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ALCOHOLISM: CLINICAL A N D  EXPERIMENTAL RESEARCH 

Ethanol Feeding Impairs Innate Immunity and Alters 
the Expression of Thl- and Th2-Phenotype Cytokines in 

Murine Klebsiella Pneumonia 
David A. Zisrnan, Robert M. Strieter, Steven L. Kunkel, Wan C. Tsai, Jodi M. Wilkowski, Kathy A. Bucknell, 

and Theodore J.  Standiford 

The prolonged and excessive consumption of alcohol has been 
shown to predispose the host to a variety of infectious complica- 
tions, which may be due, in part, to the inability to produce important 
activating cytokines. In this study, we assessed the effect of chronic 
alcohol ingestion on bacterial clearance, survival, and cytokine 
mRNA and protein expression in mice with Klebsiella pneumonia. 
Two-week ethanol feeding resulted in substantial impairment in the 
clearance of K. pneumoniae and decreased survival, compared with 
CD-1 mice receiving an isocaloric diet without ethanol. No differ- 
ences were noted between control and ethanol groups in the total 
numbers or percent of bronchoalveolar lavage fluid neutrophils or 
macrophages at 24 and 48 hr post-intratracheal K. pneumoniae. Im- 
portantly, the lungs of alcohol-fed mice with Klebsiella pneumonia 
displayed a decrease or delay in the expression of interleukin (IL)-12 
p35 and p40 mRNA and interferon-y mRNA, respectively, as well as 
reduced IL-12 and interferon-y protein levels, compared with con- 
trols. Conversely, a time-dependent increase in lung IL-10 mRNA and 
protein was noted in ethanol-fed animals, compared with control 
animals challenged with K. pneumoniae. In summary, our studies 
indicate that ethanol ingestion results in a profound suppression of 
lung bacterial clearance and decreased survival in Klebsiella pneu- 
monia, which occurs in association with a shift in the balance of lung 
cytokine mRNA and protein expression favoring Th2- rather than 
Thl -phenotype cytokines. 

Key Words: Ethanol, Interleukin-12, Interleukin-10, Tumor necro- 
sis factor, Interferon-y. 

HE PROLONGED and excessive consumption of al- T cohol predisposes the host to a variety of infectious 
complications, particularly bacterial infection of the 
lung. 1-9 The alcohol-induced impairment in lung antimicro- 
bial host defense is due to several factors, including alter- 
ation in both innate and acquired immune responses. Spe- 
cifically, acute ethanol intoxication has been shown to 
impair the mobilization, adherence, and metabolic function 
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of neutrophils [polymorphonuclear leukocyte (PMN) cells] 
both in vitro and in V~VO.~- ' , ' ~  In addition, ethanol exposure 
significantly attenuates the ability of alveolar macrophages 
to phagocytose and kill bacterial pathogens, in part, by 
reducing the generation of oxygen-derived free radi- 

Finally, ethanol impairs cell-mediated immune 
responses by reducing the number and effector cell activi- 
ties of various T-lymphocyte 

The specific cellular mechanism(s) by which ethanol ex- 
posure alters the recruitment and/or activation of leuko- 
cytes at the site of microbial invasion has not been clearly 
defined, but is believed to be due, in part, to the inability to 
produce important activating and chemotactic cytokines. 
Tumor necrosis factor is a cytokine that is required for 
effective lung innate and acquired immunity. The acute, but 
not chronic, infusion of alcohol has been shown to attenu- 
ate lipopolysaccharide (LPS)-induced increases in serum 
tumor necrosis factor (TNF),s3638 as well as the induction of 
TNF in bronchoalveolar lavage fluid (BALF) after the 
intratracheal administration of LPS or live bacteria! organ- 
i s m ~ . ~  We and others have recently shown that Thl-pheno- 
type cytokines, including interferon-? (IFN-y) and inter- 
leukin (IL)-12, are required signals in host defense against 
bacterial, mycobacterial, fungal, and parasitic pathogens, 
whereas the expression of the Th2-phenotype cytokine 
IL-10 is detrimental to lung innate and cell-mediated im- 
munity.12-22 Conflicting data exist regarding the effect of 
alcohol on the expression of Thl  cytokines. For example, 
Alak and associates23 found that prolonged alcohol feeding 
significantly inhibited the production of IFN-y and soluble 
IL-2 receptor from retroviral-infected murine splenocytes. 
In contrast, acute ethanol treatment has recently been 
shown to augment the expression of IL-12 from activated 
human m o n ~ c y t e s . ~ ~  The only study examining the effects 
of ethanol on Th2-phenotype cytokines indicates that the in 
vitro incubation of human blood monocytes can stimulate 
the constitutive and LPS-induced expression of IL-10 from 
human blood monocytes.2s 

