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SUMMARY. The Quality-Adjusted Time Without Symptoms or Toxicity (Q-TWiST) statistic previously 
introduced by Glasziou, Simes and Gelber (1990, Statistics in Medicine 9, 1259-1276) combines toxicity, 
disease-free survival, and overall survival information in assessing the impact of treatments on the lives 
of patients. This methodology has received positive reviews from clinicians as intuitive and useful, but to 
date, the variance of this statistic has remained unspecified. We review aspects of the Q-TWiST method 
for analyzing clinical trial data, extend the method to accommodate multiple treatment arms, and provide 
closed-form asymptotic variance formulas. We also provide a framework for designing Q-TWIST clinical trials 
with sample sizes determined using the derived asymptotic variance formulas. Trials currently collecting 
quality of life data did not have the benefit of these sample size calculation techniques in designing their 
studies. 
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1. Introduction 
In making decisions about treatment effectiveness in clini- 
cal trials, several endpoints may be of interest. Many trials 
focus on overall survival (OS), but often simplifying the ex- 
periences of patients with this single endpoint is less than 
the whole story. For instance, in breast cancer clinical trials, 
it is interesting to compare the time a patient lives without 
recurrence of disease after initial treatment, or disease-free 
survival (DFS). Clinicians and patients are also interested in 
the duration of treatment-induced toxicity. The International 
Breast Cancer Study Group (IBCSG) Trial V collected data 
on all of these endpoints for the purpose of comparing node- 
positive breast cancer patients randomized to receive as ad- 
juvant treatments long-duration (6-7 months, N = 816) or 
short-duration (1 month, N = 413) chemotherapy (Ludwig 
Breast Cancer Study Group, 1988; Gelber et al., 1992a). In- 
herent in collecting information on survival endpoints related 
to the end of toxicity, to recurrence, and to death is the no- 
tion that quality of life (QOL) varies in the stages demarked 
by these events. A complete picture of a patient’s experiences 
on study cannot be established without considering each of 
these aspects simultaneously. In the IBCSG trial mentioned 
above, there was interest in evaluating gains in DFS and 0s 
for the long-duration chemotherapy in light of its additional 
toxicity. Standard methods available for analyzing multiple 

endpoints are not designed to detect and resolve treatment 
differences that occur in different directions. Incorporating 
knowledge related to QOL in an analysis can be helpful in 
making treatment recommendations. 

One avenue for exploring treatment effects has been pro- 
posed by Glasziou, Simes, and Gelber (1990) and is called 
Q-TWiST, or Quality-Adjusted Time Without Symptoms or 
Toxicity. The statistic was originally introduced as an exten- 
sion to the Quality-Adjusted Life Year (QALY) method used 
in cost-effective analyses with uncensored endpoints, which 
attributes QOL weights between zero and one to distinct 
stages of a person’s experience on study in producing an ad- 
justed measure of survival time. However, in the nonpara- 
metric setting with bounded censoring, the unrestricted mean 
may not be identifiable. Using the same intuition of weighting 
the average time spent in each health state according a QOL 
measure between zero and one, Glasziou et al.’s Q-TWIST 
statistic allows for asymptotically unbiased estimation of the 
average QOL-adjusted survival time accumulated by some 
time, T, in the presence of censored endpoint data. 

In Section 2, we describe and extend methods for Q-TWIST 
analysis of clinical trial data. To make inferences, suitable 
variance estimates of the Q-TWiST statistics are required. 
Currently, the bootstrap method has been employed without 
evidence that it is correctly estimating the variance. Section 3 
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presents a closed-form asymptotic variance for the Q-TWIST 
statistic and recommended estimates. In deriving this asymp- 
totic variance, we also derive the closed-form asymptotic co- 
variance between dependent Kaplan-Meier (KM) estimates 
or between dependent Nelson-Aalen (NA) hazard estimates. 
Methods for estimating these dependent KM asymptotic CO- 

variances without an exact closed form have been proposed 
by Wei and Lachin (1984) in relation to their nonparametric 
tests for equality of multivariate survival endpoints. Our more 
precise form for these covariances eases mathematical manip- 
ulation in Q-TWIST variance calculations required for this 
research. Additional precursor work characterizing the joint 
distribution of dependent survival endpoint random variables 
is well summarized by Anderson et al. (1993). In particular, 
Prentice and Cai (1992) and Dabrowska (1988) describe non- 
parametric methods for estimating the joint distribution of 
two failure time endpoints. 

Having a closed-form asymptotic variance improves our 
ability to make use of the Q-TWIST statistic in an inferen- 
tial setting. In Section 4, we outline a strategy for determining 
sample sizes needed for detecting differences in QOL using the 
Q-TWIST statistic in clinical trials. Using the new Q-TWIST 
variance, an analysis is performed in Section 5 .  A discussion 
follows in Section 6. 

2. The Q-TWiST Methodology 
The Q-TWIST approach to analyzing clinical trial data is ap- 
propriate in many disease settings. However, to simplify the 
presentation of methodology, we present Q-TWiST in the con- 
text of comparing adjuvant therapies for breast cancer, as in 
IBCSG Trial V. At the beginning of the study, the patients 
have already undergone surgery to remove all detectable can- 
cer and are subsequently randomized to adjuvant therapies to 
attack remaining micro-metastatic cancer. 

