1986). It has 
been effective as add-on therapy in the treatment of 
human partial and generalized tonic-clonic sei- 
zures. 

The action of LTG on the release of endogenous 
amino acids from rat cerebral cortex slices in vitro 
has been studied. LTG potently inhibited release of 
glutamate and aspartate evoked by the Na-channel 
activator veratridine and was much less effective in 
the inhibition of release of acetylcholine or GABA. 
At high concentrations, LTG had no effect on spon- 
taneous or potassium-evoked amino acid release. 
These studies suggest that LTG acts at voltage- 
dependent Na channels, resulting in decreased pre- 
synaptic release of glutamate (Leach et al., 1986). 

In radioligand studies, the binding of [3H]batra- 
chotoxinin A 20-ol-benzoate, a neurotoxin that 
binds to receptor site 2 on voltage-dependent Na 
channels, was inhibited by LTG in rat brain synap- 
tosomes. In electrophysiologic studies, LTG 
blocked sustained repetitive firing in cultured 
mouse spinal cord neurons in a dose-dependent 
manner at concentrations therapeutic for human 
seizures (Cheung et al., 1992). These results suggest 
that the anticonvulsant effect of LTG is due to a 
specific interaction at the voltage-dependent Na 
channel, which may result in a preferential de- 
creased of presynaptic glutamate release. 

CONCLUSION 

The currently available AEDs appear to have 
only three major mechanisms of action (Table 2). 
Drugs that are effective against generalized tonic- 
clonic and partial seizures appear to reduce sus- 
tained high-frequency repetitive firing of action po- 
tentials by delaying recovery of Na channels from 
activation. AEDs that are effective against general- 
ized absence seizures appear to reduce low- 
threshold (T-type) Ca currents. Finally, drugs that 
are effective against myoclonic seizures generally 
enhance GABAR inhibition. Although the currently 
available AEDs have been shown to be effective, 
there are patients, especially those with complex 
partial seizures, whose seizures are refractory to 
these AEDs. FBM, LTG, and GBP have shown 
promise in clinical trials and may help in managing 
some refractory patients. Although the mechanisms 
of action of these drugs are unclear, those of at least 
GBP and FBM may be novel (Table 3). Further- 
more, it is probable that AEDs now under develop- 
ment will have actions on new neurotransmitter re- 
ceptors or channels. For example, considerable 
effort has been directed toward developing com- 
pounds that are antagonists of excitatory amino 
acid transmission. With new AEDs that act on dif- 
ferent neurotransmitter receptors or channels, it is 

TABLE 2 .  Antiepileptic drug actions 

Na T-Ca 
channels channels GABAR 

- - Carbamazepine + +  
Phen ytoin + +  
Primidone + 
Valproate + +  ?I + ?I + 
Barbiturates + + 
Benzodiazepines + + +  
Ethosuximide - - 

- - 
? - 

- 
- 

+ +  
Na, sodium; GABAR, y-aminobutyric acid, receptor; T-Ca, 

T-type calcium channel. 
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TABLE 3 .  New antiepileptic drug actions 

Na T-Ca 
channels GABAR channels NMDAR 

Felbamate + ? + 
? Gabapentin + 

? ? Lamotrigine + + - 

- 
- - 

Na, sodium; GABAR, y-aminobutyric acid, receptor; T-Ca, 
T-type calcium channel; NMDAR, N-methy1-D-aspartate recep- 
tor. 

hoped that patients refractory to available AED 
therapy will become medically treatable. 

Approaches to the investigation of the mecha- 
nisms of action of AEDs to date have been fairly 
descriptive. With the recent development of new 
molecular biologic techniques for the study of CNS 
function and the cloning of cDNAs for specific neu- 
rotransmitter receptors and ion channels that are 
targets of AEDs, it may be possible to study more 
closely the interaction of AEDs with their target 
receptors or channels. This will assist in elucidating 
channel and receptor structure and may also pro- 
vide insights into the interactions of AEDs with re- 
ceptors and channels. Insights gained from these 
studies may assist in the design of improved AEDs, 
which may act on the same receptors or channels as 
standard AEDs but may have more specific or se- 
lective actions. 
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