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A continuum theory for non-Newtonian flow of a two-phase 
composite containing rigid inclusions is presented. I t  pre- 
dicts flow suppression by a factor of (1 - V)p, where V is the 
volume fraction of the rigid inclusion and q depends on the 
stress exponent and the inclusion shape. Stress concentra- 
tions in the rigid inclusion have also been evaluated. As the 
stress exponent increases, flow suppression is more pro- 
nounced even though stress concentration is less severe. To 
test this theory, superplastic flow of zirconia/mullite com- 
posites, in which zirconia is a soft, non-Newtonian super- 
plastic matrix and mullite is a rigid phase of various size, 
shape, and amount, is studied. The continuum theory is 
found to describe the two-phase superplastic flow reasonably 
well. [Key words: flow, composites, mullite, zirconia.] 

I. Introduction 

UPERPLASTICITY of fine-grain polycrystals has been widely S reported for metals' and, most recently, for  ceramic^.^-^ 
Although a majority of superplastic materials contain two 
phases, definitive studies of constitutive relations of multi- 
phase alloys and ceramics at elevated temperatures are few. 
From a theoretical viewpoint, Chen has drawn attention to 
two prototype behaviors in two-phase superplastic flow? The 
first type is the classical composite behavior in which each 
constituent phase deforms according to its own constitutive 
relation. In such case, the deformation resistance of the com- 
posite is bounded by the deformation resistances of the two 
constituent phases. Corresponding behavior of this kind in 
linear elasticity, viscoelasticity, and Newtonian fluid flow is 
well understood. In the second type, stress-driven kinetic 
demixing, due to different mobilities of common constituent 
atoms or ions shared by two phases, is predominant. As a 
consequence, migration of phase boundaries occurs which, in 
turn, alleviates back stresses and solute segregation. Diffu- 
sional flow is thus facilitated, lowering the deformation resis- 
tance in some microduplex composites to a value below those 
of both constituent phases.6 To emphasize the distinct physi- 
cal nature governing two-phase superplastic flow, Chen has 
suggested that the first type be named rheological flow, and 
the second, interdiffusional flow. Evidence of both types 
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of behavior, mostly in metals, was cited by Chen from the 
literature: 

Rheological superplastic flow may be modeled using con- 
tinuum mechanics. For creep and superplastic flow, a correct 
treatment must take into account the non-Newtonian nature 
of the constitutive laws. Such nonlinear problems are gener- 
ally very difficult and rarely amenable to an analytical treat- 
ment, except in special cases: One such case, of particular 
interest for structural applications, is a soft power-law creep- 
ing matrix reinforced by rigid inclusions. It can be shown that 
the composite follows a similar power-law relation between 
stress and strain rate, with the same stress exponent, but with 
a different prefactor whose value depends on the shape and 
the volume fraction of inclusions. A theory addressing this 
problem is presented here and the superplastic flow of a fam- 
ily of (soft) zirconia/(rigid) mullite composites is used to elu- 
cidate such behavior. 

Several considerations on the merit of the zirconia/mullite 
system as a model composite for the present purpose should 
be mentioned to provide a background of our study. First, 
zirconia has been reported to deform superplastically at high 
ternperat~res.'.~ While the composition typically used for 
such studies has been 3Y-TZP (97 mol% Zr02-3 mol% Y203), 
which contains 90 vol% tetragonal phase and 10 vol% cubic 
phase, we have chosen a lower yttria composition of 2 mol% 
(2Y-TZP) so that only the tetragonal phase is present. It was 
expected, and indeed verified in our study, that 2Y-TZP is 
superplastic with a very low deformation resistance. On the 
other hand, mullite (3A1203 * 2Si02) is known for very good 
creep resistance. For example, single crystals of mullite 
stressed along the c-axis do not deform plastically at 1500°C 
to 900 MPa, and the diffusional creep rate of polycrystalline 
mullite (grain size = 3 to 4 pm) is -6 x 10-8/s at 1400°C at 
90 MPa.' Thus, these two phases have drastically different 
deformation resistances, with mullite being the rigid one. 
Nevertheless, the two oxides have very similar elastic con- 
stants: Young's modulus around 210 GPA and shear modulus 
around 80 GPa, for both. Since thermal stresses can be 
ignored at elevated temperatures, this means that in super- 
plastic flow the stress distribution in the zirconia/mullite 
composite will be entirely governed by plasticity, which is the 
assumption taken by our theory. Chemically, we have also 
found 2Y-TZP and mullite to be compatible with little mutual 
solubility. This implies that the phase compositions and phase 
fractions of the two are independent of temperature in a com- 
posite of a given composition, which simplifies the mechani- 
cal analysis. Lastly, an additional advantage of mullite as a 
strengthening phase is its morphological variability. It is 
known from our preliminary work that the grain shape 
of mullite varies considerably from an equiaxed shape at the 
alumina-rich compositions to an elongated shape at the 
silica-rich compositions. It thus allows us to study the shape 
effect in strengthening. Taken in toto, it becomes obvious 
that zirconia/mullite composites afford an excellent model 
system in which the effects of a rigid second phase of various 
fractions and shapes can be systematically explored. 
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11. Theory of Composites Containing Rigid Inclusions 