The first step in applying Q-TWiST is to define clinical 
endpoints that mark changes in a patient’s QOL. Define TI 
as the duration of toxicity (TOX), which occurs from the be- 
ginning of the study until the end of treatment. Let Tz be time 
to disease relapse and T3 be time to death. Hence Tz -TI is the 
time without symptoms or toxicity (TWiST) that a patient 
experiences after chemotherapy and T3 - Tz is the time a per- 
son lives after disease recurrence (REL). Together, the three 
mutually exclusive states, TOX, TWiST, and REL, describe 
a patient’s studytime experience. Although these endpoints 
are correlated, we assume they are not competing in nature. 
These methods should not be applied to multiple endpoints 
where observing one endpoint precludes the observation of an- 
other. Note that the methods described here generalize easily 
to circumstances where fewer or more health states are re- 
quired to describe the course of disease. 

For each treatment group, g,  we estimate a QOL-adjusted 

+ ~ R E L ~  [i{$y(t) - Szg(t)jdt, where S,,(t) is the KM esti- 
mate for S,,(t) = P(T,, > t ) ,  g = 1 , .  . . , G, z = 1,. . . ,3 ,  and 
p ~ o x ~  and ~ R E L ~  are weights between zero and one. The 
upper limit of integration, r ,  is chosen so that KM curves are 
consistent estimates for survival in the area of integration. 
Glasziou et al. (1990) suggest the median follow-up time as 
a reasonable choice. Other investigators may choose to max- 
imize the region of area under the survival curve in choosing 

statistic Q~ = prpoxs SO’ Sl,(t)dt + Sg{Szg(t) - Sl,(t) jdt 
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Figure 1. 
the TOX, TWiST, and REL states. 

Area between survival curves corresponding to 

T ,  which would increase power to detect late-term differences 
in Q-TWIST. For notational convenience, we have restricted 
the upper limits of Qg to be the same, but the method ex- 
tends to situations where the upper limits of integration differ. 
The statistic, Qg, reflects the area under the 0s curve differ- 
entially weighted across mutually exclusive partitions corre- 
sponding to TOX, TWiST, and REL as depicted in Figure 1 
with r = 2 years. 

The adjustment for QOL on each treatment arm in each 
survival state is incorporated through the weights p ~ o x ~  and 
~ R E I , ~ .  If each weight equals one, Qs reduces to the un- 
weighted area under the 0s curve and the analysis is based 
on survival time from study entry regardless of QOL. If each 
weight equals zero, Qy presents an analysis driven by length 
of TWiST so that no survival benefit is allowed for time pa- 
tients spend in toxicity or in relapse. In most cases, weights 
are chosen to reflect some reduced benefit for life lived under 
treatment toxicity or relapse. 

Various procedures for assigning the weights ~ T O X ~  and 
~ R E L ~  a.re currently in practice or development. Several stud- 
ies conducted by the IBCSG have begun collecting QOL in- 
formation longitudinally from patients in order to estimate 
pT(iXg and /.LREI,~. However, QOL data is not routinely col- 
lected at this time, so many studies that could benefit from 
investigating QOL issues do not have data available to esti- 
mate weights. In this case, a sensitivity analysis may be done 
displaying results under various weighting scenarios. One ad- 
vantage of this approach is that treatment recommendations 
can be tailored to individual QOL perceptions. 

Let n = Cf=:=l ng and Q = (I$=:=, ngQy)/n,  where ns is the 
number of patients on treatment g. Under the null hypothesis 
(Ho) of no treatment difference in this QOL-adjusted setting, 
Q = (Q1 - Q, Q2 - Q, . . . , QG-I - Q)’ is asymptotically mul- 
tivariate normal with mean vector 0 and variance-covariance 
C. A test statistic for comparing the G treatment groups is 
x2 = Q’C-lQ, which is asymptotically chi-squared with G-l 
d.f. The form of C will depend on whether fixed weights are 
used as part of a sensitivity analysis or whether the weights 
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are estimated from data, in which case modification to ac- 
commodate the variation in the weights is required. This will 
be discussed further in Section 3, where a closed form for C 
is presented for both situations. 

It is instructive to look at the special case with no censor- 
ing and 7 = 00. Define Qgi = p~oxT1,i + (T2,i - Tlgi) + 
PREL(TQ~, - T2gz), where g = 1, . . . , G and z = 1,. . . , ng. For 
each individual i on treatment g,  Qgi can be interpreted as the 
length of life a patient lives adjusted for QOL in the different 
health states. Here Qg = (Cyzl Qgi) /ng  and x2 reduces to 
a multivariate test comparing means of the individual QOL 
scores Qgi across treatments g = 1,. . . , G. For two treatment 
groups, the QOL statistic corresponds to the two sample t-test 
on the Qg,’s, g = 1 ,2 .  