In this study, we assessed the effects of prolonged alcohol 
consumption (2 weeks) on the development of lung inflam- 
mation, bacterial clearance, and survival in mice inoculated 
with K. pneumoniae intratracheally (i.t.). In addition, we 
examined the effects of ethanol consumption on the time- 
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dependent expression of Thl  (IFN-y and IL-12)- and Th2 
(IL-10)-phenotype cytokine mRNA and protein in the 
lungs of animals with Klebsiella pneumonia. 

MATERIALS AND METHODS 

Animals 
Specific pathogen-free CD-1 mice (6- to 12-week-old females, Charles 

River Breeding Labs.) were used in all experiments. All mice were housed 
in pathogen-free conditions within the animal care facility at the Univer- 
sity of Michigan (ULAM) until the day of sacrifice. 

Protocol for Alcohol Feeding 

To assess the effects of alcohol on lung innate immunity, two groups of 
6- to 8-week-old female CD-1 received calorie-matched complete liquids 
diets (Bioserve, Frenchtown, NJ), with the alcohol-fed animals receiving 
incremental increases in ethanol content in their diet as follows: ethanol 
2.2% (v/v) X 4 days, then 4.4% X 4 days, and then 6.6% X 6 days. The 
mice were challenged with K pneumoniae on day 14 of ethanol feeding, 
and were continued at 6.6% ethanol until the time of organ harvest or 
death. The blood ethanol level in alcohol-fed animals at the time of K 
pneumoniae administration (2 weeks of ethanol feeding) was 124.7 -C 29.4 
mg/dl. During the 2-week calorie-matched diet, the control mice gained 
2.10 -t 0.11 g, whereas ethanol-fed animals lost 1.07 5 0.19 g. 

Klebsiella pneumoniae Inoculafion 

We chose to use K pneurnoniae strain 43816, serotype 2 (ATTC, 
Rockville, MD) in our studies because K pneumoniae is a common cause 
of pneumonia in chronic alcohol abusers, and this particular strain has 
been shown to induce an impressive inflammatory response in mice.’*26-28 
K pneumoniae was grown in tryptic soy broth (Difco, Detroit, MI) X 18 hr 
at 37°C. The concentration of bacteria in broth was determined by mea- 
suring the amount of absorbance at 600 nm. A standard of absorbencies 
based on known colony-forming units (CFU) was used to calculate inoc- 
ulum concentration. Bacteria were pelleted by centrifugation at 3200 X 
g X 30 min, washed X 2 in saline, and resuspended at the desired 
concentration. Animals were anesthetized with -1.8 to 2 mg pentobarbital 
per animal intraperitoneally. The trachea was exposed, and 30 @I of 
inoculum or saline were administered via a sterile 26-gauge needle. The 
skin incision was closed with surgical staples. 

Determination of Lung K. pneumoniae CFU 

At the time of sacrifice, plasma was collected, the right ventricle 
perfused with 1 ml of phosphate-buffered saline, then lungs removed 
aseptically, and placed in 3 ml of sterile saline. The tissues were then 
homogenized with a tissue homogenizer under a vented hood. Plasma and 
lung homogenates were placed on ice, and serial 1:lO dilutions were made. 
Ten microliters of each dilution was plated on soy base blood agar plates 
(Difco), incubated X 18 hr at 37”C, and then colonies counted. 

