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Summary. Many challenges arise in the analysis of pulsatile, or episodic, hormone concentration time
series data. Among these challenges is the determination of the number and location of pulsatile events and
the discrimination of events from noise. Analyses of these data are typically performed in two stages. In the
first stage, the number and approximate location of the pulses are determined. In the second stage, a model
(typically a deconvolution model) is fit to the data conditional on the number of pulses. Any error made
in the first stage is carried over to the second stage. Furthermore, current methods, except two, assume
that the underlying basal concentration is constant. We present a fully Bayesian deconvolution model that
simultaneously estimates the number of secretion episodes, as well as their locations, and a nonconstant
basal concentration. This model obviates the need to determine the number of events a priori. Furthermore,
we estimate probabilities for all “candidate” event locations. We demonstrate our method on a real data
set.
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1. Introduction
Hormones are the main vehicle used in distant cell-to-cell
communication throughout the human body. For example,
gonadotropic hormones, produced and secreted into the cir-
culatory system by the pituitary gland, signal distant target
cells in the gonads. These, in turn, produce sex hormones
that are responsible for the changes seen during puberty and
for the monthly menstrual cycles in healthy, young, mature
women. The timing and amount of hormone secreted into the
circulatory system is thus vital to the normal functioning of
many physiological processes.

For example, 26 clinically depressed women and 26 matched
controls were enrolled in a study at the University of
Michigan. Women were admitted to the General Clinical
Research Center for a 24-hour period of observation, com-
mencing at 9 a.m., during which time blood was drawn at
10-minute intervals. The serum was subsequently assayed for
cortisol, a stress-related hormone. One question of interest
was whether the number of pulse events is different in de-
pressed women and controls (Young, Carlson, and Brown,
2001). Therefore, it is necessary to identify both the location
and number of pulse events in study subjects. A second stage
analysis, such as a two-sample t-test, is subsequently per-
formed to test for significant differences between the groups.
This article only addresses the first half of this analysis.

Secretion of hormones into the circulatory system can be
broadly classified into two categories: oscillatory and pulsatile.
An example of oscillatory hormone secretion is the diurnal

pattern of dopamine. Other hormones, including cortisol, a
stress-related hormone produced by the adrenal glands, are
released in a pulsatile fashion, as can be seen from the con-
centration profile in the upper left panel of Figure 1. Pulsatile
secretion is characterized by the release of a large amount of
hormone in a short period of time (Berne and Levy, 1993).
Furthermore, cortisol may have an underlying oscillatory com-
ponent, on top of which, the pulsatile release of hormone is
superimposed (Veldhuis et al., 1989).

Many methods for pulse identification have been proposed
and subsequently classified into criterion- and model-based
methods (Mauger and Brown, 1995). Criterion-based methods
(see, e.g., Van Cauter et al., 1981; Merriam and Wachter,
1982; Oerter, Guardabasso, and Rodbard, 1986; Veldhuis and
Johnson, 1986) are typically used to determine the location of
pulses. Model-based methods assume some model for the data
(see, e.g., O’Sullivan and O’Sullivan 1988; Diggle and Zeger,
1989; Kushler and Brown, 1991; Veldhuis and Johnson, 1992;
Komaki, 1993; Guo, Wang, and Brown, 1999; Johnson, 2003;
Yang, Liu, and Wang, 2006). In an extensive simulation study
Mauger and Brown (1995) showed that model-based methods
are preferred over criterion-based methods on the grounds of
superior false positive and false negative error rates.

Many model-based methods use criterion-based methods
to identify initial pulses or to select several competing models
(three exceptions are Diggle and Zeger, 1989; Guo et al., 1999;
Johnson, 2003). Thus, an error in the initial identification of
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Figure 1. (UL) An example of cortisol concentrations from a female subject suffering from depression over a twenty-four-
hour time period. Note the pulsatile nature of the concentration. Plasma concentration levels of cortisol were obtained at
10-minute intervals. (UR) Model fit to the data. (LL) Posterior mean of the nuisance function: E(F (t) |Y ). (LR) The posterior
estimate of P (t) |Y .

a pulse is carried over to the model-based methods that rely
on them. Further, only two previous methods have incorpo-
rated a changing basal concentration along with pulse identi-
fication/parameter estimation (Guo et al., 1999; Yang et al.,
2006). All other methods assume a constant basal concentra-
tion. Thus, information such as the amount of hormone se-
creted per pulse will be overestimated. Lastly, a recent study
(Keenan and Veldhuis, 2003) suggests that pulse size and
shape vary throughout the day. Only two models have allowed
for this biologic variation in pulse shape and size (Johnson,
2003; Yang et al., 2006).

To date, no model has been proposed that (i) does not rely
on the initial identification of pulses; (ii) accounts for both
pulsatile and oscillatory components of hormone release; and
(iii) models variation in pulse shape and size. In this article,
we present a Bayesian approach that addresses these three
issues. Our method extends earlier work by Johnson (2003)
and O’Sullivan and O’Sullivan (1988).

We present our model in Section 2. Then we briefly discuss
some issues related to posterior simulation in Section 3. We
analyze an example cortisol data set from the aforementioned
study in Section 4. In Section 5, we discuss posterior esti-
mation of event probabilities and compare results from our
model with the nonlinear mixed effects partial spline model
(NMPSM) developed by Yang et al. (2006). In Section 6, we
present results from a small simulation study and discuss is-
sues regarding sensitivity to priors. We conclude with a dis-
cussion in Section 7.

