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A Monte Carlo model for simulating final-stage sintering 
has been developed. This model incorporates realistic micro- 
structural features (grains and pores), variable surface dif- 
fusivity, grain-boundary diffusivity, and grain-boundary 
mobility. A preliminary study of a periodic array of pores 
has shown that the simulation procedure accurately repro- 
duces theoretically predicted sintering kinetics under the re- 
stricted set of assumptions. Studies on more realistic 
final-stage sintering microstructure show that the evolution 
observed in the simulation closely resembles microstruc- 
tures of real sintered materials over a wide range of diffu- 
sivity, initial porosity, and initial pore sizes. Pore shrinkage, 
grain growth, pore breakaway, and reattachment have all 
been observed. The porosity decreases monotonically with 
sintering time and scales with the initial porosity and diffu- 
sivity along the grain boundary. Deviations from equi- 
librium pore shapes under slow surface diffusion or fast 
grain-boundary diffusion conditions yield slower than ex- 
pected sintering rates. [ Key words: sintering, computers, 
theory, grain growth, microstructure.] 

I. Introduction 

INAL-STAGE sintering is distinguished from earlier stages of F sintering by two characteristics. First, no continuous 
channel of pore space exists in the aggregate.' Individual 
pores are either of a lenticular shape (if they reside on the 
grain boundaries) or are rounded (if they are within a grain). 
The second major signature of the onset of late-stage sinter- 
ing is an increase in the pore and grain-boundary mobilities.'-' 
Pore migration, pore coalescence, pore breakaway (from grain 
boundaries), and grain growth all become important in final- 
stage sintering. The above two characteristics are presumably 
interrelated. Indeed, if a continuous channel of pore space 
spans the junction lines along which three grains meet, nei- 
ther the pore channel nor the grain boundaries are mobile. 

Final-stage sintering kinetics resemble that of an exhaus- 
tion process, proceeding at an ever-decreasing rate toward 
the end state.' The end point density of a sintered body, how- 
ever, is frequently dictated by the amount of residual porosity 
trapped within the grains as a result of pore breakaway from 
migrating boundaries during grain growth.' These observa- 
tions strongly suggest that, although surface and lattice diffu- 
sion may be important in earlier stages of sintering, it is 
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grain-boundary diffusion that is primarily responsible for 
pore shrinkage in final-stage sintering. Nevertheless, surface 
diffusion may be pertinent for pore and thereby it 
may affect both microstructure and ~interability.~,~ 

Even if pores do not break away from grain boundaries, so 
that the theoretical density is eventually achieved, no univer- 
sal kinetics for pore shrinkage, to our knowledge, has been 
established. This uncertainty in sintering kinetics probably 
reflects the microstructural, microphysical, and microchemi- 
cal variability inherent in the initial state (especially if they 
affect the path of final-stage sintering). Examples of such 
variability include, but are not limited to, grain-boundary and 
surface energies and diffusivities, grain-size and pore-size 
distributions, residual stresses, and chemical composition. 
Existing models of final-stage ~intering. ' ,~-~,~- '~ have mostly ig- 
nored such complications and have dealt with simplified, hy- 
pothetical (usually periodic) configurations of pores and grain 
boundaries. In many respects, such models have failed to 
quantitatively predict the kinetics and microstructures of 
final-stage sintering. Clearly, an alternative approach to the 
sintering problems which accounts for the above aspects of 
final-stage sintering would be desirable. 

In this and the following paper" (hereafter referred to as 
part 11), we report a new approach to studying late-stage 
sintering which employs a hybrid Monte Carlo computer- 
simulation algorithm. This approach is built upon a methodol- 
ogy that was previously developed to simulate grain gro~th , ' ' , '~  
recry~tallization,~~.'~ and other forms of microstructural evo- 
l ~ t i o n . ' ~ , ' ~  Using this technique, we are able to treat micro- 
structural complexity by including grain-boundry and pore 
topology, as well as their detailed environments, and sample a 
large statistical ensemble of such configurations. Multiple ki- 
netic mechanisms are incorporated by assigning different 
Monte Carlo probabilities to various rate processes corre- 
sponding with the large variety of experimental conditions 
encountered in sintering. Although our present simulations 
have been performed in two dimensions, the resultant micro- 
structures may be compared with cross sections of true three- 
dimensional materials. 