3. Derivation of the Variance-Covariance Matrix, C, 
of the Quality-of-Life-Adjusted Q-TWiST Statistic 

In deriving a closed form for C ,  a closed-form asymptotic co- 
variance between dependent KM survival estimates will be 
useful. Suppose we are interested in the covariance of KM es- 
timators for two of the three dependent event times, Ti and 
Tj, of the last section, with i, j E {1,2,3} .  For each event 
time Ti, we define a censoring random variable Ui,  a fail- 
ure indicator Ai = I(Ti < U,), and observable event time 
X i  = min(Ti, U i ) .  We assume (Ui ,  i = 1,. . . , 3 )  are indepen- 
dent of all failure random variables (Ti, i = 1, . . . , 3 ) .  However, 
there is no restriction on the dependence between Ui and Uj 
or between T, and Tj for i # j .  Often 1 7 1 ,  U2, and Us will 
be exactly equal to one another. However, we allow a more 
general case where one endpoint, such as toxicity, is censored 
due to poor record keeping while other endpoint information 
is available. 

In describing hazard functions used in the asymptotic co- 
variances of KM estimates, &(z) and Sj(fv), we borrow ter- 
minology from Fleming and Harrington (1991) and Ander- 
son et al. (1993). We denote the usual marginal hazards at 
time u for Ti and Tj with Xi(.) and Xj(u),  respectively. Let 
the crude joint hazard X i j  (u, u )  = lirnau,AviO P(u 5 X i  < 

v)/(AuAv). A crude conditional hazard function Xi~,(u 1 u )  = 
limA,,0 P(u 5 X ,  < u + Au, A, = 1 1 X ,  2 u, X j  2 v)/Au 
associated with time u for Ti has a risk set restricted to pa- 
tients with X ,  > u and x, > v. Similarly, define X j ( i ( w  1 
u ) = l i m a v , ~ P ( u < X j < v + A u , A j = l I X i > u , X ,  > 
u)/Av. Since our primary interest in estimation relates to the 
marginal hazards of T, and Tj,  we do not need to make ad- 
ditional censoring assumptions relating the crude conditional 
and joint hazards to the usual net conditional and joint haz- 
ards for T, and Tj. For the purposes of describing the variance, 
accommodating such interpretations are unnecessary. 

u + A u , v  5 X ,  < v + L l ~ , A i  = 1 , A j  = 1 I X i  > u , X j  2 

Define 

whenever the risk sets for events i and j are not empty at 
times u and v, respectively, or Gij (u, u )  = 0 otherwise. It is 

shown in Appendix A that 

ust7 (t l ,  t 2 )  

An estimate for this covariance is also provided in Appendix 
A. As an additional check on our derivation, we have veri- 
fied several familiar special cases. For instance, when X ,  and 
X ,  are independent, this covariance becomes zero. Also, when 
X ,  is identically equal to X,, this covariance reduces to the 
variance of the KM estimate. With uncensored data, where 
each KM estimate reduces to a simple proportion, (1) be- 
comes P(T, > t,,T, > t 3 )  - P(Tz > t,)P(T, > t,), which 
corresponds to the covariance for two dependent proportions 
With this asymptotic covariance in closed form, we proceed 
to derive the covariance, C ,  from Section 2. 

Adding a subscript, g,  denoting treatment group to pre- 
vious notation, additional calculations in Appendix A show 
that the covariance of restricted means estimates, 1; S7,(tl) 
xd t l  and 10’ S J g ( t 2 ) d t 2 ,  is b&/ng, where 

In terms of restricted means, Q g  may be rewritten as 
n* 

Hence, when the weights ~ T O X ~  and ~ R E I , ~  are considered 
fixed, as in a sensitivity analysis, 

3 3  

2=13=1 

where wlg = PTOXg - 1, w2g = 1 - PRELgr w3g = PRELg, 
and V, = C:==, w t g w , g ~ , g .  From this, we find that the 
i?,mth element of C from Section 2 in the fixed weights case 
is 

G 

g=l  

where I(i? = m) is equal to one when i? = m and is equal to 
zero otherwise. 

The form of C needs to be modified when prtELg and 
ppoxg are estimated from data. For each treatment group g ,  
let GZg estimate wZgr where E(GZg) = w , ~ .  We denote cov(w,,, 
G J g )  by uWtjg/ng and wg = ( 8 1 g , 7 f i 2 g , 8 3 q ) ’ .  We leave wg 
vaguely specified since we do not wish to restrict the user from 
using any of the variety of methods potentially employed to 
obtain these estimates. For example, if little QOL data is 
recorded on each individual, then a population averaged esti- 
mate stratified by treatment group and health state may be of 
interest. If multiple QOL measurements are collected on indi- 
viduals within each health state, then a more subject-specific 
estimate of these weights might be desirable. Of course, dif- 
ferent estimation procedures for wg would result in different 
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estimates of ~ ~ , , , ~ / n ~ .  An assumption is made that estimated 
weights are independent of time spent in health states. 

var(Qg) = var(E(Qg I @g)) + E(va(Qg I ~ g ) )  

In this case, Qg = C:=l wzg 10' S,,(t)dt and 

/ 3  \ 

1=1 J=1 

As expected, this result reduces to the case where weights 
are known when D~~~~ approaches zero. In cases where the 
weights are determined from a population-based average esti- 
mate, u w c 3 y / n ~  is relatively small and the above can be sim- 
plified to 

= v; / n g  , 
where 

1 

So the C, mth element of C from Section 2 in this case is 
-1 * 1 = n, V! [ ~ ( t  = m) - 7 ~ -  n,] 

G 
-1 * 

- n V, + nP2 C n g v i .  
g= I 

Recommended estimates for all variances from this section are 
located in Appendix B. 

