Epilepsia, 48(Suppl. 8):69-71, 2007
doi: 10.1111/5.1528-1167.2007.01355.x

OUTCOMES OF STATUS EPILEPTICUS

Is neurogenesis reparative after status epilepticus?
*Jack M. Parent, jSebastian Jessberger, jFred H. Gage, and *Chao Gong

*Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan, U.S.A.; and fLaboratory
of Genetics, The Salk Institute, La Jolla, California, U.S.A.

Neurogenesis persists in the hippocampal dentate gyrus
of mammals, including human and nonhuman primates,
throughout life (Altman and Das, 1965; Cameron et al.,
1993; Kuhn et al., 1996; Eriksson et al., 1998; Gould
et al., 1999; Kornack and Rakic, 2001). Neural stem-
like cells reside in the subgranular zone (SGZ) at the
border of the hilus and DGC layer (Seri et al., 2001;
Filippov et al., 2003), where they generate neuroblasts
that migrate into the layer and differentiate into gran-
ule neurons (Cameron et al., 1993; Kuhn et al., 1996).
Adult-born dentate granule cells (DGCs) send axonal
projections to appropriate targets (Stanfield and Trice,
1988; Markakis and Gage, 1999; van Praag et al., 2002)
and acquire electrophysiological characteristics of mature
DGCs (van Praag et al., 2002; Wadiche et al., 2005; Ge
et al., 2006). Although the precise function is unknown,
evidence implicates DGC neurogenesis in certain forms of
hippocampus-dependent learning and memory (reviewed
in Doetsch and Hen [2005]).

DGC NEUROGENESIS IS ALTERED
AFTER SE OR KINDLING

Studies in adult rodent models of mesial temporal lobe
epilepsy (mTLE) indicate that status epilepticus (SE) po-
tently stimulates DGC neurogenesis (Parent et al., 1997
Gray and Sundstrom, 1998; Parent et al., 1998). Kainate-
or pilocarpine-induced SE increases dentate gyrus cell pro-
liferation approximately 5- to 10-fold within 3 days (Parent
et al., 1997; Gray and Sundstrom, 1998), and over 80%
of the cells become DGCs. Electrical kindling of amyg-
dala (Parent et al., 1998; Scott et al., 1998), hippocam-
pus (Bengzon et al., 1997), or perforant path (Nakagawa et
al., 2000) also stimulates DGC neurogenesis. SE-induced
neurogenesis may be short-lived, however, as chronically
epileptic rats show decreased DGC production 5 months
after SE (Hattiangady et al., 2004).

In addition to increased production, adult rodent DGCs
generated after SE show abnormalities of structure and
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location. Basal dendrites persist on adult-born DGCs
much more frequently after SE (Scharfman et al., 2000;
Dashtipour et al., 2001), and cells with basal dendrites
appear both in the inner DGC layer and hilus after
SE. Interestingly, new DGCs with abnormal basal den-
drites continue to form many months after SE (Jessberger
et al., 2007a), suggesting that the responsible cues per-
sist well after the initial insult. Another abnormality in-
volves dispersion of the DGC layer and abnormal locations
of DGCs outside the layer. The dentate gyrus in human
mTLE often shows excessive DGC dispersion and ec-
topic granule-like neurons in the hilus and molecular layer
(Houser, 1990; Parent et al., 2006). DGC layer disper-
sion and hilar-ectopic DGCs appear in rodent mTLE mod-
els and persist chronically (Parent et al., 1997; Scharfman
et al., 2000; Dashtipour et al., 2001; Jessberger et al., 2005;
Parent et al., 2006). Ectopic cells in human and experimen-
tal mTLE are similar in terms of their morphology and ex-
pression of DGC-specific markers (Scharfman et al., 2000;
Dashtipour et al., 2001; Parent et al., 2006).