2. The Bayesian Deconvolution Model
2.1 The Likelihood
Let Yj denote the observed concentration at time tj , not neces-
sarily equally spaced. Let εt denote the error and C(t) denote
the true concentration at time t. Then Yj and C(tj ) are related
by

ln(Yj + 1) = ln[C(tj )] + εj

with εj
i.i.d.∼ N(0, σ2), j = 1, . . . , n (1)

where n is the number of observations in the time series. We
modeled the log of the concentration for several reasons. First,
both the true and observed concentration are nonnegative.
Second, Rodbard, Rayford, and Ross (1970) argue that be-
cause the error in concentration is a combination of several
different sources of error, including assay, biological, and di-
lution errors, a symmetric error structure is inappropriate.
Equation (1) implies that the observed concentration has a
lognormal distribution. Third, the assay error is proportional
to the concentration level. An offset of 1 is added to the ob-
served concentration to aid model fitting and to ensure that
the log transformation is well defined. It is common to assume
that εt ∼N(0, σ2), independently of one another.

Let Θ denote the set of all model parameters except σ2.
Concentration is modeled as a parametric function of Θ.
The likelihood portion of our model is ln (Yj + 1) |Θ, σ2 ∼
N [ln [C(tj )], σ

2]. (Note that we refer to the true concentration
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as C(t) and our model, presented below, of the true concen-
tration also as C(t). Although the model depends on Θ, we
do not explicitly show this dependence.)

2.2 The Concentration, C(·)
We assume a convolution model for hormone concentration.
A goal is to deconvolve the concentration into a secretion
function and a clearance function. Consider the first order,
linear differential equation (with initial condition)

dC (t)

dt
= kC (t) + S(t); C(0) = C0, k > 0. (2)

This equation states that the change in hormone serum con-
centration at time t is proportional to both the concentration
and the secretion rate, S(t). It is solved by using the integrat-

ing factor exp(
∫ t

0 kdx ) = exp(kt). The solution is

C(t) = C0 exp(−kt) +

∫ t

0

S(x) exp[−k(t− x)] dx . (3)

The integral on the right-hand side (RHS) is the convolution
integral of the hormone secretion and exponential decay (the
clearance function).

We decompose S(t) into the sum of basal secretion (the un-
derlying oscillatory component), B(t); pulsatile secretion, P(t)
and microscopic biologic fluctuation, G(t). Thus (3) becomes
(Keenan, Veldhuis, and Yang, 1998):

C(t) = C0 exp(−kt) +

∫ t

0

[G(x) +B(x)

+P (x)] exp[−k(t− x)] dx

= C0 exp(−kt) +

∫ t

0

[G(x) +B(x)] exp[−k(t− x)] dx
︸ ︷︷ ︸

F (t)

+

∫ t

0

P (x) exp[−k(t− x)] dx

= F (t) +

∫ t

0

P (x) exp[−k(t− x)] dx .

Often, the main interest lies in the number of pulsatile secre-
tion events and the amount of hormone secreted during each
event. Thus we consider F (·) a nuisance parameter. Johnson
(2003) considers a similar model for the concentration; how-
ever, he only considers a constant function F (t) ≡ c that was
appropriate for that particular application.

2.2.1 The nuisance function, F(·). We believe that F (·)
should vary smoothly over time and model it with a b-spline
(de Boor, 1978) function with an a priori unspecified number
of knots. Let NK denote the number of interior knots at lo-
cations {ξi}NK

i=1 (throughout this article, we drop the indices
on sets after their initial definition). Both NK and {ξi} are
unknown quantities that are to be estimated. Conditional on
NK , let {βi}(NK +4)

i=1 denote the set of b-spine coefficients and
let X ≡ X({ξi}) denote the design matrix whose rows are the
basis functions evaluated at {ξi} for the b-spline representa-
tion of F (·). Note that X depends on both the number and
location of the knots. The dimension of X is n × (NK + 4).
Note that eight additional knots must be specified for a cubic

b-spline with free end points. The first four knots are placed at
the beginning of the data collection period, taken to be t = 0,
and the last four knots at T, the end of the data collection
period. Then F (·) can be approximated at the observation
times tj by F̂ (tj ) = 〈XT

j,· , βNK
〉 where XT

j,· is the jth row of
X,βNK = (β1, . . . , βNK +4)

T and 〈·, ·〉 denotes the inner product.
To account for the offset of 1 added to the observed concentra-
tion, we must account for it in the estimation of the nuisance
function. Otherwise, its estimate can be negative. We do so
by adding 1 to its estimate.

2.2.2 The pulsatile secretion function, P(·). Parallel to the
development in O’Sullivan and O’Sullivan (1988), we assume
that the signaling of the release of hormone can be mod-
eled by a nonhomogeneous point process {τ i}i≥ 1 and its as-
sociated counting function N((a, b]) =

∑
i≥ 1 I(a,b](τi), where

IA(x) is the indicator function. We generalize their develop-
ment by attaching marks, {γi}i≥ 1, to the process {τ i} (in-
dependently of the event times) in a measurable marking
space (M,F) with probability measure µ. We assume that
µ is absolutely continuous with associated density f(γ | t).
Then, {τ i, γi}i≥ 1 is also a point process with counting func-
tion: N((a, b] ×A) =

∑
i≥ 1 I(a,b]×A(τi, γi) where A ∈ F . Let

λ(t) denote the (marginal) rate function of {τ i}. Then the
rate function of {τ i, γi} is λ(t)f(γ | t). Further, let p(t; γ)
represent a family of nonnegative functions parameterized
by γ. The pulsatile component, P(t), of the secretion func-
tion is given by the convolution of p(t; γ) and N((0, t] ×M):

P (t) =

∫
(ν,y)∈(0,t]×M

p(t− ν; γ − y)dN ((ν, y))

def
=

∑
i≥1

p(t− τi; γi)I(0,t]×M(τi, γi) =

N(t)∑
i=1

p(t− τi; γi),

(4)

with t∈ (0, T ]. The pulse functions, p(t − τ ; γ), are
taken to be Gaussian shaped in this article: p(t− τ ; γ) =
α exp(−0.5(t− τ)2/ν2)/

√
2πν2 where γ = (α, ν2), α repre-

sents the amount of hormone secreted by a gland due to the
signal at time τ and ν2 controls the width of the function
p(t; γ). Thus M = R

+ × R
+ and F are the Lebesque measur-

able rectangles in M.