4. Study Design Considerations and 

This section provides an example of how to calculate sample 
sizes for detecting differences in quality of life using the Q- 
TWiST statistic for two treatment group comparisons. We 
will discuss both the case where fixed weights are to be used 
and the case where population-based weights are estimated 
from patient data collected during the trial. In either case, 
the investigator should have input as to the number of health 
states patients experience, the projected survival behavior of 
endpoints defining these states, and the restriction time, T .  

Let n be the desired sample size in each of two treatment 
groups being compared. Borrowing selected notation from 

Simulation Results 

previous sections, the test statistic using fixed wei hts may 
be represented as 2 = n1/2(Q1 - QZ)/(Vi + V2)lT2, which 
asymptotically behaves as a standard normal random vari- 
able. Note that if weights are estimated, we replace V1 and 
V2 with V: and V; to account for extra variability. Under the 
alternative hypothesis, Q1 -Q2 has a nonzero mean, A,  which 
measures the true difference in QOL-adjusted survival. Hence, 
2 has asymptotic mean n1/2A/(V1 + V2)'/'. The distance 
between this alternative mean, n1/2A/(V1 + V2)lI2, and the 
zero mean, which holds true under Ho, can also be represented 
by z,p + zo,  where a is the type I error chosen for the test, 
/3 is the type I1 error, and z* represents the percentile of the 
standard normal distribution that cuts off area * in the upper 
tail. Fkom this observation and some further algebra, we see 
that, for detecting the alternative A with power 1 - p  and size 
a ,  the asymptotic relationship n = { ( ~ , / ~ + z o ) / A } ~ ( V 1  +&) 
must be true or, specifically, in the fixed weights case, 

and in the estimated population-based weights case, 

One may proceed determining sample sizes using these asymp- 
totic formulas. 

To demonstrate the use of these sample size formulas, we 
plan a QOL study where patients experience three different 
QOL states marked by survival endpoints, Tlg, T2g, and T3g 
for the two treatment groups g = 1,2, where Tlg 5 Tzg 5 
T3g. In each treatment group, the toxicity duration, Tlg, is 
taken to be independent of the length of time spent in the 
other two health states and is distributed as uniform(0,1/6). 
Hence, the simulated duration of toxicity corresponds to a 
duration incurred during a 2-month treatment course within 
each group. 

Two sources of correlation between T2g and Tjg are incor- 
porated into this simulation. The first source of correlation 
comes from the ordered nature of the survival endpoints, so 
larger observed T2g tend to result in larger observed values of 
Tsg. The second source of correlation comes from the relation- 
ship between Tig and T3gr the durations of time within the 
second and third health state, respectively, for those in group 
g .  For instance, one might believe that a patient with large Tig 
will also tend to have larger Tig. To model the second source 
of correlation, we assume the distribution of the length of 
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Table 1 
Estimated sample sizes for  various censoring levels and treatment differences 

(-0.20, -0.20) 0 
20 
40 

(-0.25, -0.25) 0 
20 
40 

(-0.30, -0.30) 0 
20 
40 

420 
448 
484 

268 
286 
309 

185 
198 
214 

474 
520 
581 

301 
330 
369 

208 
227 
254 

440 
474 
518 

281 
303 
332 

195 
210 
230 

421 
454 
485 

268 
286 
309 

186 
200 
2 14 

Censoring percentage measures the degree of censoring in the study up to time T among each cohort 
of patients. 

the time in these two health states for each treatment group, 
Tlg and TTg, to be bivariate log-normal with centrality param- 
eters (pig, p z s ) ,  dispersion parameters (olg, ozg), and cor- 
relation parameter ps. In each case considered, we choose 
( p i i , p 2 1 )  = (O ,O) ,  (a ig ,  0 2 g )  = ( L l ) , g  = 1 ,2  and p = 0.9. 
Various ( ~ 1 2 ,  p 2 2 )  parameters are explored in order to study 
different levels of Q-TWiST treatment differences. Using these 
various parameters, the survival endpoints for each treatment 
group g become Tlg, Tzg = TlS + T;g and Tsg = T 2 g  + T:*. 

To model the censoring mechanism acting on the endpoints 
TIg, Tlg, and Tsgr we defined the random variable C = U x 
I ( B  = ~ ) + T x I ( B  = 0), where U is a uniform random variable 
on [1/6,7] and B is a Bernoulli random variable with success 
probability related to the desired level of censoring. Note that 
the percentage of censoring reported in Table 1 measures the 
degree of censoring in the study up to time 7 among each 
cohort of patients. 