Isolation and Amplification of Cytokine mRNAs 

Whole lungs were harvested and immediately “snap-frozen” in liquid 
nitrogen and stored at -70°C. Total cellular RNA from the frozen lungs 
was isolated by homogenizing the organs with a tissue homogenizer in a 
solution containing 25 mM Tris (pH 8.0), 4.2 M guanidine isothiocyanate, 
0.5% Sarkosyl, and 0.1 M of 2-mercaptoethanol. After homogenization, 
the suspension was added to a solution containing an equal volume of 100 
mM Tris (pH 8.0), 10 mM EDTA, and 1.0% sodium dodecyl sulfate. The 
mixture was then extracted two times each with phenol-chloroform and 
chloroform-isoamyl alcohol. The RNA was alcohol-precipitated and the 
pellet dissolved in diethylpyrocarbonate water. Total RNA was deter- 
mined by spectrophotometric analysis at 260 nm wavelength. One micro- 

gram of total RNA was reversed-transcribed into cDNA utilizing a reverse 
transcription kit (BRL) and oligo (dT) 12-1 primers. The cDNA was then 
amplified using specific primers for murine TNF, IFN-y, IL-10, IL-12 p35, 
and IL-12 p40, with p-actin primers serving as the control housekeeping 
gene. The sense and antisense primers used had the sequence 5‘-CCT- 
GTA-GCC-CAC-GTC-GTA-GC-3’ and 5’-TTG-ACC-TCA-GCG-CTG- 
AGT-TG-3’ for TNF; 5’-CAG-CGA-CTC-C?T-TTC-CGC-TT’-3‘ and 5’- 
CCT-CAG-ACT-CIT-TGA-AGT-CT-3’ for IFN-y, 5’-CTA-TGC-TGC- 
CTG-CTC-TTA-3’ and 5‘-ATG-GCC-TTG-TAG-ACA-CCT-3’ for IL- 
10,5’-ACC-TGC-TGA-AGA-CCA-CAG-AT-3’ and 5’-GAT-TCT-GAA- 
GTG-CTG-CGT-TG-3’ for IL-12 p35, 5’-ATG-TTG-TAG-AGG-TGG- 
ACT-3’ and 5‘-GGA-CTG-CTA-CTG-CTC-’ITG-AT-3’ for IL-12 p40, 
and 5’-ATG-GAT-GAC-GAT-ATC-GCT-G-3’ and 5’-GAT-TCC-ATA- 
CCC-AGG-AAG-G-3’ for p-actin, giving amplified products of -380 base 
pairs (bp) for TNF, 243 bp for IFN-y, 455 bp for IL-10,314 bp for IL-12 
~ 3 5 , 3 8 4  bp for IL-12 p40, and 812 bp for p-actin. The amplification buffer 
contained 50 mM KCI, 10 mM Tris-HC1 (pH 8.3), and 2.5 mM MgCI,. 
Specific oligonucleotide primer was added (400 to the buffer, along 
with 4 pI of the reverse-transcribed cDNA samples. The cDNA was 
amplified after determining the optimal number of cycles. The mixture 
was first incubated for 3 min at 94°C then cycled at 94°C for 30 sec, 52°C 
to 58°C for 30 sec, elongated at 72°C for 30 sec, and final extension of 72°C 
for 5 min. The numbers of cycles performed was 26,32, 31, 35,35, and 35 
for TNF, IFN-y, IL-12 p35, IL-12 p40, IL-10, and p-actin, respectively. 
After amplification, the samples were separated on a 2% agarose gel 
containing 0.3 mg/ml (0.003%) of ethidium bromide and bands visualized 
and photographed using UV transillumination. 