(1) Statement of Problem 
We distinguish the matrix phase from the included phase 

and let the included phase be rigid. The matrix phase is in- 
compressible and obeys a power law 

E = a(a/aJ (1) 

in uniaxial tension. Here E is the tensile strain rate, a is the 
tensile stress, a is a reference strain rate, a. is a reference 
stress, and n is no less than unity. This form can be general- 
ized to multiaxial deformation, governed by an effective 
stress, in the standard way described in theory of plasticity.’ 
By necessity, the composite is incompressible itself and obeys 
a similar power law in uniaxial tension 

k = Aa(x/aor (2) 

where ,6 is the composite strain rate, Z is the macroscopic 
stress, and A is a dimensionless constant less than unity. Our 
task is to find A as a function of V ,  the volume fraction 
of inclusions. 

The flow behavior of a Newtonian fluid (n = l), with 
dilute rigid spherical inclusions, is well-known, i.e., A = 
1 - 2.5V.’*I0 The solution of A at higher inclusion concentra- 
tions requires the use of an incremental scheme of computa- 
tion.”-14 It is recognized in this scheme that the addition of 
more rigid inclusions to a concentrated mixture results in a 
lesser degree of hardening since the mixture already has a 
fairly high flow stress which lessens the extent of stress con- 
centration in the rigid inclusions. If the solution of the defor- 
mation fields in an inclusion is already known, then a mean 
field approximation in which the mixture is treated as an ef- 
fective continuum for the inclusion can be adopted. For self- 
consistency, the macroscopic properties of the composite 
itself are assigned to the effective medium. This method is 
repeated while more inclusions are added to the mixture. In a 
linear material the inclusion problem is well-known, from 
which the theory predicts A = ( 1  - V)q, where q = 2.5 for 
spherical rigid  inclusion^.^'-'^ Note that the above power-law 
form reduces to the linear form when V approaches zero. The 
extension of this type of approach to nonlinear problems 
should lead to a similar prediction, but the value of q needs to 
be determined as a function of stress exponent of the matrix 
and the shape of the inclusion. This task is made easier by 
recognizing a connection between q in the self-consistent 
equation and the stress concentration factor in the inclusion. 

(2) The Self-consistent Equation 
Let us consider that each inclusion, on average, has a stress 

concentration factor k over that of the applied tensile stress 
Z. Then the average stress remaining in the matrix is 
(1 - kV)/ ( l  - V )  times the applied stress. Inasmuch as inclu- 
sions are rigid and do not contribute to the macroscopic de- 
formation, the strain rate of the composite due to matrix 
alone may be expressed as 

(3) 

The above form is due to Chen and Argon.” 

the first order in V 
In the limit of small V, the above form can be expanded to 

(4) 

where 

q = 1 + (k  - 1)n (5) 
In the same limit, k may be identified as the stress concen- 

tration factor for an isolated rigid inclusion in an infinite 
block of power-law matrix. Since a and au are merely scaling 
parameters, it is obvious that k can depend only on n and 

geometry, which may be represented by the inclusion shape. 
The same holds for q. 