All of the previously described survival and censoring dis- 
tributions are used in simulation to estimate V 1 ,  V 2 ,  and A 
for 7 = 2 years in (2). Future programmers may decide to 
automate this procedure somewhat by querying the end user 
in relation to the marginal distributions for the endpoints and 
displaying results for a range of correlation parameters and 
censoring percentages. Since true values of V 1  and V 2  are not 
sample size-dependent, a sample size of 250 per treatment 
group is used to obtain estimates of V 1  and V 2  as described in 
Section 3 and then averaged over 5000 simulations of the data. 
To estimate A,  algebraic simplifications for A in the fully ob- 
served data case can be exploited since A is not affected by 
censoring levels. In this case, for any KM estimator S ( t )  on 
failure times t j  with nT failures occurring prior to time 7, 
10’ S ( t ) d t  = Ct ,  <T t J / n  + 7 {I - (nT/n)}. For this simple cal- 
culation, it is possible to use a large sample size of 250,000 to 
estimate A. In order to make A even more precise, a Monte 
Carlo simulated average of A over 2500 simulations with this 
sample size was calculated. Using this method, A was accurate 
to roughly four decimal places. In Table I, estimated A’s for 
( ~ 1 2 ,  ~ 2 2 )  = (-0.20, -0.20) with (PTOX, PREL) = {(0.5,0.5), 
(1.0, L O ) ,  (O.O,O.O)} were (0.11148, 0.10331, 0.11965). Esti- 
mated A’s for these weights with ( p 1 2 , p 2 2 )  = (-0.25, -0.25) 

were (0.13997,0.13068,0.14926) and with (1112, p 2 2 )  = (-0.30, 
-0.30) were (0.16867, 0.15861, 0.17872). 

Table 1 displays sample sizes required for 80% power and 
5% type I error as determined from (2) or (3), as appropri- 
ate, under various censoring levels, ( ~ 1 2 ,  p 2 2 )  parameters, and 
weighting choices. Note that the sample sizes displayed as- 
sume a single statistical test. If multiple tests are used in 
a sensitivity analysis, the type I error may be adjusted ac- 
cording to the user’s favorite method. Although this is an 
interesting and important topic, we will not devote any time 
discussing the issue of multiple comparisons, which is well 
documented elsewhere (e.g., Bickel and Doksum, 1977). The 
four weighting choices displayed give a flavor for the differ- 
ent possible analyses using Q-TWIST. The first set of weights 
assigns p ~ o x  = ~ R E L  = 0.5, which penalizes the TOX and 
REL states for reduced QOL in these time intervals. The sec- 
ond set of weights assigns ~ T O X  = ~ R E L  = 1, which reduces 
to a two-sample test comparing the restricted means for 0s. 
The third displayed set of weights assigns ~ T O X  = ~ R E L  = 0 
so that the analysis is driven by the time without symp- 
toms or toxicity, completely discounting time spent in the 
TOX and REL health states in the analysis. The last col- 
umn of sample sizes in Table 1 is based on the case where 
population-based weights are estimated from patient data. 
These estimated weights were simulated as normal random 
variables with mean 0.5 and variance 0.05/n in each treat- 
ment group, resulting in identical 8 ’ s  to the fixed weight case 
with ~ T O X  = ~ R E L  = 0.5 and largely similar estimated sam- 
ple sizes. 

Figure 2 displays the survival endpoints for the smallest Q- 
TWiST treatment difference studied. Notice that the parti- 
tioned survival area corresponding to the TWiST health state 
is more favorable for the group with survival endpoints dis- 
played on the left. Also, the area in the REL health state ap- 
pears to be only slightly different in the two treatment groups. 

One thousand Monte Carlo simulations were conducted to 
verify 80% power and 5% type I error planned for the analy- 
sis for selected entries of Table 1. For instance, using sample 
sizes (268,286,309) under ( ~ 1 2 ,  p 2 2 )  = (-0.25, -0.25) with 
censoring percentages (O%, 20%, 40%)’ simulated power was 
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Figure 2. Area between simulated survival curves corre- 
sponding to the TOX, TWiST, and REL states for ~ T O X  = 
~ R E L  = 0.5 and A = 0.11148. 

(79.4%, 77.7%, 80.5%) with corresponding type I error un- 
der Ho of (4.9%, 5.5%, 5.6%) in the fixed weights case and 
(79.6%, 77.5%, 80.3%) with corresponding type I error un- 
der Ho of (4.7%, 5.7%, 5.4%) in the estimated population- 
based weights case. Empirical Q-TWiST variance estimates 
corresponding to these simulations matched closely with the 
simulation-specific Q-TWiST variance estimates. As an exam- 
ple, with 0% censoring with (piz, p22) = (-0.25, -0.25), the 
empirical variance across all simulations was 0.00245, whereas 
the (25%, 50%, 75%) quantiles for the observed Q-TWiST es- 
timated variances using these formulas were (0.00243,0.00249, 
0.00256). Under Ho, the empirical variance of 0.00248 com- 
pares favorably with the observed quantiles (0.00233, 0.00240, 
0.00246). Results displayed in Table 1 and in further unre- 
ported simulations demonstrate that incorporating survival 
information related to the TOX and REL stat,es through par- 
tial weighting of these states in the Q-TWiST statistic in- 
creases the chances of detecting the simulated treatment dif- 
ferences. Interestingly, the statistic based on time spent in the 
TWiST state alone is almost as efficient as the statistic giving 
partial weights to the remaining states in this scenario. This 
happens primarily because the difference between partitioned 
areas under the survival curve for the two treatments occurs 
mainly within the TWiST health state for these selected dis- 
tributions. 