Remark 1: We take some notational liberty here. The
process {τ i} represents both the signaling mechanism arrival
times and the centers of the Gaussian-shaped pulse functions
p(t − τ i;, γi); implying that the gland releases αi/2 hormone
prior to the signal. Technically, the signal should precede any
hormone secretion. This would be the case, for instance, if
p(t; γ) ∝ α tγ−1 exp(−β t) with γ = (α, β, γ) for t≥ 0. Within
the Bayesian framework, the pulse function family can be vir-
tually any nonnegative family of functions. Henceforth, the
process {τ i} will represent the arrival times of (the centers
of) the pulse functions p(t − τ i; γi) with the understand-
ing that the signaling mechanism precedes any (significant
amount of) hormone release:

∫ si

−∞ p(t− τi; γ) ≈ 0, where si (≤
τ i) is the ith signaling event.

Remark 2: Marking the process allows for biological vari-
ation in the amount of hormone released during each pulse



1210 Biometrics, December 2007

event. This biological variation may be due to several fac-
tors including the strength of the signaling mechanism and
the amount of hormone in the gland available for secretion
among other factors such as known or unknown positive and
negative feedback mechanisms that are unobservable.

Remark 3: Allowing the process to have a nonhomoge-
neous rate function gives flexibility in modeling the shape and
size of a pulsatile secretion event (loosely defined as a large
quantity of hormone released in a relatively short period of
time). It also allows for alternating active and quiescent peri-
ods of hormone release throughout the day. A secretion event
may consist of a single pulse function pulse p(t − τ i; γi) or
of the superposition of several pulse functions from a rapid
succession of signals.

2.2.3 The elimination function. There are several mecha-
nisms for the elimination of hormone from the circulatory sys-
tem including specific target cite binding, enzymatic cleavage,
and glomerular filtration. Typically these mechanisms cannot
be modeled individually and a single elimination function is
used to model the overall clearance rate. The elimination func-
tion is typically chosen to be exponential or bi-exponential
decay unless experimentation suggests some other form. In
this article we will assume that clearance is exponential:
exp (− kt). We model the half-life of the clearance function:
t1/2 = ln (2)/k, instead of the decay rate, k, which helps with
convergence properties during Markov chain Monte Carlo
(MCMC) simulation (see Section 2.3.4).

2.3 Parameter Priors
2.3.1 Prior factorization. We note here that the pulsatile

function and the basal nuisance function are nearly con-
founded. It may be virtually impossible to separate out a
small, broad pulse from a local maximum in the nuisance func-
tion. From the Bayesian perspective, this confounding can be
controlled, in large part, by an appropriate prior specification
of model parameters. Thus, an objective Bayesian approach
is rather useless in a problem of this nature and informative
priors are a necessity. Physiologically, a pulse is characterized
by a large amount of hormone secreted into the circulatory
system in a very short (almost as a bolus) period of time. Fur-
thermore, the oscillations of the basal concentration, at least
for cortisol, should have approximately a 24-hour period. In
this section, we define the prior distributions used in our anal-
yses. Cortisol hormone specific hyperprior values are defined
in Section 4. A sensitivity analysis is presented in Section 6.

We assume the following factorization of the joint prior:

π
[
{βi}, β, ψ2, {ξi},NK , {τj}, {ν2

j}, ν, ζ2, {αj}, α, φ2, N(T ),

× t1/2, σ
2, λ

]

=

NK∏
i=1

[
π({βi} |NK , β, ψ

2)π({ξi} |NK )
]
π(Nk)π(β)π(ψ2)

(5)

×
{ N(T )∏

j=1

[
π(αj |N(T ), α, φ2)π(ν2

j |N(T ), ν, ζ2)
]

×π(τ1, . . . , τN(T ) |N(T ))π(N(T ) |λ)π(λ)π(ν)π(ζ2)

×π(α)π(φ2)
}
× π(t1/2)π(σ2). (6)

Equation (5) includes priors for parameters of the nuisance
function, F (·), as well as hyperpriors on these parameters;
the factors enclosed in parentheses in (6) are the priors (and
hyperpriors) for the parameters of the pulsatile secretion func-
tion, P(t). The last two factors are half-life and model variance
priors, respectively.

2.3.2 Priors for the parameterized function F(·). The num-
ber of knots, NK , is assigned a negative binomial prior with
mean 3 and variance 6: Nk ∼Negbin (3, 1). The number
of knots can be thought of as a smoothing parameter in a
b-spline representation (de Boor, 1978) with fewer knots re-
sulting in a smoother estimate F̂ (·). Because we believe that
F (·) should be a slowly varying function (smooth oscillations),
we chose a small mean for NK . The knots locations, {ξi}, are
a priori distributed as NK independent, uniform random vari-
ables over the data collection period. Their conditional joint
prior density is thus π(ξ1, . . . , ξNK |NK ) = T−NK .

The last set of parameters that require a prior, for the spec-
ification of F (·), is {βi}. F (·) is necessarily a nonnegative
function. Because the basis functions of the b-spline repre-
sentation are nonnegative, a sufficient condition for a b-spline
function to be nonnegative is that each b-spline coefficient βi,
i = 1, . . . ,NK , be nonnegative (de Boor, 1978). Therefore, we
model the natural log of the b-spline coefficients hierarchi-
cally: ln (βi) |NK , β, ψ2 ∼N(β, ψ2) with ln (β)∼N(3, 1) and
ψ2 ∼ IG(2.1, 2), the inverse gamma distribution. The param-
eter values in the normal and inverse gamma distributions
were selected, in large part, to give reasonable mixing prop-
erties in the birth-death MCMC (BDMCMC) algorithm (see
Section 3).