Returning to Eq. (2), let us suppose that A is known at any 
given V. If a fraction dv of the composite is now substituted 
by the rigid phase with the remote stress C held fixed, then by 
invoking the self-consistent assumption we may regard the 
new material to be an isolated rigid inclusion in an infinite 
block of homogeneous matrix obeying the power-law Eq. (2). 
Recall that, according to Eq. (4), the effect caused by a small 
amount of rigid second phase is a fractional reduction, equal 
to the product of q and the inclusion fraction, of the matrix 
strain rate. Then, by treating the composite before substitu- 
tion as a power-law matrix this timp, we writc an analogy to 
Eq. (4) the fractional reduction of E after substitution as 

dk/E = -q dv (6) 
In the above we have utilized the previously stated result 

that q is independent of a and u”. To proceed further, we note 
that a fraction of the material replaced was already rigid. 
Therefore, the actual increment of inclusion fraction dV and 
the substitution dv are related by the following relation: 

(7) 

(8) 

(1 - V)dv = dV 

Thus 

dk/k  = -qdV/(l - V )  

which gives, after integration 

E = (1 - V)9a(Z/a”y (9) 

This is just the form that we mentioned before (Section II(1)) 
with A = (1 - V)q .  

Since q is independent of V,  the determination of q as 
a function of n and the shape of inclusion will complete 
the analysis. 

(3) Stress Concentration Factors 
(A) Equiaxed Inclusions: Using the variational principle, 

DuvaI6 treated the spherical rigid inclusion problem. We have 
fitted his numerical result for q with the following equation: 

(10) 
for n between 1 and 10, with good accuracy. This gives a 
stress concentration factor 

q = 2 i- n/2 

k = 3/2 + l/n (11) 

When n = 1, k = 5/2 in agreement with the Eshelby solu- 
tion (Poisson ratio = 1/2 for incompressible material).’” At 
large n ,  k decreases because of the progressively less strain (or 
strain rate) hardening in a power-law material. In the non- 
hardening limit (n being infinity), k = 3/2, which coincides 
with the finite difference and finite element solutions of a 
circular rigid inclusion in two  dimension^."*'^ 

We will use in this paper the above result for both spherical 
and equiaxed inclusions. The composite follows a power law 
according to Eq. (5) 

= (1 - V)2+n/2a(X/ao)n (equiaxed) (12) 
The same equation was given by one of us previously with- 

out derivation? 
(B) Perpendicular Fibers: If a fiber is perpendicular to 

the tensile stress direction, its stress concentration should be 
relatively similar to that of a spherical inclusion. (Recall when 
n = 1, k = 2.5 for a sphere and k = 2 for a circular cylinder 
when loaded in tension along the short symmetry a ~ i s , ~ ~ . ~ ~  
when n is infinite, k = 1.5 in both cases as noted before in 
Section II(3)(A).) Following this argument, we will assume 
that Eq. (12) applies. 

(C) Parallel Fibers: Consider a rigid fiber of a radius R 
and a half length L in a power-law matrix. The fiber is paral- 
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. . 

lel to the stress direction. In the nonhardening (perfect plas- 
tic) limit, the deformation field contains a localized shear 
zone at the fiberhatrix interface but is otherwise uniform 
away from there. Within the shear zone, the shear stress T is 
just one-half of the tensile flow stress, which is uo in the ab- 
sence of hardening. Such shear traction transfers a load from 
the matrix to the fiber, as described by the standard shear-lag 
anaIysis” 

Qf/dZ = - ~ T / R  (13) 
Here 
center. After integration, we obtain 

is the fiber tensile stress at a distance z from the 

(14) 
where q ( L ) ,  the fiber stress at the end, can be identified with 
the flow stress of the matrix in uniaxial tension, i.e., a,,. 
Meanwhile, the average stress within the fiber is 

(15) 

k = (uf)/oo = 1 + L/2R (l/n = 0) (16) 

In the above derivation, we have assumed that fibers are 
sufficiently strong to sustain the stress concentration without 
fracture. 