MECHANISMS UNDERLYING
SE-INDUCED NEUROGENESIS

The mechanisms by which SE stimulates neurogenesis
are unknown. Huttmann et al. (2003) used a neural stem
cell reporter mouse to show that kainate-induced SE influ-
ences proliferation of the SGZ radial glia-like progenitors.
SE may increase neurogenesis indirectly through the stim-
ulation of astrocytosis, as astrocytes stimulate hippocampal
neurogenesis via wnt signaling and perhaps other mecha-
nisms (Song et al., 2002; Lie et al., 2005). SE also increases
the expression of growth factor and other molecules with
the potential to influence neurogenesis.

The formation of ectopic DGCs after SE likely involves
developmental cues that persist in the adult. The migration
guidance cue reelin, for example, is expressed in the adult
human and rodent dentate gyrus and is implicated in DGC
layer dispersion in human mTLE (Haas et al., 2002). Re-
cent work shows that hilar-ectopic DGCs in experimental
mTLE arise from aberrantly migrating DGC progenitors
(Parent et al., 2006). This altered migration is associated
with loss of reelin signaling that may disrupt the migra-
tory behavior of DGC progenitors (Gong et al., 2007).
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Brain-derived neurotrophic factor (BDNF) is another can-
didate, as hippocampal BDNF infusion in adult rat in-
creases DGC neurogenesis and induces ectopic DGCs
(Scharfman et al., 2005). The combined action of multi-
ple factors likely are involved, each potentially acting on
different steps in the neurogenic cascade.

CONSEQUENCES OF SE-INDUCED
NEUROGENESIS

Recent evidence suggests that DGCs generated after SE
integrate abnormally into existing networks (Scharfman
et al.,, 2000; Dashtipour et al., 2001; Jessberger et al,
2007a). Intracellular recordings from hilar-ectopic DGCs
in hippocampal slices from epileptic rats show that they
are hyperexcitable and burst synchronously with CA3
pyramidal cells (Scharfman et al., 2000). This increased
excitability may relate to excessive excitatory input onto
basal dendrites of ectopic DGCs (Dashtipour et al., 2001).
Moreover, granule cells that extend hilar basal dendrites
stably integrate into the dentate circuitry (Jessberger et
al., 2007a), leading to lasting changes in connectivity that
may contribute to epileptogenesis. Further support for the
epileptogenicity of SE-induced neurogenesis comes from
the work of Jung et al. (2004). They inhibited DGC neu-
rogenesis after pilocarpine treatment by antimitotic agent
infusion and found that rats developed fewer and shorter
spontaneous recurrent seizures than controls. These data
suggest that DGCs integrate abnormally after SE, are hy-
perexcitable, and may contribute to seizure generation or
propagation (Fig. 1).

Other work suggests a more complex influence of adult-
born DGCs on hippocampal excitability after SE. In con-
trast to chemoconvulsant SE models, the morphology of
developing DGCs after electrically-induced SE appears un-
altered, at least in the DGC layer (Jakubs et al., 2006). In
this model, newborn DGCs receive increased inhibitory in-
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Figure I.
Aberrant neurogenesis hypothesis of mTLE pathophys-
iology.
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put resulting in less excitability than newborn cells gen-
erated after exercise (Jakubs et al., 2006). Some DGCs
generated after SE therefore could have compensatory
antiepileptogenic effects.

As mentioned above, adult hippocampal neurogenesis
likely underlies specific learning and memory functions,
raising the possibility that defective neurogenesis may con-
tribute to the progressive memory dysfunction seen in
mTLE (Fig. 1; Helmstaedter, 2002). This idea is supported
by recent findings of Jessberger et al.. They suppressed
neurogenesis after kainic acid-induced SE with the histone
deacetylases inhibitor and anticonvulsant valproic acid and
found that decreased neurogenesis was associated with bet-
ter performance in a hippocampus-dependent object recog-
nition task than in SE controls (Jessberger et al., 2007b).
These data may be reconciled with the decline in neurogen-
esis chronically after the experimental SE described above
(Hattiangady et al, 2004), if one considers that memory
function may be impaired both by aberrant neurogenesis or
areduction of normal DGC neurogenesis. However, further
progress in understanding the functional consequences of
SE-induced neurogenesis for epileptogenesis or cognitive
impairment awaits more specific and selective experimen-
tal strategies to manipulate adult neurogenesis.
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