Statistical Analysis 

Data were analyzed by a Macintosh I1 computer using Statview I1 
statistical package (Abacus Concepts, Inc., Berkeley, CA). Survival data 
were compared using the xz analysis. All other data are expressed as 
mean t SEM and compared using a two-tailed Student’s t test. Data were 
considered statistically significant if p values were <0.05. 

RESULTS 

Effect of Ethanol Consumption on Survival in K. 
pneumonia 

To assess the effect of ethanol feeding on outcome in 
Gram-negative bacterial pneumonia, CD-1 mice were fed 
either a complete liquid diet containing graded doses of 
ethanol or an isocaloric control diet and then administered 
lo2 CFU K. pneumoniae i t .  As shown in Fig. 1, no lethality 
was observed in control animals until 48 hr post-K pneu- 
moniae administration, with a gradual decline in survival 
thereafter. No lethality was observed after 10 days, with 
nearly 50% of control animals surviving long-term. In con- 
trast, a marked decrease in both early and long-term sur- 
vival was noted in animals receiving the ethanol diet, with 
only 5% of animals surviving past 7 days. 

Effect of Ethanol Consumption on Bacterial Clearance in 
K. Pneumonia 

To determine if the increased lethality observed in eth- 
anol-fed mice with Klebsiella pneumonia was attributable to 
impaired lung bacterial clearance, K. pneumoniae CFU 
were determined in plasma and lung homogenates ob- 
tained from control and ethanol-fed mice 48 hr after the 
intratracheal challenge with lo2 CFU X pneumoniae. Com- 
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Table 1. BALF Cells and Differentials at 24 and 48 Hr after the lntratracheal 
Administration of K. pneumoniae lo2 CFU 

Treatment 24 Hr 48 Hr 

Total BALF cells (x106) 
+ control Control 2.63 2 0.51 3.00 t 0.38 
-t- ETOH ETOH 2.47 2 0.65 2.76 t 0.31 

.- 
Control 0.18 t 0.05 0.79 z 0.17 

m ETOH 0.26 +- 0.08 0.78 t 0.26 

Total BALF PMN ( x  1 06) 

40 - % BALF PMN LS 
Control 7.20 t 0.38 30.4 t 5.5 
ETOH 10.5 f 6.8 24.9 t 6.9 

Control 2.41 ? 0.43 2.15 t 0.37 
1.97 t 0.28 ETOH 2.20 t 0.37 

20 - Total BALF AM ( x  1 06) 

0 I . I . I . I ’ I . 1  % BALF AM 
0 2 4 6  8 10 12 14 Control 92.0 f 3.9 69.1 t 5.5 

ETOH 89.2 -t 6.7 74.8 -t 6.9 Days Post-Inoculation 
Fig. 1. Effect of ethanol   OH) feeding on Survival in ethanol and control 

diet-fed mice after inoculation with K, pneumoniae (lo2 CFU). p < 0.01 at all time 
points after day 6. Experimental, n = 2O/group. 

Control, CD-I mice receiving control diet: ETOH, CD-1 mice receiving ethanol 
diet. Experimental. n = 8-10 animals/group at the 24-hr time point, 16-18 
animals/group at the 48-hr time point. 

l o 7 1  

.. 

ctrl ETOH Ctrl ETOH 

Lung 2 Plasma- 
Fig. 2. Effect of ethanol (ETOH) feeding on K. pneurnoniae CFU in lung 

homogenates and plasma 48 hr after inoculation. Log Klebsiella CFU are ex- 
pressed on the vertical axis. * p < 0.01, compared with the control (Ctrl) diet-fed 
animals. Experimental, n = 12/group. 

pared with control mice, ethanol-fed animals had a 37-fold 
increase in numbers of K pneumoniae CFU isolated in 
plasma 48 hr after K pneumoniae administration (Fig. 2). 
Even more impressively, a greater than 500-fold increase in 
the number of K pneumoniae CFU was found in the lungs 
of alcohol-fed mice, compared with those animals receiving 
control diet. These studies indicate that alcohol ingestion 
results in marked impairment in the host’s ability to contain 
and clear bacterial pathogens after intratracheal challenge. 