5.  Example 
We now return to the IBCSG Trial V breast cancer study com- 
paring long- versus short-duration chemotherapy mentioned 
in the introduction. Three health states were identified for the 
analysis: (1) time with toxicity due to chemotherapy (TOX), 
(2) time without toxicity or disease relapse (TWiST), and (3) 
time following disease relapse (REL). 

For the short-duration chemotherapy group, restricted 
mean estimates of TOX, DFS, and 0s within the 84-month 
median follow-up period were observed to be 0.85, 48.13, and 
63.97 months with variances 0.00127, 2.35330, and 1.52404. 

Covariance estimates of these restricted means were 

(ci21/413, V131/413, V231/413) = (0.00281,0.00137,1.46990). 

In the long-duration group, TOX, DFS, and 0s 84-month re- 
stricted means were 5.79, 59.30, and 68.52 months with vari- 
ances 0.00932, 1.04318, and 0.71836 and covariances 

(V1~2/8l6, c132/8l6, V2j2/816) = (0.00722,0.00254,0.74252). 

Hence, the long-duration chemotherapy regimen has a longer 
duration of toxicity as well as increased DFS and 0s. A sensi- 
tivity analysis considering a large variety of weights provides 
the best perspective on overall treatment benefit when no 
QOL data is available for estimating the weights and also al- 
lows a clinical practitioner to assess potential treatment ben- 
efit profiles for patients with different perceived QOL. For a 
patient with high QOL in all disease stages, the usual analy- 
sis using ~ T O X  = ~ R E L  = 1 gives an average of 4.55 months 
of life gained on the long-duration chemotherapy in relation 
to the short-duration therapy during the first 84 months on 
study (95% CI: 1.616, 7.484). For a patient with little toler- 
ance for toxicity, using ~ T O X  = ~ R E L  = 0, we find an average 
of 6.23 months of quality-adjusted life gained on the long- 
duration chemotherapy in these 84 months (95% CI: 2.624, 
9.836). 

In Table 2, we display mean estimated quality-adjusted sur- 
vival differences between the long- and short-duration chemo- 
therapies in months along with standard errors for a variety 
of weights considered by Gelber et al. (1991, 1995). We also 
include bootstrap-based standard errors as used in their orig- 
inal analyses. In their papers, the weights ~ T O X  and ~ R E L  
were assumed to be equivalent across treatment groups. In- 
ferences using either the bootstrap or asymptotic closed-form 
variance estimates are similar. For most scenarios, the long- 
duration chemotherapy provided a significantly longer QOL- 
adjusted mean survival, even when adjusted for multiple com- 
parisons. Cases where the sensitivity analysis did not dis- 
tinguish a treatment preference involved weights that highly 
penalized toxicity while simultaneously judging near perfect 
QOL for the relapse health state. In the limited patient pref- 
erence data available on these types of patients, these weight 
choices would not be typical. In fact, most patients rate the 
REL health state as inferior to the TOX health state in terms 
of QOL in these breast cancer studies. Hence, an analysis of 
this type would support assigning most patients to the long- 
duration chemotherapy. 

In this example, the bootstrap method provides estimates 
similar t o  the closed-form-based estimates. Currently there is 
no research available to justify the appropriateness of boot- 
strapping covariances based on dependent marginal KM-based 
estimators such as we use in this research. In other work re- 
lated to multiple failure-time endpoints, Yandell and Horvath 
(1988) demonstrated that the covariance of bivariate survival 
estimators can be successfully bootstrapped in cases where 
the true covariance is complex. This may turn out to be the 
case with dependent marginal survival estimates as well. 

6. Discussion 
The evaluation of treatments in terms of QOL is becoming 
increasingly important in clinical research. In an article in 
the Journal of Clinical Oncology, O'Shaughnessy et al. (1991), 
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Table 2 
Q- TWiST sensitivity analysis for various weights 

Q-TWiST SE SE 
PTOX PREL difference” (variance formula) (bootstrap) ASE 

1.00 1.00 4.55 (1.497) (1.513) -0.016 
1.00 0.75 6.21 (1.518) (1.519) -0.001 
1.00 0.50 7.86 (1.586) (1.575) 0.011 
1.00 0.25 9.52 (1.697) (1.675) 0.022 

0.75 0.75 4.97 (1.517) (1.519) -0.002 
0.75 0.50 6.63 (1.585) (1.574) 0.011 
0.75 0.25 8.28 (1.696) (1.675) 0.021 