2.3.3 Priors for the parameterized function P(·). Next, we
specify the priors for parameters that define P (·) in (4). The
priors are specified hierarchically. We begin with the number
of pulse functions, N(T). A priori we assume that the stochas-
tic process, {τ i}, governing the arrival times of the pulse func-
tions is a homogeneous conditional Poisson process, given λ,
with intensity λ∗ = λ/T (any indications of a nonhomoge-
neous process that are present in the data will be reflected
in the posterior). We reflect uncertainty in λ by placing a
prior distribution on it as well: λ | aλ, bλ ∼G(aλ, bλ). Hence
N(T ) |λ∼Pois(λ) (marginally N(T) has a negative binomial
distribution). For a homogeneous Poisson process, {τ i}, it is
well known that the joint distribution of τ 1, . . . , τN(T ) given
N(T ) = n is distributed as the order statistics from n inde-
pendent and identically distributed uniform random variables
scaled to [0, T ]: π(τ 1, . . . , τN(T ) |N(T ) = n) = n!/Tn .

Conditional on N(T), the remaining parameters are {γi}.
Recall that γi = (αi, ν

2
i). We assume a priori that these pa-

rameters are independent of the event arrival times and that
all of the elements of the sets {αi} and {ν2

i} are a priori con-
ditionally independent and are all strictly positive. Thus, we
specify the priors for αi and ν2

i hierarchically on the log scale:

ln(αi) |α, φ i.i.d∼ N(ln(α), φ2), i = 1, . . . , N(T ), (7)

ln(α) ∼ N(mα, v
2
α) and φ2 ∼ IG(aφ, bφ), (8)

and

ln(ν2
i ) | ν, ζ

i.i.d∼ N(ln(ν), ζ2), i = 1, . . . , N(T ), (9)
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ln(ν) ∼ N(mν , v
2
ν) and ζ2 ∼ IG(aζ , bζ)., (10)

We believe that there may be biological variation from pulse
to pulse; however, we also believe that the pulse functions
should be more or less similar. Modeling these pulse function
shape parameters hierarchically reflects this belief. Note that
this hierarchical modeling also reduces the influence of the
priors on the posterior estimates. The hyperpriors aλ, bλ,
aζ , bζ , aφ, bφ, mν , v2

ν , and mα, v2
α are all constant and

will depend on the particular hormone under study. They are
defined in Section 4 for the cortisol study presented in the
Introduction.

2.3.4 Priors for t1/2 and σ2. The last two parameters that
require prior specifications are the half-life and the model vari-
ance. We choose to model the decay function in terms of the
hormone half-life instead of the decay rate, k. During MCMC
simulation of the posterior, we observed that modeling hor-
mone clearance from the system in terms of the half-life results
in better simulation performance. When the decay rate was
used, it often happened that both it and the {αi} simultane-
ously escape to very large numbers, numbers that are biolog-
ically impossible, never to return. This is easy to control with
a suitable prior under the half-life parameterization because
as k → ∞, t1/2 → 0. Because the half-life is a strictly positive
number we assign it a log-normal prior: ln (t1/2)∼N(mt , vt).
The prior mean and variance will depend on the particular
hormone under investigation. The model variance is given a
vague, proper prior: σ2 ∼ IG(0.001, 0.001).

3. Simulating from the Posterior
The full joint posterior is not analytic in form. Thus we resort
to MCMC simulation of the posterior distribution. Further-
more, the number and location of both the b-spline knots as
well as the number and location of the pulse function arrival
times (and associated marks) are unknown. Standard MCMC
techniques are not equipped to handle variable-dimension pa-
rameter space problems. Recent advances in Bayesian compu-
tation, however, have made variable-dimension problems fea-
sible. We use the BDMCMC algorithm developed by Stephens
(2000) to simulate the number of spline knots, their locations
and associated coefficients. A separate BDMCMC algorithm
is used to draw the number of pulse functions, their loca-
tions and associated marks. Both instances of the BDMCMC
algorithm are imbedded within the MCMC simulation of the
remaining parameters. An alternative algorithm to the BDM-
CMC algorithm that could also be used is the reversible-jump
MCMC algorithm due to Green (1995).

The BDMCMC requires exchangeable priors and like-
lihoods (Stephens, 2000). The conditional prior π(τ 1, . . . ,
τN(T ) |N(T )) violates this requirement. Thus to implement
the BDMCMC algorithm on the pulse function parameters,
we further condition on a random permutation of the arrival
time indices (1, . . . ,N(T )). Let p denote this random permu-
tation with conditional prior π(p |N(T )) = 1/N(T )!. Then

π(τp(1), . . . , τp(N(T )) |N(T ))

= π(τ1, . . . , τN(T ) |N(T ))π(p |N(T )) = T−N(T ).

It is this joint distribution that is used in the BDMCMC algo-
rithm. As for the {αi} and {ν2

i}, they are all a priori indepen-
dent. At the end of the simulation, we can easily convert back

to the ordered arrival times. As an aid to chain mixing, after
the BDMCMC algorithms return to the main MCMC chain,
the parameters drawn from the BDMCMC algorithm are fur-
ther updated with standard Gibbs or Metropolis–Hastings
steps as suggested by Stephens (2000).

Remark 4: This permutation of the arrival times is justi-
fied by the fact that the simplest way to simulate the arrival
times of a Poisson process with intensity λ in an interval (a,
b] conditional on N((a, b]) is to (i) draw N((a, b]) from a
Poisson distribution with mean λ(b − a); (ii) draw N((a, b])
independent uniform random variables on (a, b]; and (iii) or-
der them. Conceptually, the BDMCMC algorithm executes
(i) and (ii).