The present paper begins by examining the details of the 
model and the simulation techniques. A simulation of the evo- 
lution of a bicrystal containing periodically spaced pores along 
its grain boundary is then used to calibrate the pore-shrinkage 
kinetics and is followed by simulations of more realistic micro- 
structures of grains and pores. In presenting and discussing 
these results, emphasis will be placed on the role of the basic 
atomic processes. Part 11" analyzes the grain and pore topol- 
ogy, their size distributions and correlations, the sintering ki- 
netics, and the scaling laws governing the microstructural 
correlations and evolution during late-stage sintering. 

11. Model and Simulation Method 

( I )  Mapping of Grains and Pores 
To incorporate the shape and size distributions of grains 

and pores into our simulation, the microstructure is mapped 
onto a discrete triangular lattice (Fig. 1). The basic technique 
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Fig. 1. Mapping of a microstructure onto a triangular lattice. Solid 
lines rapresent grain boundaries or surfaces, positive numbers at 
each site indicate the local orientation of the grain in the vicinity 
of the site, and zeroes and shading indicate pores. 

is identical with the one used by Anderson et al.I2 in their 
computer simulations of grain growth, with a modification to 
account for pores. Each lattice site is assigned a number be- 
tween 1 and Q, corresponding to the orientation of the grain 
in which it is embedded. In the case of pores, the lattice site 
is assigned a number zero. In analogy with a magnetic system, 
we will refer to these site-orientation numbers as spins. A suf- 
ficiently large number of possible grain orientations (Q) are 
chosen so that grains of like orientations impinge infrequently 
(Q = 100). In our previous studies on grain growth and other 
phen~menon,”-’~ we have already confirmed that the simula- 
tion results of different Q are nearly indistinguishable from 
each other when Q > 50 is used. 

(2) Energetics of Grain Boundaries and Pore Surfaces 
The grain-boundary and surface energies (ERb and E,,  re- 

spectively) are specified by defining interactions between 
nearest-neighbor lattice sites. The Hamiltonian describing 
these interactions is 

where S, is the spin 0 5 S, 5 Q, Gab is the Kronecker delta, 
J(x)  = Egb if x > 0, and J ( x )  = E ,  if x = 0. The sum is taken 
over all nearest-neighbor (nn) sites. Thus, nearest-neighbor 
pairs contribute ERb to the system energy when they are of 
unlike orientation, i.e., at the grain boundary. They con- 
tribute E,  to the system when only one of the pair is zero, i.e., 
at the pore surface. Neighboring pairs of like orientation are 
within the same grain and neighboring pairs of zeroes are 
within the same pore; this establishes the zero of the energy 
scale. In this way, the excess energy at 0 K may be fully at- 
tributed to grain boundaries and free surfaces. The reference 
free energy of the bulk, of both the grains (solid) and the 
pores (vacuum), is taken to be zero. 

Note that both the grain-boundary and surface energies 
have a slight anisotropy because of the mapping of the model 
onto a lattice. The orientation dependence of the energy of a 
straight interface segment exhibits a ratio of the maximum to 
minimum interfacial energy of 2 / V 3  = 1.15 on the triangular 
lattice. Because this ratio is close to unity, both interfacial 
energies may be viewed as being nearly isotropic. 

(3) Kinetics 
(A) Boundary Motion: The kinetics of boundary migra- 

tion are simulated by employing a Monte Carlo technique.” 
In this method, a lattice site is chosen at random; if it is a 
grain site (S, > 0), a new trial orientation from 1 to Q is ran- 
domly selected. If the new trial configuration lowers the total 
energy of the system, according to Eq. (l), the new orienta- 
tion is accepted; otherwise, the old value is retained. Such a 
sequence of steps has the effect of lowering the total grain- 
boundary energy during the course of microstructural evolu- 

tion. Indeed, it simulates the process of normal grain growth 
as demonstrated previously by Anderson et al. 1 2 ~ 1 3  Because 
such a reorientation will occur only when the site is on the 
grain boundary and the new orientation is that of the adjacent 
grain (except at the earliest times), this process may be 
viewed as an “atomic” jump across the grain boundary, with a 
net result of causing grain-boundary migration. Later, we will 
refer to the rate at which this “diffusion” or migration process 
occurs as D,. 