Effect of Ethanol Consumption on the Generation of 
Pulmonary Inflammation 24 and 48 Hr after K. 
pneumoniae Administration 

Having determined that ethanol ingestion markedly im- 
paired bacterial clearance and survival in experimental 
Klebsiella pneumonia, we next performed studies to assess 
the effect of alcohol on the influx of inflammatory cells into 
the airspace post-K pneumoniae administration. As shown 
in Table 1, the administration of K pneumoniae 10’ CFU to 

control mice resulted in an increase in BALF PMN, which 
was maximal 48 hr post-K. pneumoniae administration. In- 
terestingly, we observed no significant differences in either 
the percent PMN or the total number of BALF PMN at 24 
and 48 hr in ethanol-fed animals, compared with their 
nonethanol-fed counterparts. In addition, ethanol- and 
nonethanol-fed mice had similar increases in total lung 
myeloperoxidase activity (as a measure of total PMN con- 
tent) at 24 and 48 hr post-K pneumoniue challenge (data 
not shown). Finally, no differences in the percentage or 
total numbers of BAL macrophages was noted between the 
two groups at either time point. These studies indicate that 
alcohol-induced decreases in bacterial clearance and sur- 
vival was not attributable to diminished influx of leukocytes 
early in the course of Klebsiella pneumonia. 

Effect of Ethanol Consumption on the Time-Dependent 
Expression of Thl- and Th2-Phenotype Cytokine mRNAs 
and Protein Levels during the Evolution of K. pneumonia 

Experiments were performed to correlate alcohol-in- 
duced alterations in bacterial clearance with the time-de- 
pendent expression of important regulatory cytokines in 
Mebsiellu pneumonia. Inoculation of control diet-fed CD-1 
mice with K pneumoniue resulted in the expression of TNF 
mRNA in lung homogenates by 1 day postadministration, 
with maximal expression occurring at 6 days post-Klebsiella 
administration (Fig. 3). Interestingly, the expression of 
TNF mRNA in the lungs of alcohol-fed mice was greater at 
all time points, with maximal TNF mRNA levels -3.4-fold 
greater than that observed in the lungs of control animals. 
In contrast, there was a decrease in the expression of both 
IL-12 p35 and p40 mRNA in alcohol-fed mice at 1, 3, and 
6 days postinoculation (maximal 66% and 42% decrease, 
respectively), and a substantial delay in the maximal expres- 
sion of IFN-y mRNA in the lungs of alcohol-fed mice, 
compared with controls. Furthermore, a notable induction 
of IL-10 mRNA was noted at 3 and 6 days post-K. pneu- 
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Table 2. Cytokine Levels in Whole Lung Homogenates at 48 and 72 Hr 
Post-K. pneumoniae (1 0' CFU) Administration 

Cytokine Group 48 Hr 72 Hr 

TNF Saline 0.12 2 0.02 0.18 2 0.04 
Control + Kleb 0.58 f 0.19 2.39 f 0.83 
ETOH + Kleb 1.20 f 0.30' 3.02 f 0.46 

IL-10 Saline 0.29 f 0.09 0.32 2 0.06 
Control + Kleb 0.41 ? 0.08 1.38 ? 0.13 
ETOH + Kleb 0.846 t 0.11' 2.09 2 0.20' 

IL-12 Saline 0.22 f 0.02 0.18 f 0.03 
Control + Kleb 0.65 f 0.1 1 2.64 f 0.31 
ETOH + Kleb 0.36 ? 0.07' 1.64 ? 0.26 

IFN-y Saline ND 0.33 i 0.07 
Control + Kleb ND 2.36 + 0.18 
ETOH + Kleb ND 1.62 + 0.12' 

Control, animals receiving control diet; ETOH, animals receiving ethanol diet; 
Kleb, animals challenged with K. pneumonlae 10' CFU; ND. not done. Experi- 
mental, n = 3/saline group, 8-16 per Klebsiella-challenged mice. 