4. Example
All 52 cortisol data sets from the study described in the Intro-
duction were analyzed. The same (hyper)prior distributions
were used for all analyses. It is impractical to display results
on all 52 data sets and so we report results on a randomly
selected data set. Results are based on averaging over models
indexed by N(T). The data are shown in the upper left panel
of Figure 1. The data collection took place during a 24-hour
period (T = 24) and blood was drawn at 10-minute intervals.
First we need to specify the remaining (hyper)prior param-
eters that are hormone specific. We chose values that result
in prior means/modes that are reasonable from a biological
point of view and variances that are moderately large. (An
alternative approach would be to elicit the prior distribution
for the half-life, then use the data and the convolution model
to find reasonable, so that the concentrations profiles look
similar to the data, priors for the pulse function parameters
in a “quasi-empirical Bayes approach.” The mean of the Pois-
son process could be obtained by asking an expert how many
pulses they detect by eye.) To begin we specify our priors and
hyperpriors for the pulse function parameters: αλ = 10 and
βλ = 1. Thus, λ |αλ, βλ ∼G(10, 1) and reflects our belief that
the number of secretion events should be about 10 in a 24-
hour period and thus, a priori we believe that each secretion
event should be made up of one pulse function. However, it is
also variable enough to allow fewer events and allow for the
possibility that secretion events may be made up of several
component functions. For the amount of hormone released,
we set mα = 3, v2

α = 1, aφ = 5, and bφ = 2. The prior mode of
α, the fixed effect of the amount of hormone released, is 7.39
with a standard deviation of 43.4. Plugging in the prior means
of α and φ2 into (7) results in a prior mode of 12.2 for the
random effects, αi, with a standard deviation of 20.8. For the
“width” of the pulse functions we set mν = −1, v2

ν = 1, aζ = 5,
and bζ = 2. The fixed effect, ν, has mode 0.13 (about 8 min-
utes) and standard deviation 0.8 (about 47.7 minutes). Plug-
ging in the prior means of ν and ζ2 into (9) results in a prior
mode of 0.22 (about 13.4 minutes) for the random effects νi

with a standard deviation of 0.38 (about 22.8 minutes). For
the half-life we set ln(t1/2) ∼ N(−1, 1). Upon exponentiating,
this prior has 90% of its mass between 0.07 (4.2 minutes) and
1.9 (114 minutes)—a reasonable range for the elimination of
cortisol. Only 1.6 × 10−4 of the mass is less than 0.01, thus
controlling the half-life from becoming too small. We reiter-
ate here that the priors in this model must be moderately
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informative. Very diffuse, or uninformative, priors are
inappropriate due to the potential confounding of the secre-
tion function and the basal nuisance function and due to the
inherent instability of deconvolution. (Deconvolution is a well-
known ill-posed problem, see Wahba, 1990; Kaipio and Som-
ersalo, 2005). In large part, the confounding of the secretion
function and the basal nuisance function is controlled by the
priors on N(T) and NK . The instability of deconvolution is
controlled by the priors on t1/2, α, {αi}, ν and {νi}.

We ran the MCMC simulation for 225,000 iterations with
a burn-in of 25,000. The chain was thinned by saving every
100th sample. The simulation took 19 minutes on a dual 2.7
GHz Power Mac G5. Convergence was assessed graphically
on the parameters that are of fixed-dimension. Good mixing
was realized for both BDMCMC algorithms with NK taking
on a different value approximately 4% of the time and N(T)
taking on a different value roughly 10% of the time.

Graphical results are given in Figure 1. The upper right
panel of Figure 1 shows the expected value of the posterior
predictive density (PPD) of the concentration (solid black
line) as well as the 95% pointwise prediction bounds (solid
gray lines). The lower left panel shows the posterior mean of
the nuisance function F (t) |Y (solid black line) as well as the
95% pointwise credible bounds (solid gray lines). The poste-
rior estimated mean of the pulsatile secretion function P(t)
and 95% pointwise credible bounds are displayed in the lower
right panel (black and gray lines, respectively). Fits were ob-
tained by marginalizing the posterior over NK and N(T).

Overall, the model fits the data well. Bayesian deleted resid-
uals (Gelfand, Dey, and Chang, 1992) show no structural pat-
tern, indicating that the mean structure of the data has been
captured by the model (this was true for all 52 data sets).
There are only one or two outliers (absolute residual value
greater than 3). Further evidence of model fit is ascertained
by computing a Bayesian goodness-of-fit statistic (Johnson,
2004). The value of the statistic is 0.502. Under the null hy-
pothesis that the model fits well, a value of 0.5 is expected.
Values much smaller than 0.5 indicated overfitting of the data,
while values much larger than 0.5 indicate a lack of fit.

5. Estimating the Posterior Rate Function
The number and location of secretion events are often of in-
terest to the investigator. The posterior mean of the pulsatile
secretion function, shown in the lower-right panel of Figure 1,
and the 95% pointwise credible bounds give a good indication
of the locations of these events and an indication of how likely
it is that a secretion event occurs in a given interval of time.
However, two questions are often asked that the figure does
not address:

(i) What is the probability that a secretion event occurs
at time t?

(ii) How many secretion events are there?

Johnson (2003) allocates pulse functions to secretion events
by considering any group of pulse functions whose superposi-
tion results in a function with a single global maximum as a
single secretion event. The resulting posterior distributions of
the number of secretion events for the data sets he considers
all have a dominant mode. That mode is taken as the number
of secretion events and all further analyses are conditional on

that number of events. No estimate of the probability that
something is an event was attempted, nor was it necessary.
For the data considered here, his method is unsatisfactory. A
dominant secretion event mode does not exist; the mode oc-
curs approximately 21% of the time (not shown) and thus the
uncertainty in model choice is large. Furthermore, we want
to estimate the posterior probability that a secretion event
occurs in an arbitrary interval.

We propose a different solution that answers both ques-
tions: The procedure consists of the following three steps:

(i) Estimate the marginal posterior rate function λ∗(t) |Y
of the posterior process {τ i} |Y .

(ii) Estimate the location of secretion event j, SEj , as the
jth ordered local maximum, Mj , of λ∗(t) |Y .