(B) Surface Diffusion of “Vacancies’? If the randomly 
chosen site at any step of the simulation belongs to a pore, 
then one of its neighboring sites is selected, at random, and a 
trial exchange of the two spins between these sites is at- 
tempted. The energy change AE caused by the exchange is 
computed according to Eq. (1). Although such exchanges 
could be accepted only when AE 5 0, spin-exchange dynam- 
ics are more susceptible to the lattice anisotropy than the 
spin flip (reorientation) dynamics used for boundary migra- 
tion. As a consequence, the exchange is performed with a 
probability 

P = q[1 - tanh (AE/2kT)] (2 )  

where T is a fictitious temperature associated with this proc- 
ess. This finite temperature transition probability ameliorates 
some of the effects of the anisotropy/discreteness of the lattice. 
Note that, except for a factor q, the probability is essentially 
zero if AE > > kT, and is unity if AE < < 0. The prefactor 
q( <1) dictates that such transition occurs only occasionally. 

Although the algorithm previously described permits sur- 
face diffusion at any rate slower than D,, in reality, surface 
diffusion may actually occur faster than the atomic jumps 
across the grain boundary which lead to grain-boundary mi- 
gration. This limitation can be removed by employing a book- 
keeping algorithm that distinguishes grain-boundary sites 
from surface sites and allowing updates of the surface sites 
more frequently in the Monte Carlo sampling (i.e., q > 1). In 
this way, the rate of surface diffusion can be varied without 
restriction. We will refer to the rate at which these surface 
diffusion attempts occur (implemented by the above sampling 
algorithm described earlier and Eq. (2)) as D,. 

(C) Pore Shrinkage: In the present simulation, we will 
assume that pore shrinkage occurs by grain-boundary diffu- 
sion only. To envision this process, we may select a pore at 
random and allow it to shrink, with a certain probability, by 
removing a vacancy at one of its junctions with the grain 
boundary. Physically, pore shrinkage involves outward diffu- 
sion of the vacancies along grain boundaries and shedding 
them uniformly between pores along the grain boundary.” 
Furthermore, the driving force for pore shrinkage comes from 
the pore surface tension and, hence, is inversely proportional 
to the pore size r. In two dimensions, the diffusion distance 
for this vacancy diffusion is of the order of the pore spacing 
A. Therefore, we may write the shrinkage probability as 

D y = -  
rA (3) 

where D is a scaling constant. A rigorous proof of Eq. (3) is 
given in Appendix A for periodically spaced pores along a 
grain boundary. 

To implement this model in our simulation, we note that 
both r and A vary from pore to pore. In particular, the pore 
spacing pertaining to the diffusion distance of vacancies 
emitted from a pore cannot be easily estimated. Indeed, a 
diffusing vacancy will execute a random walk along the grain- 
boundary network, as shown in Fig. 2, until it reaches an- 
other pore. The mean-squared distance a random walker gets 
from its origin is proportional to the number of steps it has 
taken, N. 

Motivated by these considerations, we may identify A, as a 
root-mean-square distance (proportional to N”’), and rewrite 
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Fig. 2. Random walk of a diffusing vacancy along a grain- 
boundary network. Solid lines indicate grain boundaries, dark re- 
gions indicate pores, and dashed line indicates a possible random 
walk path. 

Eq. (3) as follows: 

N = (g)’ (4) 

When a vacancy site at the junction of a grain boundary with 
a pore is chosen during the random sampling, then it will be 
allowed to wander along the grain-boundary path for N steps 
in any direction. If it has reached another pore by the end of 
the N steps, the initial site is reassigned to become a grain 
site with an orientation matching either one of the adjoining 
grains, and the vacancy is removed from the system. (The 
latter process is equivalent to placing the vacancy at the outer 
surface of the simulated body, i.e., shrinkage on a macro- 
scopic scale.) If the random walk fails to reach another pore, 
then the initial configuration remains and the simulation pro- 
ceeds. In Eq. (4), r is calculated by counting the total number 
of sites in the pore and taking its square root. In this way, we 
are able to implement the basic kinetic law, dictated by 
Eq. (3), while giving a proper account to the variations of r 
and A in the local microstructure. The essence of diffusion 
which governs pore shrinkage is embodied by the random- 
walk process. 