By inspecting Eqs. (11) and (16), it becomes evident that the 
simplest expression of stress concentration factor which gives 
the correct results in two limiting cases, l/n = 0 for all L/R 
and L/R = 1 for all n, is 

vf(Z) = gf(L) + 2T(L - Z)/R 

(q) = q ( L )  + TL/R 
Therefore, the stress concentration factor is 

k = 1 + (1/2 + l/n) (L/R) (17) 
Although the above result is only an approximate interpo- 

lation, we shall assume in this paper that it is adequate. 
Using Eq. (5), q can be obtained readily. The composite 

containing parallel fibers along the tensile stress direction 
then follows a power law 

i = (1 - v) l+ ( l+n /2 ) (L /R)  a(Z/uo)” (parallel fibers) 
(18) 

Because of the anisotropy caused by the fiber texture, addi- 
tional constitutive relations, not developed here, are required 
to fully describe deformation under other loading conditions. 
(0) Random Fibers: Consider the case of a composite in 

which fibers are randomly oriented. The simplified picture 
adopted here assumes that, on average, along any direction, 
approximately one-third of the fibers may be regarded as 
aligned along it, while the other two-thirds perpendicular to 
it. Using this picture, the average stress concentration factor 
for an assemble of random fibers in uniaxial tension may be 
taken as one-third of Eq. (17) plus two-thirds of Eq. (ll), i.e. 

k = 3/2 + l/n + 1/3(1/2 + l/n) (L/R - 1) (19) 

The composite containing random fibers follows a power 

(random fibers) 
law 

i = (1 - ~) l+( l+n/2) (2 /3+L/3R)  a(Z/uo)” 

(20) 
(4) Numerical Results 

The stress concentration factors as a function of stress ex- 
ponent and aspect ratio of inclusions are plotted in Fig. 1, and 
the strain rates of the composite as a function of volume frac- 
tion of inclusions are plotted in Fig. 2. It is apparent from 
these results that stress concentrations are most severe 
in Newtonian flow, in parallel fibers of a high aspect ratio. 
On the other hand, flow reduction by a rigid phase in a 
non-Newtonian creeping material is more drastic than in a 
Newtonian material. Strengthening by equiaxed inclusions 
becomes significant only at higher volume fractions. 

PARALLEL 
FUIERS 

n 

RANDOM 
FIBERS 

0- 
1 3 5 7 9 1 1  

n 

Fig. 1. Stress concentration factor k as a function of stress expo- 
nent n with two different orientation distributions of rigid fibers. 
The lowest branch, with L/R = 1, also corresponds to equiaxed 
inclusions. 

111. Experimental Procedure 
( I )  Materials 

The zirconia used in our study was a 2Y-TZP. For mullite, 
three compositions were investigated. The first two had 
molar A1203/Si02 ratios of 1.77 and 1.97, corresponding to 75 
and 77 wt% AI2O3, thus designated as 75A and 77A, respec- 
tively. Mullite grains of this composition were equiaxed at all 
volume fractions. The third one had a molar AI2O3/Si02 ratio 
of 1.25, corresponding to 68 wt% A1203, thus designated as 
68A. Mullite of this composition develops an elongated, 
short-fiber-like morphology. 

Mullite powders were prepared using a solution of alu- 
minum nitrate’ and tetraethoxysilanet with ethanol, from 
which precipitates were formed by adding ammonia. The co- 
precipitated powders were calcined at loOO”C, then attrition- 
milled. A commercial 2Y-TZP’ was added to the mullite 
powders, and the mixture was attrition-milled in water with a 
surfactant. In the above procedure, the alumina and silica 
pickup from milling media was monitored and compensated 
for accordingly by adjusting the starting composition. The 
milled slurry was cast under a pressure of 0.7 MPa into cakes 
which were dried and isostatically pressed at 175 MPa. Nearly 
theoretical densities (less than 2% porosity) were obtained 
after sintering in air at 1400°C for 1 h. 