'p < 0.05, compared with control-fed animals. 

moniue administration in ethanol-fed mice, whereas no 
appreciable induction of IL-10 mRNA was noted in control 
animals challenged with K pneumoniue. To correlate alco- 
hol-induced alterations in lung cytokine mRNA expression 
with cytokine production, we determined cytokine protein 
levels in the lungs of alcohol and control-fed animals with 
Mebsiellu pneumonia at 48 and 72 hr post-Mebsie11u admin- 

Fig. 3. Effect of ethanol feeding on the time-dependent expression Of TNF. 
INF-y, IL-12 p35 and p40, and IL-10 mRNAs in lung homogenates after the 
administration of K. pneumoniae l o z  CFU i.t. Molecular weight markers are found 
to the left. Each lane represents the lungs of 3 animals combined and is repre- istration. As shown in Table 2, there was a significant 

decrease in the levels of lung IL-12 in the alcohol-fed 
group, compared with controls at 48 hr postbacterial chal- 
lenge, and a trend toward decreased IL-12 expression at 72 
hr (p = 0.07). Similarly, IFN-y levels were reduced by 
-33% at 72 hr in alcohol-fed animals, compared with 
animals receiving control diet ( p  < 0.05). Conversely, a 1.7- 
and 1.5-fold increase, respectively, in lung IL-10 levels, 
were noted in alcohol-fed mice, compared with controls at 
48 and 72 hr post-K pneumoniue inoculation (p < 0.05). 

DISCUSSION 

Alcohol exposure has been previously shown to predis- 
pose the host to a variety of infectious complications, par- 
ticularly bacterial infection of the lung.'-9 In this study, we 
observed that experimental alcohol ingestion had a pro- 
found effect on survival in mice inoculated with IC pneu- 
moniue i.t. The increased mortality observed in the ethanol- 
fed group was attributable to impaired bacterial clearance, 
as we observed a substantial increase in numbers of K 
pneumoniue CFU in the lungs of alcohol-fed mice, com- 
pared with those receiving control diet. Alcohol-induced 
decreases in bacterial clearance and survival were not at- 
tributable to a diminished influx of leukocytes to the site of 
bacterial invasion during the course of Mebsiella pneumo- 
nia, because ethanol- and nonethanol-fed mice had similar 
increases in total lung myeloperoxidase activity, and no 
differences in the percentage or total numbers of BALF 
PMN and macrophages were noted between the two 
groups. Our findings are consistent with chronic, but not 
acute, effects of alcohol as reported by Nelson and col- 

sentative of two separate experiments. 

leagues. Specifically, these investigators observed reduc- 
tions in the numbers of BALF PMN in acute ethanol 
intoxication 2 hr after the intratracheal administration of 
LPS or K pneumoniue, but no change in BALF PMN in 
chronic alcoholic rats challenged with LPS Similarly, 
Lister and colleagues29 observed that treatment of rats with 
alcohol resulted in a significant impairment in the clear- 
ance of Streptococcus pneumoniue from the lungs of rats, 
even though lung PMN influx was unaltered. Our observa- 
tions indicate that chronic alcohol consumption diminishes 
bacterial clearance in the lung by a mechanism other than 
altered leukocyte recruitment to the site of bacterial infec- 
tion, and suggest that chronic alcohol use impairs the ability 
of both resident alveolar macrophages and/or recruited 
neutrophils to phagocytose and kill bacterial pathogens 
within the lung, resulting in early dissemination of infection 
to the b lo~ds t r eam.~~  This inability of the host to effectively 
eliminate invading microbes may be due to alcohol-induced 
alterations in the expression of important activating cyto- 
kines required for effective host defense. 