Finally, in order that the shrinkage lowers the total energy, 
the energy change in converting to the final configuration is 
computed and the entire process is accepted with a probabil- 
ity given by [1 - tanh (AE/2kT)]. (This is essentially equiva- 
lent to the kinetics dictated by the absolute rate theory.) The 
rate at which the pore shrinkage occurs is determined by the 
value of DIB, which thereby sets the rate of atomic diffusivity 
along the grain boundary necessary for pore shrinkage. Later, 
we will refer to the rate at which this process proceeds as Dgb. 

(4) Time Scale, Size Scale, and Boundary Conditions 
The time scale used in the simulation is designated as that 

required to choose all of the lattice sites once for an at- 
tempted change, whether it is successful or not. We refer to 
this time as one Monte Carlo step (MCS). Because the 
present simulations are performed on 200 x 200 lattices, 
1 MCS corresponds to lo4 attempts. Typical simulation runs 
last from lo4 to 10’ MCS, depending on the choice of param- 
eters. These systems sizes and times are at least comparable 
with the ones we used previously for successful simulations of 
grain growth and other similar phen~menon.’~-’’ They are 
deemed sufficient to avoid artifacts. 

Although we have associated lattice sites in our simulation 
with vacancies and atoms, the artificial lattice created here is 
mainly for the convenience of designating microstructural 
characteristics and not for representing atomistics. Thus, the 
growth or shrinkage of a grain or a pore by one site would be 

more appropriately interpreted as an evolution increment by a 
unit volume. Indeed, we have used macroscopic rate equa- 
tions only in directing the simulation process performed on 
each site. It is in this sense that we simulate grain-boundary 
migration (Dm),  surface diffusion ( D s ) ,  and pore shrinkage 
through grain-boundary diffusion (Dgp). 

Periodic boundary conditions are imposed in both direc- 
tions in all simulations. In all, five independent trials have 
been averaged over for each set of parameters to obtain data 
without undue statistical fluctuations. 

111. Sintering of a Periodic Array of Pores 

To check the validity of our method, the sintering of a peri- 
odic, linear array of pores along a grain boundary was simu- 
lated and compared with the analytical theory underlying 
Eq. (3). The initial size, shape, and spacing of all the pores 
were identical. To ascertain the effect of various parameters 
that enter the shrinkage equation, we varied the initial pore 
spacing (by a factor of 2) and the ratio of Dgb to D, (from 0.1 
to 1.0). The ratio of surface to grain-boundary energy, E,/Egb, 
was set equal to unity, in agreement with data on typical 
oxide ceramics.” The thermal energy kT was set at OSkT,, 
where T, is the temperature at which the present spin model 
“melts” or disorders. The surface diffusivity was chosen such 
that pore equilibrium proceeds much faster than grain growth, 
i.e., Ds/D, = 10. 

Figure 3 shows a series of micrographs taken for a simula- 
tion with an initial pore-separation A (center to center) of 45 
(lattice constants) and a pore radius of 5 (lattice constants). 
The pores are initially hexagon shaped, which is the equi- 
librium shape in the triangular lattice when E, = Egb. As sin- 
tering proceeds, the pores shrink and become less regular but 
are still compact and relatively equiaxed, because the dihe- 
dral angle is 120” when E ,  = Egb, The nonuniformity in grain 
shape observed is a result of both the discreteness of the lat- 
tice and the finite temperature surface diffusion kinetics. 
Note that the grain boundary remains straight between pores 
but moves so as to connect the pores at their points of mini- 
mal separation. This is expected from the minimization of 

Fig. 3. Time evolution of a periodic array of pores along a straight 
grain boundary. Microstructures correspond to (top to bottom) 
times of 0, lo4, 3 x lo4, lo5, and 3 x lo5 MCS. 
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the grain-boundary energy. Similar observations have been 
made in other simulations at different initial pore sizes and 
pore spacing. 

The kinetics of the pore shrinkage are summarized in 
Fig. 4. According to the theoretical analysis in Appendix A, 
the pore size, in a periodic array, should decrease with time 
as 

where C is a constant and r(0) is the initial pore size. To make 
a direct comparison with this prediction, the data in Fig. 4 
are plotted by normalizing pore size by the pore spacing (A) 
and time h4/Dgh. The data, normalized in this manner, ex- 
hibit a slope of unity in Fig. 4; furthermore, they cluster to- 
gether along the same straight line, as expected from Eq. (5). 
Note that the data for higher Dgb suggest that the microstruc- 
tures sinter slightly more slowly (in these normalized units) 
compared with rest of the data. This is possibly due to the 
less complete equilibration of the pore shapes during densifi- 
cation. In all, the agreement among the different data sets is 
good, and the theoretically predicted linear relationship ap- 
pears to hold over at least 4 orders of magnitude. 