Annealing at the same temperature in air for up to 20 h 
was also performed to coarsen the grain size. In addition, to 
coarsen the mullite size more, we introduced different firing 
times when preparing special composites for the study of in- 
clusion size effect. Using these methods, zirconia/mullite 
composites of various microstructures were obtained. The 
work reported here covers mullite volume fractions between 0 
and 0.5 and aspect ratios between 1 and 5. 

(2) Procedures 
Square bar specimens of dimensions 2 mm x 2 mm x 

4.6 mm were prepared for deformation experiments. Defor- 
mation was conducted in uniaxial compression to minimize 
the effect of cavitation on constitutive behavior. All tests 
were conducted in air, between 1250” and 1380”C, in a plat- 
inum furnace. S i c  platens were used and found satisfactory 
with little evidence of end friction detectable even at very 
high strain rates. Most tests were run using a constant dis- 
placement rate. The axial displacement was recorded with an 
extensometer outside the furnace. By comparing its reading 
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Fig. 2. 
(fibers), 6. 

Strain rate reduction factor, k/&, as a function of volume fraction of inclusions 

with the dimensions of the specimen after the test, the error 
was found to be within 2%. The load and displacement read- 
ings were converted into true stress and true strain rate data 
reported below. Since steady-state deformation could be 
reached with strains of the order of a few percent, a single 
specimen was often used for flow stress determinations at two 
to three increasing displacement rates. Typically, a test lasted 
no more than 1/2 h at the test temperature, terminated after 
reaching a height reduction of up to 50%. Under these cir- 
cumstances, very little grain growth, if any, was found in de- 
formed specimens. 

X-ray diffraction was used both for phase identification 
and for verification of composition by precision determina- 
tion of lattice parameters. Microstructures and textures were 
examined by scanning electron microscopy and X-ray diffrac- 
tion. Grain size was taken as 1.56 times the linear intercept 
length of zirconia grains. Mullite grain size was also meas- 
ured. The average aspect ratio from 100 of the most elongated 
mullite grains in a region of a polished section was deter- 
mined. The value thus obtained would be fairly accurate if all 
mullite grains have the same aspect ratio in three dimensions. 
However, if a bimodal distribution of aspect ratio exists, then 
the above method could yield a substantial overestimation. 
The consequence of this complication will be discussed later, 
along with experimental results. 

IV. Experimental Results and Analysis 

( I )  Microstructures 
Microstructures of four sintered zirconia/mullite com- 

posites, containing 0 to 50 vol% mullite, are displayed in 
Fig. 3, in which mullite is shown as the darker grains. No 
intragranular phases, either zirconia or mullite, were found in 
these ceramics. The grain size of the as-sintered material be- 
came finer as volume fractions of two phases approached 
each other. Annealing at the sintering temperature for various 
times resulted in coarser grains of sizes up to 0.8pm. NO 
abnormal grain growth was found after such treatment. Only 
tetragonal zirconia and mullite, but not cubic zirconia or zir- 
con, were found by X-ray diffraction after sintering, anneal- 
ing, or compression. 

Grain sizes of both mullite and zirconia remained constant 
after deformation. Indeed, a slight grain refinement was 
sometimes detected, presumably due to the breakup of the 
initial clusters of fine grains during deformation. No cavita- 
tion was evident even for heavily deformed specimens such as 

the ones shown in Fig. 4. Thus, microstructures of our spec- 
imens may be regarded as nearly constant during superplastic 
deformation. 

Microstructural data and designations of the majority of 
sintered and annealed materials are summarized in Table I. 
Some relevant information on microstructures will be pro- 
vided when deformation data are discussed. Further details of 
the deformed microstructures pertaining to textures, defects, 
and microanalysis will be reported elsewhere. 

(2) 2Y-TZP and Mullite 
Deformation data of the matrix, 2Y-TZP, are shown in 

Figs. 5 to 7. A stress exponent of n = 1.54, corresponding to a 
strain rate sensitivity rn = l/n = 0.65, was determined from 
Fig. 5 at all temperatures. Wakai and co-workers2’ have re- 
cently studied this material with a grain size of 0.3 pm. His 
data, shown in Fig. 6 as open circles, compare well with ours 
in both the temperature dependence and the order of magni- 
tude, as evident from Fig. 6. The grain size dependence at 
1380°C is shown in Fig. 7, also giving a similar stress expo- 
nent (n = 1.56 or rn = 0.64). Considering the relatively low 
stress exponent even at very high strain rates, up to 4 x 
lO-’/s in some tests, 2Y-TZP is a superplastic ceramic indeed. 