0.50 0.75 3.74 (1.517) (1.519) -0.002 
0.50 0.50 5.39 (1.585) (1.574) 0.011 
0.50 0.25 7.05 (1.695) (1.674) 0.021 

0.25 0.75 2.50 (1.517) (1.5 19) -0.002 
0.25 0.50 4.16 (1.585) (1.574) 0.011 
0.25 0.25 5.81 (1.695) (1.674) 0.021 

0.00 0.75 1.27 (1.518) (1.520) -0.002 
0.00 0.50 2.92 (1.585) (1.575) 0.010 
0.00 0.25 4.58 (1.695) (1.675) 0.020 

1.00 0.00 11.17 (1.843) (1.813) 0.030 
0.75 1.00 3.32 (1.497) (1.513) -0.016 

0.75 0.00 9.94 (1.842) (1.812) 0.030 
0.50 1.00 2.08 (1.497) (1.513) -0.016 

0.50 0.00 8.70 (1.841) (1.812) 0.029 
0.25 1.00 1.50 (1.497) (1.514) -0.017 

0.25 0.00 7.47 (1.840) (1.812) 0.028 
0.00 1.00 -0.39 (1.498) (1.515) -0.017 

0.00 0.00 6.23 (1.840) (1.812) 0.028 

” Long duration minus short duration (in months). 
The bootstrap method used 1000 iterations in estimating variances 

who hold research positions in the Food and Drug Adminis- 
tration or the National Cancer Institute, pressed for statis- 
tical analyses of drug performance that incorporate multiple 
endpoints such as DFS, OS, and QOL in determining treat- 
ment recommendations. Already, the Q-TWIST technique has 
become a popular tool for this purpose. The basic method- 
ology has been applied in a number of analyses of clinical 
trials. Gelber, Goldhirsch, and Cavalli (1991) and Gelber et 
al. (1992a) present analyses of adjuvant therapies for opera- 
ble breast cancer, and Gelber et al. (1992b) and Lenderking 
et al. (1994) present analyses of zidovudine therapy for HIV 
infection. Cole et al. (1996) evaluated the risks and benefits 
of high-dose interferon alfa-2b adjuvant treatment for malig- 
nant melanoma. Gelber et al. (1996) evaluated chemotherapy 
plus radiation therapy for rectal cancer. In addition, a num- 
ber of methodological extensions to Q-TWIST have been pro- 
posed. Incorporation of covariates and prognostic factors in a 
Q-TWIST analysis have been proposed by Cole, Gelber, and 
Goldhirsch (1993) using proportional hazards models and by 
Cole, Gelber, and Anderson (1994) using accelerated failure 
time models. An overview of recent extensions is given by 
Gelber et al. (1995). 

In a related recent extension of the original Q-TWiST meth- 
odology, Zhao and Tsiatis (1997) discuss a consistent esti- 
mator for the distribution, as opposed to the mean, of a 
lifetime adjusted for known QOL weights along with a con- 
sistent variance estimate without requiring a progression of 
health states as in the original paper by Glasziou, Simes, and 

Gelber (1990) or this work. Their distribution relates to the 
distribution of the Q-TWIST statistic in the case where the 
known weights are piecewise constant. An advantage to the 
variance calculations based on partitioned survival as in this 
work is that this approach can easily accommodate estimated 
weights, while the estimator of Zhao and Tsiatis remains valid 
only with known weights. Since estimated weights are critical 
when studying patients’ perceived QOL, this is an important 
distinction. 

This research expands the methodological framework of the 
Q-TWIST procedures by providing closed-form variances of 
the treatment-specific QOL-adjusted survival estimates and 
test statistics. Simulations using the newly derived variance 
show that, in addition to a more complete assessment of a 
treatment’s performance, we may in fact increase our power 
to detect clinical differences when QOL considerations are in- 
cluded in an analysis. In addition, this research outlines an 
example of how to design a clinical trial with appropriate 
sample sizes to detect clinical differences using the Q-TWiST 
method. Currently the clinical trials collecting QOL informa- 
tion have not had the benefit of these strategies for assuring 
an adequately powered study. 
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RESUMB 

La statistique Q-TWIST, prkckdemment introduite par 
Glasziou, Simes et Gelber (1990, Statistics in Medicine 9, 
1259-1276), combine toxicitk, survie sans maladie et  infor- 
mation globale sur la survie dans l’kvaluation de l’impact des 
traitements sur la vie des patients. Cette mkthodologie a 6tb 
considCree intuitive et utile par les cliniciens, mais la vari- 
ance de cette statistique n’a toujours pas Ctk spkcifibe. Nous 
commentons quelques aspects de la mkthode Q-TWIST dans 
l’analyse des donnCes issues d’essais thkrapeutiques, nous 
Ctendons cette mkthode B plusieurs bras de traitement, et 
nous donnons la variance asymptotique sous forme approchke. 
Nous donnons Cgalement un cadre pour dkfinir des essais 
thkrapeutiques adapt& au Q-TWIST avec des tailles d’6chan- 
tillon obtenues en utilisant les formules obtenues pour la vari- 
ance asymptotique. La dkfinition des ktudes recueillant des 
donnkes de qualitk de vie ne bbnkficie pas de l’avantage procurb 
par ces mkthodes de calcul de taille d’kchantillon. 
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APPENDIX A 