TNF is an essential cytokine required for effective lung 
innate and acquired immunity against a variety of microbes, 
including K p n e u r n o n i ~ e . ~ ' - ~ ~  The effect of alcohol con- 
sumption on TNF expression has been previously investi- 
gated. In vivo, acute alcohol intoxication has resulted in 
significant attenuation of TNF release in response to either 
endotoxin or intrapulmonary challenge with K pneu- 
m o n i ~ e . ~ ~ ~ ~ ~  In contrast, the chronic administration of eth- 
anol (6 weeks) had either no effect or actually enhanced the 
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peak expression of serum TNF postendotoxin administra- 
tion.678 In agreement with the later study, we determined 
that the expression of TNF mRNA and protein in the lungs 
of alcohol fed mice was greater or tended to be greater than 
that observed in the lungs of control animals at all time 
points post-Klebsiellu administration, suggesting an alterna- 
tive mechanism(s) by which chronic ethanol feeding im- 
pairs host defense against bacterial infection of the lung. 
However, because ethanol has been shown to inhibit the 
binding of TNF to PMN and other effector cells,34 we 
cannot exclude a component of impaired TNF bioactivity 
despite enhanced TNF expression. 

IL-10 and IL-12 are cytokines that were initially identi- 
fied as being instrumental to the generation of Th2- and 
Thl-phenotype immune responses, r e ~ p e c t i v e l y . ~ ~ ~ ' ~  More 
recently, these two proteins have been shown to play an 
important role in controlling the magnitude of host inflam- 
matory responses. IL-10 exerts potent anti-inflammatory 
effects both in vivo and in vitro, in part by directly deacti- 
vating PMN and macrophages, and by downregulating the 
expression of several proinflammatory cytokines, including 
TNF, IFN-y, IL-12, and several members of the chemokine 
family.'9335936 Recent studies in our laboratory indicate that 
passive immunization with anti-IL-10 antibodies in mice 
with Klebsiella pneumonia resulted in improved survival 
and bacterial clearance, compared with control animals.,' 
Conversely, the administration of IL-10 to animals with 
pneumococcal pneumonia results in significant attenuation 
of bacterial clearance and decreased survivaL21 In contrast 
to IL-10, IL-12 promotes Thl  immune responses and rep- 
resents an important component of acquired immunity 
against intracellular pathogens.12-14 In addition, we have 
shown that IG12 is required in the innate immune response 
against Gram-negative bacterial pathogens, because inhibi- 
tion of IL-12 decreases bacterial clearance and survival, 
whereas transient lung IL-12 overexpression utilizing intra- 
tracheal adenoviral gene therapy enhances survival in mu- 
rine Klebsiella pneumonia.15 Conflicting data exists regard- 
ing the effect of alcohol on the expression of Thl-type 
cytokines. Specifically, it has been demonstrated that eth- 
anol treatment inhibits IFN-y production in v i t r ~ ; ~  and 
prolonged alcohol feeding significantly inhibits the produc- 
tion of IFN-y from retroviral-infected murine spleno- 
cyte~. '~  In contrast, acute ethanol treatment in vitro has 
recently been shown to augment the expression of IL-12 
from activated human m o n ~ c y t e s . ~ ~  In this study, we ob- 
served a decrease in the expression of IL-12 p35 and p40 
mRNA, and reduced protein levels in the lungs of alcohol- 
fed mice. In addition, we detected a considerable delay in 
the maximal expression of IFN-y message and a significant 
reduction in IFN-y protein levels in the lungs of alcohol-fed 
mice, compared with controls. Furthermore, a substantial 
induction of IL-10 mRNA and protein expression was 
noted after K pneumoniue administration in ethanol-fed 
mice, whereas no apparent induction of this cytokine was 
noted in control animals. Collectively, these findings indi- 

cate that chronic alcohol feeding appears to shift the bal- 
ance in favor of an anti-inflammatory Th2-type immune 
response by inhibiting the expression of IL-12 and IFN-y, 
while at the same time enhancing the expression of IL-10. 
Because IL-10 directly inhibits the production of IL-12 and 
IFN-y, we are unable to determine if ethanol mediates 
direct suppressive effects on Th I-phenotype cytokine ex- 
pression, or rather indirectly inhibits the expression of 
these cytokines by directly inducing the in vivo production 
of IL-10. Furthermore, because IL-12 is a potent inducer of 
IFN-y, it is likely that ethanol-induced reduction in IL-12 is 
directly linked to the attenuation of IFN-y expression in 
vivo. 