(iii) For a neighborhood, Mj , containing Mj , estimate the
probability that at least one pulse arrival time is in Mj .
Take this estimate as the Pr(SEj ∈ Mj).

Step 1: Define the posterior rate function, λ∗(t) |Y , im-

plicitly by E(N(t) |Y ) =
∫ t

0 λ
∗(s) |Y ds for t∈ [0, T ]. Suppose

λ∗(t) |Y is bounded and continuous on [0, T ]. Then

lim
h→0

1

h
E[N(t+ h) −N(t) |Y ]

= lim
h→0

1

h

∫ t+h

t

λ∗(s) |Y ds = λ∗(t) |Y.

This suggests a way to estimate λ∗(t) |Y . Partition [0, T ] into
n subintervals Ai = (ti−1, ti ], i = 1, . . . ,n, t0 = 0, tn = T each
of length T/n. Then

λ∗(ti) |Y ≈ n

T
E[N(ti) −N(ti−1) |Y ], i = 1, . . . , n.

The expectation on the RHS can be approximated from the
MCMC posterior samples. Suppose we save S samples. Then

E[N(ti) −N(ti−1) |Y ] ≈ 1

S

S∑
j=1

N(T )(j)∑
k=1

IAi
(τ

(j)
k ), i = 1, . . . , n,

(11)

where the superscript (j) on a parameter indicates its values
from the jth MCMC sample. The RHS of (11) is a histogram
estimate of the counts of {τp(i)} |Y . We wish to have a smooth
estimate of λ∗(t) |Y and thus seek a smooth estimate of the
histogram.

Consider the marginal posterior density

π({τp(i)} |Y ) =

∞∑
k=0

π({τp(i)} |N(T ) = k, Y )π(N(T ) = k |Y ).

(12)

This can be estimated by dividing the RHS of (11) by∑S
j=1 N(T )(j). Therefore, λ∗(t) |Y is proportional to this

marginal posterior density. Thus, by estimating the marginal
density, we estimate λ∗(t) |Y . We estimate this density with a
mixture of normal density components whose number is un-
known. We choose a Bayesian model for density estimation
using mixtures of Dirichlet processes, MDP, (Ferguson, 1973;
Antoniak, 1974; MacEachern and Müller, 1998) that was first
proposed by Escobar and West (1995).

The MDP model is as follows. The data are the marginal
posterior draws of the τ j . The dependence on Y and on the
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permutation p is dropped only for notational convenience.
Each observation is allowed its own set of parameters. The
parameters are assumed to be distributed, i.i.d., according to
a distribution G, with additional uncertainty about the prior
distribution G. In particular, G is a random distribution gen-
erated by a Dirichlet process with base measure α0 N(µ, σ2)
and total mass parameter α0:

τj ∼ N
(
µj , σ

2
j

)
,

(
µj , σ

2
j

)
∼ G, G ∼ DP [α0, N

(
µ, σ2

)
].

We also place priors on the parameters of the base measure
in the Dirichlet process:

µ ∼ U(0, T ), σ2 ∼ IG(2.1, β), α0 ∼ G(1, 1)

with hyperprior β∼G(1, 1). The estimation of this model fol-
lows that given by Neal (2000, Algorithm 8). We estimate the
posterior of α0 by the method proposed in Escobar and West
(1995). Let λ̂∗(t) |Y denote the estimated marginal posterior
rate function. It is shown by the black curve in Figure 2. The
gray region under the curve is the histogram based estimate
of λ∗(t) |Y .

Step 2: The vertical lines at the bottom of Figure 2 show
where all local maxima, Mj , j = 1, . . . , 34, occur for the data
set analyzed above (some of which are so small that they are
not visible in λ̂∗(t) |Y ). The jth local maximum is taken to
be a point estimate of the location of the jth secretion event,
SEj . These maxima are easily obtained because the mixture
density is a mixture of normal density components. We can
easily estimate the expected first and second derivatives of
λ̂∗(t) |Y on a fine grid of [0, T ] during the MCMC simu-
lation of the MDP model and numerically estimate where
the first derivative equals zero and the second derivative is
negative.

Figure 2. The top portion of this figure shows the estimated
marginal posterior rate function, λ̂∗(t) |Y , estimated from the
MDP model. The vertical lines in the bottom portion show
locations of all local maxima and the probabilities (14). Some
maxima are so small, they cannot be seen. The rug at the
bottom shows the intervals endpoints (the local minima) on
which the probabilities were estimated.

Step 3: For any given interval, I ⊂ [0, T ], it is easy to es-
timate the posterior expected number of pulse arrivals in I:

E[N(I) |Y ] ≈
∫
I
(λ̂∗(t) |Y )dt ≈ 1

S

S∑
j=1

N(T )(j)∑
k=1

II
(
τ

(j)
k

)
. (13)

Also the posterior probability that at least one pulse arrival
occurs in I is easily estimated. First, let δi denote the Kro-
necker delta function (δi = 1 if i = 0 and δi = 0 if i �= 0).
Then

Pr[N(I) ≥ 1 |Y ] ≈ 1

S

S∑
j=1

(
1 − δN(I)(j)

)
. (14)

For certain intervals I that contain Mj , j = 1, . . . , J , this
probability can be taken to be the probability that SEj takes
place in I.

To automate this procedure, define mj as the jth local min-

ima of λ∗(t) |Y (also easily approximated on λ̂∗(t) |Y ). De-
fine m0 = 0 and mJ+1 = T . Further, let Ij = (mj−1,mj ], j =
1, . . . , J . Now (13) and (14) can be estimated for each of the
intervals Ij . Furthermore, each Ij contains one and only one
mj . Therefore we tacitly assume that one and only one se-
cretion event (SEj ) occurs in Ij . Hence Pr[SEj ∈ Ij |Y ] =
Pr[N(Ij) ≥ 1 |Y ] which, in turn, implies E[NSE(24) |Y ] =∑J

j=1 Pr[SEj ∈ Ij |Y ] where NSE(t) is the number of secre-
tion events in (0, t].