We have also tested mullite of a grain size of 0.3 pm, sin- 
tered at 1550°C. No appreciable deformation was found at 
stresses up to 500 MPa, when it fractured at 1380°C. Previous 
studies by Dokko et al.’ and Nixon et aL2’ reported that, in 
the diffusional creep regime, mullite’s strain rate was in- 
versely proportional to (grain size).2 By extrapolating Dokko 
et al.’s data to smaller grain sizes, as in the case here, we 
found that the strain rate of mullite would be at least 3 orders 
of magnitude slower than that of 2Y-TZP in all the com- 
posites studied here. 

(3) Effect of Volume Fraction 
When mullite (75A) was added to 2Y-TZP, a similar stress 

exponent was obtained. The dependence of strain rate on the 
grain size (d) of zirconia, characterized byp = 6 In i/(6 In d), 
increased from -2 in 2Y-TZP to -3 in the composites, as 
shown in Fig. 8. The change in p is apparently due to a 
change in the material characteristics. Such effect is beyond 
the realm of the continuum theory given in Section 11. Never- 
theless, we can proceed with an approximate analysis of 
the constitutive relation by focusing first on the data of mull- 
ite containing composites. Thus, to account for the grain 
size dependence of strain rate, we multiply strain rates by 
(40.2 pn)’ and plot them against stress for all composites in 
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(C) (D) 
Fig. 3. Microstructures of as-sintered zirconia/mullite composites containing (A) no mullite, (B) 10 vol% mullite, (C) 30 vol% mullite, and 
(D) 50 vol% rnullite. 

(A) (B) 
Fig. 4. 
compression direction is indicated. E = -0.7, 2 = 6 X lO-’/s 

Microstructures of deformed zirconialmullite composites at 1350°C in two cross sections. (A) 10M-90Z; (B) 50M-50Z. The 
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Table I. Firing Conditions and Grain Sizes of Composites 

70MPa .B 
0 OM-100Z 

10M-90Z 
A 30M-70Z 
0 50M-50Z 

Firing conditions Grain size (pm)' 
Composites' Sintering Annealing Mullite ZrOt 

OM-1OOZ 140O"C/1 h 0.39 
1400°C/9 h 0.54 
1400°C/39 h 0.67 

1OM-90Z 140O"C/1 h 0.18 0.43 
1400°C/9 h 0.23 0.55 
1400°C/19 h 0.48 0.83 

30M-70Z 140O0C/1 h 0.19 0.31 
140O"C/9 h 0.25 0.43 
1WC/19 h 0.40 0.60 

140O"C/1 h* 0.46 0.46 

140O"C/1 hS 0.56 0.36 

14OO"C/9 h 0.31 0.33 
5OM-50Z 1400°C/1 h 0.21 0.23 

1400°C]19 h 0.42 0.46 
'For example, 5OM-502 is a mixture of 50 vol% mullite with 75 wt% 

plumina and 50 vol% 2Y-TZP. 'For mullite inclusion size effect study. 
'Grain size = linear intercept length x 1.56. 

lo3 3 1 

1 OM-100Z I 

loo 
1 0 - ~  10"' 1 o - 2  

STRAIN RATE (US) 
Fig. 5. Stress versus strain rate of 2Y-TZP at various tempera- 
tures. Grain size = 0.39 pm. 

5.6 5.8 6.0 6.2 6.4 6.6 6.8 

lOOOOpT (11°K) 
Fig. 6. Strain rate versus reciprocal temperature of 2Y-TZP de- 
formed at 30 MPa. 

lo' 
OM-100Z 

1 1380°C 

loo 
1 0 - ~  lo-* 10" 

STRAIN RATE (US) 
Fig. 7. Stress versus strain rate of 2Y-TZP at various grain sizes. 

Fig. 9. The strain rate sensitivities obtained from these data 
range from 0.68 to 0.74 at 1350°C. 