IV. Microstructure Evolution and Kinetics During 
Final-Stage Sintering 

Figure 5 shows the temporal evolution of a typical poly- 
crystalline microstructure during final-stage sintering. The 
initial microstructure was prepared to a specified initial 
porosity and pore size by performing a grain-growth simula- 
tion until the grain size reached the desired pore size, then 
randomly reassigning grains as pores until the desired poros- 
ity was achieved. (The procedure for simulating grain growth 
follows that reported by Anderson et al.") The preparatory 
simulation was then continued until further growth was ar- 
rested by the pinning of grain boundaries on the pores. Dur- 
ing the latter step, no sintering was allowed, i.e., Dgh = 0 but 
D, z 0. The initial porosity was chosen to be on the order of 
9%, which was appropriate for the onset of final-stage sinter- 
ing without connected pore space (Appendix B).' The initial 
(linear) pore and grain sizes were 3.5 and 15.7, respectively. 

m 
n 

mm pm 
1 0 - 3  1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1  1 I ~ ~ ~ J  I ~ 1 1 1 ~  I 1 1 1 1 1  

10-2 10-1 100 10' 102 1 0 3  

( ~ ~ 1 ~ 4 )  t 
Fig. 4. Normalized pore shrinkage kinetics for regular arrays of 
pores for simulations using different pore spacings A and grain- 
boundary diffusivity D,. 

. 

Fig. 5. Microstructural evolution of a porous polycrystalline solid 
undergoing final-sta e sintering where Dgb/Dm = 0.1 and DJD, = 

size, and grain size were 9.8%, 3.5, and 15.7, respectively. 
1: (A) 1, (B) 3 x 10,  8 and ( C )  3 x lo5 MCS. Initial porosity, pore 

All other parameters were set to their standard values, i.e., 
those noted in the previous section. 

Several salient features may be noted in Fig. 5. Densifica- 
tion is clearly evident in these micrographs. Pores that are 
either larger than the mean pore size or relatively isolated 
appear to shrink more slowly than the mean pore size. Sig- 
nificant grain growth is seen only after the pores begin to 
disappear. Depinning of a grain boundary may occur either 
by the shrinkage of a pore, by a grain boundary pulling off of 
a pore, or by some combination of these. When a grain 
boundary pulls away from a pore, the pore remains within a 
grain and does not shrink until, at a later time, it is reattached 
to a moving grain boundary that happens to come its way. 
Pores along grain boundaries equilibrate toward a lenticular 
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shape, although the discreteness of the triangular lattice and 
the diffusion of inidividual vacancies precludes the attain- 
ment of ideal, smooth shapes. Careful comparison of the 
microstructures at different times also reveals the cooperative 
motion of pores and grain boundaries so as to minimize the 
grain-boundary energy, although at a rate much slower than 
that of normal grain growth. 

The decrease of porosity with sintering time is shown in 
Fig. 6. Included in this plot are data from three sets of simula- 
tions with different initial porosity. On this plot (porosity, @, 
versus log t ) ,  these data show a characteristic sigmoidal shape. 
This can be seen more readily in the normalized plot, Fig. 7, 
in which Q is divided by the initial porosity, @". The initial 
flat portion of the sintering curve simply reflects the very 
short initial time period which is insufficient for any sintering 
action to occur. The final flat portion is mostly due to the 
residual porosity trapped within the grains, which may be re- 
moved only whenlif the pores become reattached to the grain 
boundaries after subsequent grain growth. The very long time 
required for the latter process suggests that this reattachment 
process may not be observable in typical sintering experi- 
ments, which last only for hours. Thus the shrinkage rate, 
d@/dt, is a decreasing function of time once the initial "incu- 
bation period" has passed, in agreement with common experi- 
mental observations that sintering kinetics resemble that of 
an exhaustion process.','' 