The probabilities (14) for intervals Ij , j = 1, . . . , 34, are
shown in the bottom half of Figure 2 for the data set exam-
ined in Section 4. The vertical lines denote the locations Mj ,
j = 1, . . . , J of the secretion events. The heights of the lines
indicate the probabilities. The rug at the bottom of Figure 2
denotes the local minima. Applying this to the data set ana-
lyzed above we find E[N(24) |Y ] ≈ 14.70 while the expected
number of secretion events is E[NSE(24) |Y ] ≈ 12.67.

Remark 5: We estimate the posterior rate function us-
ing the MDP model mainly to find the local maxima (which
we take as the point estimates of the locations of secretion
events) and local minima, and hence the intervals Ij . Es-
timates of E[N(I) |Y ] can be obtained from the posterior
sample without resorting to a smooth estimate of λ∗(t) |Y
[see (13), above]. The intervals Ij derived above may not
be the optimal intervals in the following sense. Consider
the fifth interval in Figure 2: I5 with end points 1:38 p.m.
and 3:13 p.m. Pr(N(I5) ≥ 1 |Y ) ≈ 0.9955. However, if I∗ is
the interval with end points 1:38 p.m. and 2:45 p.m., then
Pr(N(I∗) ≥ 1 |Y ) ≈ 0.9955. Nevertheless, the intervals Ij are
easily obtained in an automated way.

Remark 6: Parameter estimates from all other models to
date are conditional parameter estimates. They are condi-
tional on the number of secretion events. We have chosen
to estimate parameters by model averaging [over models in-
dexed by N(T)]. By doing so, we can estimate the posterior
rate function as well as the expected number of pulse function
arrivals and the expected number of secretion events. Further-
more, model averaging avoids underestimation of parameter
uncertainty that results from choosing a single model.
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Figure 3. Comparison of the Bayesian deconvolution model
and the NMPSM. Black denotes BDM, gray denotes NMPSM.
The solid lines are the estimated concentration. The dashed
lines are the estimated nuisance function from the two es-
timation procedures. The arrows at the bottom show point
estimates of event locations.

We also compare the fit of our model/method with the
recent model/method proposed by Yang et al. (2006). They
model pulsatile hormone data with a NMPSM. To compare
methods we need to threshold the probabilities of secretion
events with an a priori threshold value. We choose 0.8. Thus
if Pr[SEj ∈ Ij |Y ] > 0.8 we say that a secretion event has oc-
curred at Mj in interval Ij . Figure 3 displays fits from both
models (black—BDM, gray—NMPSM). There are several no-
table differences. First, around 9:00 p.m., BDM finds two “se-
cretion events that are not fit with NMPSM.” There is one
other “event,” around 4:30 a.m., that is found by BDM and
not by NMPSM. NMPSM does not detect the two around 9:00
p.m. because the heuristic procedure used to initialize event
locations did not identify these two as events. The “event” at
4:30 a.m. was identified by the heuristic procedure as a poten-
tial event. After NMPSM is fit to the data, the final number
of events is selected by either generalized cross validation,
risk information criterion, Akaike information criterion, or
Bayesian information criterion (BIC). Yang et al. (2006) rec-
ommends BIC. We chose BIC here, which did not select this
event. The other difference with respect to events is the loca-
tion of the “event” just prior to 3:00 p.m. BDM and NMPSM
finds different locations for it. Note that the arrows at the
bottom of this figure show point estimates of event locations.
Point estimates from BDM always precede those of NMPSM.
This is due to the fact that a point estimate from BDM is
for the secretion event location and a point estimate from
NMPSM is the MLE of the center of the pulse wave–form for
the concentration (the convolution of secretion and elimina-
tion). As to what is the truth in this data set, we do not know.
This comparison demonstrates what we said in the introduc-
tion. Models that rely on initial estimates of the number and
location of events cannot recover from missed events.

6. Prior Sensitivity and a Simulation Study
To assess the sensitivity of the posterior distribution on the
prior specification we doubled the standard deviations of the
prior distributions while keeping the means fixed. The pos-
terior mean (S.D.) of the half-life changed from 0.52 (0.13)
to 0.63 (0.14). To compensate for this increase, the secretion
rate function also changed. Numerical integration of the ex-
pected posterior secretion function, E (P (t) |Y ), results in a
change of the total amount of hormone secreted from 121.98
(23.17) to 104.36 (17.90). The expected posterior number of
events changed from 12.67 to 12.95. These changes are not
drastic but are expected because the deconvolution problem
is ill-posed. We further changed the prior on the Poisson pro-
cess mean from a G(10, 1) to a G(20, 1) and the prior on
the number of knots, NK , from a Negbin (3, 1) to a Negbin
(6, 1). As expected, the posterior means of N(T) and NK in-
creased. They changed from 14.70 (1.99) to 19.33 (2.96) and
from 3.75 (1.25) to 5.94 (2.00), respectively. The posterior
expected number of secretion events increased from 12.67 to
15.15. Given the a priori secretion event threshold of 0.8, one
extra event was discovered. That event occurs just prior to
noon (see Figure 2). The probability of that event increased
from 0.52 to 0.92. These results are to be expected as the
BDMCMC algorithm is sensitive to the prior specification of
the number of entities (Stephens, 2000)—N(T) and NK in the
present case.

We also conducted a small simulation study. We set the
nuisance function F (t) = 4 cos (2π t/24) + 6. Ten event
arrival times were drawn from the 3jth, j = 1, . . . , 10, or-
der statistics from 32 uniform random variables on [0, 24].
Each of the ten pulses were then assigned an αi and ν2

i by
drawing ln (αi)∼N(2, .25) and ln (ν2

i)∼N(−3.5, .5). The
half-life was set at 0.5. The resulting pulsatile function P(t)
was then convolved with exponential decay and added to F(t).
One hundred data sets were then generated by adding mean
zero gaussian noise (S.D. = 0.1) to the log of the concentra-
tion at 10-minute intervals. All of these values were chosen to
give realistic looking profiles.