Asymptotic Multivariate Distribution of Correlated 
K M  Estimates and Corresponding Restricted Means 

Denoting the NA estimate by A(z) and the KM by S(z), 
Breslow and Crowley (1974) show that 



Variance and Sample Size an Q- TWaST 181 

Hence, determining the asymptotic behavior of dependent 
NA estimates will provide us with an understanding of the 
asymptotic behavior for dependent KM estimates. For each 
of the dependent event times of interest, i = 1,2 ,  define 
Uzk as the censoring random variable corresponding to T i k ,  

Also define Ni( t )  = CE=, I (X ik  5 t ,  A i k  = 1) and Yi(t) = 
c;=, I (x i l ,  2 t ) .  Let Mi( t )  = Ni( t )  - 1; Xi(u)yZ(u)du be the 
martingale defined with respect to the filtration containing 
all available censoring and survival data for the endpoint cor- 
responding to i prior to time t and define M j ( t )  = N,(t)  - 
1; Xj(u)YJ (u)du  similarly for endpoint type j .  The filtrations 
concerning Mi ( t)  and MJ ( t )  are dependent but not necessar- 
ily nested. Hence, we explicitly derive covariances relating to 
these martingales without using the usual strategy of condi- 
tioning on a common filtration. 

We define J i (u )  = I(yZ(u) > 0) = I{(yZ(u)/n) > 0) to 
avoid representing infinite integrands below. Asymptotically, 
J i (u )  --+ p ~ ~ ( u )  = I { P ( X i  2 u) 2 0} does not contribute 
additional variability to the statistics of interest and is used 
for notational convenience. Also note that 

A i k  = I(Tik < Uik), and Xik = min(Tik,Uik), k = l . . . n .  

P 

n 

k=l 

is a sum of independent and identically distributed quantities. 
In terms of the NA estimator, we need to find the covariance 

of terms taking the form 

Since, according to the Glivenko and Cantelli theorem, 

we rewrite the above as 

which after an application of the martingale central limit the- 
orem (or Lenglart's Inequality) has the same limiting distri- 

bution as 

The multivariate central limit theorem identifies the covari- 
ance of interest as 

cov [ PJ,(u) {P(xa  2 .L))-l dMzk(u), 

Since each of the terms above has expectation zero, this co- 
variance may be written as 

where 

Note that 
du 
Au dMZk ( U )  z5 diyo I(. 5 x z k  < U + A U ,  n 2 k  = 1) - 

- Xz(u)I(xzk 2 u)du ,  

where du/Au = 1 + ~ ( d u ) .  Similarly, 

dv 
A v  dM,k(U) M AtloI(V 5 x J k  < V + A V ,  A3k = 1)- 

- XJ(v) I (x ,k  2. v)dv. 

Substituting these expressions for dM,k(u) and dMJk(v )  and 
taking the expectation through the limit via the dominated 
convergence theorem, where Rz,J (u ,  v) = P ( X z  1 u, X ,  2 v), 

( t l ,  t 2 )  

= C O V  [J;E{A,(tl) - A t ( t l ) }  > f i { A ~ ( t 2 )  - A J ( t 2 ) } ]  

= s"J" A,, (u, v) 
0 0  
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= Aij (u? u )  

where 

An application of the delta method gives equation (1).  This 
result also leads to the covariance between corresponding re- 
stricted mean estimates since 

= LVij. 
n 

APPENDIX B 

Estzmataon of Vamances 

All asymptotic closed-form covariance terms in this manu- 
script are easily estimated. However, we require additional 
notation. Let K,(u,u) = C;=, I ( & k  2 u,X,k 2 u )  count 
individuals still at risk for both events T, and T, . Also, with 
some abuse of notation, let dN,, (u, u )  = cF=, I ( u  5 X,k < 
ZL + A u , U  5 x , k  < U + A U , A , k  = 1 ,A ,k  = 1) count in- 
dividuals with event T, at time u and event T, at time v, 

count individuals with event T, at time u who are still at risk 
for event 7'' at time u, and dN,(z(u I u)  = Cg=, I(u 5 x ,k  < 

dNtl, (U I U )  = cE=1 I(. 5 x z k  < U + A U ,  x,I, 2 71,  &k = 1) 

u 1- Au,  Xik  2 u, A j k  = 1) count individuals with event T' at 
time u who are still at risk for event T, at time u. A simple 
estimate for G,, (u,  W) is 

so 

{ u : X , I t l  ,A,=l} { " : X I  I t z , A ,  =1} 

and 

Adding the subscript g for group, 

x G : Z j g ( U ,  u ) ,  

where subscripts under the summation signs index the ob- 
served failure times for the ith and j t h  survival endpoints 
occurring up to and including time 7. Hence, 

3 3 

and 

1 + (GigGjg)%jg 

may be used to estimate the elements of C as described in 
Section 3. 