Data at other temperatures were similarly analyzed. From 
such analysis the activation energy Q was determined. Its 
value, as shown in Fig. 10, is affected by the mullite content. 
Once again, this is due to a change in the material character- 
istics and not predicted by the continuum theory, although 
the trend of Q is qualitatively understandable since diffu- 
sional creep of mullite has a much higher activation energy.' 
To proceed with the analysis of the constitutive relation, we 
can multiply strain rates by (d/0.2 pm)' as before and by 
exp[(Q/R) (1/T - 1/1573 K)] to account for their temperature 
dependence where R is the gas constant. In this way, data of 
different grain sizes and temperatures but of identical compo- 
sition fall onto a straight line as shown in Fig. 11. It seems 
clear that a common stress exponent, n = 1.50 or m = 0.67, 
can describe all the data quite well. 

Figure 11 also demonstrates the strengthening effect of 
mullite additions on the composites throughout the range of 
deformation conditions studied in this work. At a constant 
stress, temperature, and grain size, e.g., 70 MPa, 1350"C, and 
0.2 pm, the suppression of superplastic flow by mullite is 
made apparent by plotting strain rate versus volume fraction 
of mullite. Such a plot is given in Fig. 12, in which the predic- 
tion of our model, Eq. (12) with n = 1.5, is shown as the 

! 
.1 1 

GRAIN SIZE (pm) 
Fig. 8. Zirconia grain size dependence of strain rate for 
zirconia/mullite composites. 
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1350°C 
70MPa 
0.2 pm* 

lo3 1 1350°C 

lo3 : 

d* = 0.2 pm / .  
p = 3  

o 50M-50Z 
A 30M-70Z 

1 0 ' ~  
3 

k (d/d* ) (l/S) 
Fig. 9. Stress versus strain rate normalized by the grain size for 
zirconia/mullite composites. 

straight line. The agreement is fairly good, considering the 
range of volume fractions covered, in particular at V = 0.5 
when mullite grains are interconnected to some extent. 

The above analysis suggests the following form of constitu- 
tive equation for superplastic zirconia (2Y-TZP)/mullite (75A) 
composites, as a function of temperature, grain size, and vol- 
ume fraction 

= [(l - Vmulli,e)2+n/ZCZ' exp(-Q/RT)]/dP (21) 
where n = 1.5, p = 3, Q = 700 kJ/mol, and C = 4.2 x 

m3/(s * MPa'.') from the above analysis. When normal- 
ized using this equation to  a reference temperature 
T* = 1300°C and a reference grain size d* = 0.2 pm, all the 
data of 2Y-TZP and its composites fall onto a single straight 
line with a correlation factor of 0.95, as shown in Fig. 13. To 
check the self-consistency of this representation, we note that 
the slope of Fig. 13 is 0.65, corresponding to n = l/m = 1.54. 
Thus, notwithstanding some variations in the stress exponent, 
grain size dependence, and activation energy with mullite ad- 
dition, a simple constitutive law consistent with our theory as 
given by Eq. (12) has been verified. 

0.0  0.1 0.2 0.3 0.4 0 .5  

"mullite 

Fig. 10. Activation energy of superplastic flow versus volume 
fraction of mullite. 
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Fig. 11. Stress versus strain rate normalized by the grain 
size and temperature for four zirconia/mullite compositions. 

(4) Effect of Aspect Ratio 
A zirconia/mullite (68A) composite containing equal vol- 

ume fractions of both phases was studied. After sintering for 
1 h at l W C ,  the composite has a microstructure very simi- 
lar to that of Fig. 3(D)(75A) except for a slightly larger grain 
size. However, after annealing at 1400°C for 20 h, many mull- 
ite grains in this silica-rich composite grew into elongated 
needles. A comparison of the microstructures of 77A and 68A 
composites after annealing for 20 h is seen in Fig. 14. The 
average aspect ratio of mullite grains, measured using the 
procedure described in Section III(2), was 5 in 68A com- 
posite. After the same annealing, mullite grains in 77A com- 
posite were larger but still equiaxed. No texture of mullite 
grains was observed after sintering either by electron mi- 
croscopy or by X-ray diffraction. 