For this set of simulated data sets, the sensitivity was 98.2%
while the specificity was 99.7%, given the predetermined prob-
ability threshold of 0.8. We expect these numbers would go
down as the model variance increases and/or the αi decrease.
An example of one simulated data set along with the true
concentration profile is displayed in the upper left panel of
Figure 4. The upper right panel shows the true concentration
(black) and the posterior predictive means (gray) from 20 ran-
domly selected simulations. The lower left panel shows F(t)
(black) and 20 randomly selected estimates (gray). The true
secretion rate function (black) and 20 randomly selected es-
timates (gray) are shown in the lower right panel. Numerical
results from the 100 simulations are displayed in Table 1 for
various parameters of interest. We found that the marginal
modes, or maximum a posteriori (MAP) estimates, resulted
in less bias than the marginal means or medians due to skew-
ness in the estimated posterior densities. In the interest of
space, results for functions are given in terms of the integrated
functions. Results from this simulation study suggest that the
proposed model and estimation method perform well. Biases
and root mean squared errors (RMSE) are not excessive. The
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Figure 4. Simulation results. UL: The true concentration profile (black) and a randomly selected simulated concentration
profile (gray). UR: True concentration and 20 randomly selected predicted concentration profiles (gray). LL: The true nuisance
function (black) and 20 randomly selected nuisance functions (gray). LR: True secretion rate function (black) and all 20
randomly selected estimates (gray).

bias in the half-life translates to a 54-second bias in half-life.
The bias in the number of secretion events NSE(24) and in the
integrated secretion rate function, P(t), are to be expected be-
cause our estimation is based on model averaging and includes
“false positives” in the estimate. However, the bias in the total
amount of hormone secreted due to events is largely removed

Table 1
Results from the simulation study for various parameters of interest. Results from event

locations are averaged over the 10 locations. The last row represents the average amount of
hormone secreted per event. The last column represents the coverage rate of the 95%

credible intervals. Location, NSE (24) and the amount of hormone secreted per event are not
amenable to the calculation of coverage rates. The average MAP, RMSE, and bias are

based on the 100 simulated data sets

Ave. Ave. Ave.
Parameter Truth MAP (S.D.) RMSE bias % bias % cov.

location Varies Varies 0.052 0.004 0.052 –
t1/2 0.500 0.485 (0.060) 0.062 −0.015 −2.977 97.0
NSE (24) 10.000 10.605 (0.379) 0.507 0.605 6.049 –∫ 24

0 C(t) dt 204.376 205.382 (1.843) 2.091 1.006 0.492 96.0∫ 24
0 F (t) dt 144.000 142.685 (6.011) 6.124 −1.315 −0.913 97.0∫ 24
0 P (t) dt 84.586 89.115 (6.734) 8.088 4.529 5.354 91.0∫ 24
0 P (t) dt/NSE(24) 8.459 8.409 (0.652) 0.651 −0.049 −0.579 97.0

if we consider the average amount of hormone secreted per
event—the last row of Table 1. We also note that all cover-
age rates of the 95% (equal tail area) credible intervals are
within Monte Carlo simulation error (Monte Carlo 95% CI =
(90.7,99.3)). Location and NSE(24) are not amenable to the
calculation of coverage rates and, thus, are not reported.
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7. Discussion
Our method extends earlier work by Johnson (2003) in two
significant aspects. First, we allow for a non-constant basal
concentration. Second, we estimate probabilities of secretion
events. We also extend the work by O’Sullivan and O’Sullivan
(1988) by convolving a marked point process, we allow for bi-
ological variation in the size and shape of each pulse function.
Third, O’Sullivan and O’Sullivan (1988) assume a zero basal
concentration; we allow the basal concentration to be an ar-
bitrary function that is approximated by a spline function.
Lastly, our method contrasts with that of Yang et al. (2006):
the BDM does not rely on an ad hoc method to initialize the
number and location of events.

The BDM can easily incorporate other pulse function
forms, such as a Laplacian or gamma. The only technical
difficulty may be in the convolution of these two functions
as it may not have an analytic solution. The convolution of
a Gaussian and exponential decay does not have an analytic
solution, but is proportional to the error function, erf, which
can be efficiently computed (see Johnson, 2003).

A disadvantage of the BDM approach is that is it rather
difficult to elicit prior information and to implement the ad-
vanced MCMC simulation (code is available from the author
upon request). Further, because of the ill-posed nature of the
deconvolution problem, uninformative prior specification and
an objective Bayesian approach is not be feasible. Lastly, the
Bayesian approach is computationally intensive. The MCMC
simulation of the cortisol data set takes about 19 minutes on a
dual 2.7 GHz PowerPC G5. Further the MDP postprocessing
takes an additional 15 minutes.

We see the need to incorporate models that identify pulses
and the subsequent second stage analyses (e.g., group com-
parison) into a single, coherent, joint modeling approach. A
joint approach of this nature could go a long way in address-
ing some of the confounding issues that naturally arise in
this problem. The idea of aligning the time-series by “time-
warping” could be borrowed from functional data analysis.
The warping would be used to align the oscillations in the
basal concentration function as well as pulse locations be-
tween different data sets. Random effects could then be de-
fined around fixed population effects. These effects would
include the oscillatory nuisance function, the decay rate, num-
ber of pulses, and the amount of hormone release during each
pulse. The down side, from a Bayesian perspective, would be
the large amount of computing time necessary to simulate
from the posterior. However, as large computing clusters be-
come widely available, the solution of this problem will be
feasible: the computation of subject-specific effects can be
distributed across the nodes of the cluster. Population based
effects can subsequently be updated.
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