To further investigate the role played by grain-boundary 
diffusion in the sintering process, we have performed a set of 
simulations in which the value of Dgb/Ds is varied from 0.01 to 
10.0. These results are displayed in Fig. 8, which shows that 
the sintering rate slows with decreasing Dgb/Ds. After normal- 
ization of the sintering time by Dgb, (see Fig. 9), all the data 
sets collapse onto a single curve with only small deviations. 
However, it is obvious that the simulations with higher Dgb 
values sinter slower (in normalized time), as shown in the 
simulations of the periodic array of pores. A closer examina- 
tion of the microstructures from the simulation with the 
highest grain-boundary diffusivity (Fig. lo), reveals that the 
pores are less lenticular compared with the ones in Fig. 5 
(where Dgb/Ds = 0.01), fewer grain boundaries appear to be 
pinned by pores, and both the grain size and porosity appear 
to be larger. Thus, allowing pore shrinkage to proceed too 
rapidly apparently hampers the attainment of full equilibra- 
tion of the pore shape and decreases their effectiveness as 
pinning obstacles for grain-boundary motion. As a lenticular- 

i xxx% 
I i 

t (MCS) 
Fig. 6. Dependence of the porosity evolution kinetics on the ini- 
tial porosity Qo where Dgb/Dm = 0.1 and DJD, = 1. 

1 .o 
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0.2 I- 

t (MCS) 
Fig. 7. Dependence of the porosity evolution kinetics on the ini- 
tial porosity Qo, where D,b/D, = 0.1 and DJD,,, = 1. Porosity has 
been normalized by the initial porosity (Do. 

shaped pore intersects a larger section of a grain boundary 
than does an equiaxed pore (for dihedral angles less than 
M O O ) ,  it is easier for a grain boundary to pull off of a nonequi- 
librated pore than an equilibrated one. 

V. Discussion 

We have introduced three quantities into the present sin- 
tering model which govern the rates of the elementary kinetic 
processes during final-stage sintering. These are as follows: 
the surface diffusivity (DJ, pertaining to the site exchange of 
a vacancy on the pore surface; the grain-boundary diffusivity 
(Dgb), pertaining to the pore shrinkage via Eq. (3); and an- 
other rate constant (Dm), pertaining to the site exchange of 
an atom across the grain boundary and, hence, the grain- 
boundary mobility. Lattice diffusivity is not introduced into 
the present model. Note that, in a pure substance, Dgb and D, 

t (MCS) 
Fig. 8. Dependence of the porosity evolution kinetics on the ratio 
of Dgb/Ds, where the initial porosity, pore size, and grain size were 
9.7%, 3.5, and 15.7, respectively. 
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Fig. 9. Dependence of the porosity evolution kinetics on the ratio 
of Dgb/Dm, where the initial porosity, pore size, and grain size were 
9.7%, 3.5, and 15.7, respectively; time has been normalized byDg,,. 

are presumably related to each other: both the sintering rate 
and grain growth involve atomic diffusion processes at the 
grain boundary. In almost all ceramics of practical interest, 
however, the mobility of a grain boundary is more likely to be 
dictated by solute drag, as a result of space charge or elastic 
interactions between impurities and the grain boundary, than 
by the intrinsic mobility of the grain boundaries?." As a re- 
sult, the mobility of grain boundaries is kinetically tied to 
lattice diffusion and the overall rate is dependent on the 
chemistry in the near-grain-boundary region." Thus, it is 
more appropriate to regard Dgb and D ,  as two independent 
quantities, as in our Monte Carlo simulation. 

Given the above perspective, we may now associate each of 
the three kinetic quantities with certain processes of interest 
in final-stage sintering. D, is associated with the mobility of 
pores and the ability of pores to remain as equilibrated shapes 
during their migration and shrinkage, Dgb is associated with 
the shrinkage rate of pores, and D, is associated with grain- 
boundary mobility and grain growth. With the specification 
of the ratio of surface energy to grain-boundary energy (which 
determines the dihedral angle) and the assumption that vapor 
transport and lattice diffusion are unimportant, we believe 
that our model incorporates all of the basic kinetic and en- 
ergetic parameters necessary to describe final-stage sintering. 