Our data suggests that ethanol-fed animals die due to 
impaired clearance of bacterial organisms, which we feel is 
attributable, in part, to enhanced Th2- and diminished 
Thl-phenotype cytokine responses. However, we cannot 
exclude the possibility that ethanol-fed mice may be more 
sensitive to the lethal effects of K. pneurnoniue-derived 
LPS, compared with animals receiving a control diet. En- 
hanced IL-10 expression/administration, or inhibition of 
Thl-phenotype cytokines, has been shown to be protective 
in animals challenged with end~toxin."~~' Therefore, these 
observations would suggest that alcohol-induced changes in 
cytokine profiles would diminish, rather than augment en- 
dotoxin effects. 

The mechanism(s) whereby chronic alcohol feeding pro- 
motes Th2-type immune responses is not entirely clear. 
Hormonal changes associated with chronic alcohol con- 
sumption may shift the balance in favor of a Th2-phenotype 
response analogous to that which has been observed in 
pregnancy.3* Alternatively, alcohol-induced alterations on 
the production and release of arachidonic acid metabolites 
and, in particular, prostaglandin E, (PGE,), may be re- 
sponsible for the shift in the cytokine response. Conflicting 
data exists regarding the effect of alcohol on the expression 
of PGE, and other eicosanoids. Ethanol has been shown to 
increase the release of PGE, and other prostaglandins from 
stimulated human blood monocytes and cultured rat 
Kupffer  cell^.^^,^^ In contrast, ethanol had an inhibitory 
effect on the zymosan-stimulated production of PGE, and 
other eicosanoids by cultured murine peritoneal macro- 
phages:' whereas chronic alcohol ingestion resulted in no 
differences in the synthesis of PGE,, leukotriene B, or 
5-(S)-hydroxy-6,8,11,14-eicosatetraenoic acid by stimulated 
rat peritoneal macrophages and lung tissue hornogenate~.~' 
There is growing evidence that prostaglandins of the E 
series, especially PGE,, alter the expression of important 
pro- and anti-inflammatory c ~ t o k i n e s . ~ ~  Endogenous or ex- 
ogenous PGE, inhibits the release of TNF, IFN-y, and 
IL-12 from various leukocyte  population^.^^-^^ Conversely, 
PGE, has recently been shown to induce the expression of 
IL-10 from LPS-stimulated peritoneal macro phage^.^^ 
Hence, ethanol-induced changes in prostaglandin profiles 
favoring increases in PGE, production/bioactivity could 
account for most, but not all, of the findings observed. A 
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notable exception is the apparent induction of TNF in 
ethanol-fed mice, which may occur as result of desensitiza- 
tion to PGE, inhibitory effects, or as a result of regulatory 
influences unrelated to prostaglandins. Preliminary studies 
in our laboratory indicate that alveolar macrophages from 
ethanol-fed mice cultured ex vivo produce substantially 
greater quantities of PGE, constitutively and when chal- 
lenged with LPS, compared with similarly treated control 
alveolar macrophages. Similarly, whole lung PGE, levels 
are greater in alcohol-fed animals than that detected in 
animals receiving an isocaloric control diet (T. Standiford, 
unpublished observations). 

In summary, our studies indicate that ethanol ingestion 
results in a profound suppression of lung innate immunity 
in association with a shift in the balance of lung cytokine 
mRNA and protein expression favoring Th2-, rather than 
Thl-phenotype cytokines. Further studies are needed to 
establish causal relationships and to determine if targeted 
immunotherapy to correct this imbalance will aid in the 
outcome of ethanol-fed mice with Gram-negative pneumo- 
nia. 
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