This Monte Carlo simulation technique allows us to under- 
stand the relationship between the evolving microstructure 
and the physical processes that control final-stage sintering. 
The apparently realistic microstructures generated in our simu- 
lation attest to the richness and variety of the features asso- 
ciated with final-stage sintering. Presumably, the kinetic and 
topological data found in the simulation are influenced by the 
same variables as are experiments using real materials. De- 
spite this complexity, it is encouraging that the basic scaling 
relationship of the shrinkage kinetics (a vs D8gbf) is mani- 
fested. In part 11," a detailed analysis will be attempted to 
establish other basic laws governing kinetics and microstruc- 
tural evolution in such a setting. 

Two shortcomings still remain in the correspondence be- 
tween our model and final-stage sintering in real materials. 
First, elastic stresses will arise if there is an inhomogeneous 
depletion of atoms from grain boundaries that fill the pores. 
In this sense, sintering is an elastodiffusion problem that 
requires the solution of a set of equations governing stress 
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Fig. 10. Microstructural evolution of a porous polycrystalline 
solid undergoing late-stage sintering, where Dgb/Dm 1s 10 and D,/D, 
is 1. Initial porosity, pore size, and grain size were 9.8%, 3.5, and 
15.7, respectively. 

equilibrium and Fick's law, under appropriate boundary con- 
ditions. This is not addressed in our model. Instead, to ac- 
count for pore shrinkage, we have adopted a simplified 
method (which is strictly valid only under periodic boundary 
conditions) and modified it for more general use by requiring 
that (1) the diffusion distance is related to the distance be- 
tween a pore and its neighboring pores and (2) that the diffu- 
sion takes place along the actual, local grain-boundary 
network. Because elastic stresses are expected to be largely 
relaxed when the diffusion distance becomes comparable 
with the pore spacing, we believe that our model satisfies 
the major physical constraint that arises from the elasticity- 
diffusion considerations. 

The second deficiency comes from the two-dimensional na- 
ture of our model. It will become clear in part 11" that some 
key processes governing the microstructural evolution in a 
porous polycrystal have different scaling behavior in two and 
three dimensions. These include the shrinkage equation, the 
grain growth law, and the breakaway condition for pores. 
Thus, despite the striking apparent resemblance of the micro- 
structure obtained in our two-dimensional simulations to 
those observed in real material experiments, an improved 
computer simulation in three dimensions will still be required 
to make quantitative predictions of sintering rates in real ma- 
terials. Nonetheless, this model provides the first direct 
method of evaluating the role and magnitude of a wide range 
of physical processes and initial conditions on microstruc- 
tural evolution during final-stage sintering. Furthermore, be- 
cause of the availability of relationships between grain 
growth and coarsening in two and three  dimension^,^^,'^ it is, 
in many cases, possible to extend the understanding devel- 
oped on the basis of the present two-dimensional simulations 
to three dimensions. 
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VI. Summary 

A computer simulation of final-stage sintering has been 
performed using a two-dimensional triangular lattice onto 
which the realistic microstructural features of grains and 
pores have been mapped. Surface diffusion of vacancies, 
grain-boundary diffusion for pore shrinkage, and grain- 
boundary migration for grain growth were incorporated into 
the model based upon Monte Carlo procedures. The dihedral 
angle was set at 120” by equating the surface and grain- 
boundary energies. A preliminary study has shown that the 
simulation procedure accurately reproduces theoretically pre- 
dicted sintering kinetics under the restricted set of assump- 
tions in which analytical solutions can be obtained. 

Over a wide range of diffusivity, initial porosity, and initial 
pore sizes, the microstructural evolution obtained by the 
simulation closely resembles microstructures of sintered ma- 
terials viewed in cross section that have been reported in the 
literature. Pore shrinkage, grain growth, pore breakaway, and 
reattachment have all been observed. The porosity decreases 
monotonically with sintering time and scales with the initial 
porosity and diffusivity along the grain boundary. Deviations 
from equilibrium pore shapes under slow surface diffusion or 
fast grain-boundary diffusion conditions yield slower than ex- 
pected sintering rates. 

APPENDIX A 

Consider the sintering of a periodic, linear array of pores 
along a grain boundary in two dimensions (see Fig. 3.)  These 
pores are infinitely long cylinders spaced at a distance A 
apart. The distance between the tips of the pores is d ,  which 
is smaller than A by the width of the pores. The sintering 
solution we seek is essentially a variation of the one obtained 
by Speight and Beere for spherical-cap pores in three dimen- 
sions.” A s  they pointed out for the analogous problem of 
pore growth under an external tensile stress, pore growth or 
shrinkage occurs because of the ability of the grain boundary 
to behave as a perfect source and sink of vacancies. In the 
steady state, when stress redistribution is complete, vacancy 
formation or absorption must occur at a constant rate over 
the entire boundary area. The diffusion equation of vacancies 
can then be written as 

where c is the vacancy potential normalized by kT (thermal 
energy), 6gb is the boundary thickness, Dgb is the grain- 
boundary self diffusivity, and vgb is the velocity that the adja- 
cent grains approach each other upon vacancy absorption. To 
determine v g b ,  we first relate the vacancy potential to the nor- 
mal tensile stress m through c = aCl/kT, where Cl is the atomic 
volume. The boundary condition at the tip of the pore is 
utip = y/r, where y is the surface tension, and r the tip radius 
of curvature. In the absence of an external stress, the integral 
of stress over d and the surface tension over the pore must 
balance to give a zero net stress. 

d 
r- 

Equations (Al) and (A2)  and the boundary condition provide 
the following solution for c: 

where x is the coordinate originated at the midpoint between 
two adjacent pores and 

The total shrinkage rate, as pointed out by Speight and Beere, 

is given by Vgbh and not vgbd, because the two halves of the 
pore also approach each other at the same velocity. Thus, if 
r << A,  we obtain 

(‘45) 

where A is the cross-sectional area of the pore and k is the 
rate of change of A in two dimensions. Equation (A5) has the 
same form as Eq. (3) .  

Lastly, if the pore has a uniform curvature, i.e., it is fully 
equilibrated, then 

r = (A - d ) / [ 2  sin (W/2)] (A61 
where W is the dihedral angle. The cross-sectional area of the 
pore is then proportional to r2,  given by 

A = (W - sinY)r2 647) 
From Eq. (A7)  the cubic shrinkage equation for r (Eq. (5)) 
follows by integration of Eq. (A5). 

APPENDIX B 

We here present a model for the characteristic porosity at 
the onset of final-stage sintering. The model is based on the 
suggestion of Nichols that the continuous channel of pore 
space in intermediate-sta e sintering eventually breaks down 

Following Coble,’ we model a representative grain in a uni- 
formly packed, partially sintered polycrystal as a tetrakaideca- 
hedron. Tetrakaidecahedra have 14 faces and are connected 
by 36 edges of equal length A. It is well-known that a te- 
trakaidecahedron is also the Wigner-Seitz cell of a body cen- 
tered lattice. If we let the cube edge of the body-centered unit 
cell be a,  then the tetrakaidecahedron is an octahedron trun- 
cated by the cube faces and the octahedral faces are the 
perpendicular bisectors of eight body diagonals between 
cube corners and the body center. It can be shown easily that 
the length of an edge is given by A = a/22/2 .  Recall that a 
Wigner-Seitz cell is always a primitive cell, consisting of one 
lattice point, and that a cube in a body-centered lattice con- 
tains two lattice points, the volume of a tetrakaidecahedron is 
a 3 / 2 ,  or 82/2A3. 

Consider an open pore with positive surface tension which 
is infinitely long, cylindrical in shape, and of radius r .  Such a 
cylinder is unstable against longitudinal shape fluctuations of 
wavelengths in excess of 27rr (see Ref. 25 for more details). For 
a network structure such as the pore channel being discussed 
here, the boundary condition at the nodes where four pore 
channels meet (i.e., four grain corners) further requires that 
the perturbation be a cosine function between two neighbor- 
ing nodes, with a wavelength A/n, where n is an integer. 
Combining these two conditions, we find that the pore chan- 
nel is unstable when A 2 2rrr. 

The critical porosity @* can now be determined. The total 
pore volume along 36 edges is 36rrAr2 (ignoring corner effects). 
Only one-third of this volume is contained in a tetrakaideca- 
hedron because edges are shared by three grains. Therefore, 
the porosity @* is given by ( 3 ~ / 2 2 / 2 ) ( r / A ) ~ .  At the onset of 
Rayleigh instability, A = 27rr, thus, @* = 3 / ( 8 5 ~ )  = 0.0844. 
Therefore, final-stage sintering commences when the porosity 
reaches the critical porosity @ = @* = 8.5%. The recent ex- 
periment on A1203 supports this predictiom2” 

via a Rayleigh instability. $5 
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