0.4 
1 - Vmullite 

1 

Fig. 12. Strain rate, normalized by the grain size, 
versus the volume fraction of mullite. The straight 
line is the model prediction of Eq. (12) with n = 1.5, 
assumin mullite inclusions are the rigid phase of an 
equiaxefj shape. 
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Fig. 13. Stress versus strain rate, normalized by the grain size, 
tem erature, and the volume fraction of mullite (K) using Eq. (21). 
for Pour zirconia/muttite compositions. 

We compared the deformation behavior of 68A composite 
and 77A composite in both the as-sintered state and the an- 
nealed state (Fig. 15). The slight difference of grain size of 
zirconia in these two materials has been taken into account 
in plotting data. Very similar stress exponents were obtained 
for all four materials. Comparing data when mullite grains 
were still equiaxed (1-h sintering), we found the 68A com- 
posite to deform faster, by a factor of 2, presumably due to its 
higher silica content which may have favored the formation of 
a grain-boundary glassy phase. However, this compositional 
advantage of 68A composite was lost after elongated mullite 
grains were developed, as indicated by the overlapping data 
of 68A and 75A composites (20-h annealing). We interpret the 
latter result as evidence for a more effective load transfer to 
the rigid phase of a higher aspect ratio. Coincidentally, in the 
special case considered here, these opposing compositional 

and shape effects just compensated each other fully in 68A 
and 75A composites after 20-h annealing. 

Assuming the same compositional advantage, responsible 
for a flow enhancement by a factor of 2, as in the case of 1-h 
sintering, we may infer that the opposing flow suppression 
due to the shape change from LIR = 1 to L/R = 5 to be a 
factor of 2 as well. According to Eqs. (12) and (20), the flow 
suppression factor with equiaxed particles is (1 - Vmullicc)z~x at 
n = 1.5. With elongated but random particles, the flow sup- 
pression factor should be (1 - Vmullitc)s~oB for L/R = 5. Since 
Vullilc = 0.5 in the present case, the predicted additional flow 
suppression accompanying the shape change, which can be 
estimated by taking the ratio of the above two predictions, is 
a factor of 5. This value is higher than the one inferred from 
our experiment. Indeed, our calculation found an increase of 
L/R from 1 to 2 to be sufficient to account for the experimen 
tal observation. 

Two reasons are probably responsible for the discrepancy 
on the strengthening effect of short fibers in the present ex- 
periment. First, Fig. 14 indicates that mullite grains need to 
grow somewhat before becoming elongated, yet even after 
20-h annealing at 1400°C some grains might still be too small 
and thus remained equiaxed. With a bimodal distribution of 
grain shapes, the procedure we used to establish the aspect 
ratio could have yielded an overestimate. Consequently, the 
flow suppression was overestimated too. This interpretation 
finds some support in Fig. 14 in which many small equiaxed 
mullite grains are visible in the annealed 68A composite. The 
second reason could be reorientation of mullite grains away 
from the stress axis during compression. Direct evidence of 
particle reorientation is offered in Fig. 16(A), which shows 
mullite grains preferentially lying perpendicular to the stress 
axis after large deformation. This phenomenon was further 
verified by a texture analysis from X-ray diffraction data, also 
shown in Fig. 16(B). Since the initial orientation of mullite 
grains was random, such reorientation caused a “geometrical 
softening”p effect, for perpendicular fibers are not as effec- 
tive as aligned fibers in carrying the load. Indeed, if all the 
fibers were perpendicular to the compression axis, the flow 
suppression would be the same as that of equiaxed particles 
(Section II(3)(B)). (We may likewise expect tensile deforma- 
tion to cause an opposite effect of “geometrical hardening, ’’# 

q h e  term “geometric hardening/softening” is commonly used to describ25 
the effect associated with rotations of crystallographic planes during slip. 
In view of the analogy between resolved shear stress on the slip plane and 
the shear traction on the fiberlmatrix interface, we have chosen to use the 
same term here. 

Fig. 14. Zirconialmullite composites containing 50 vol% rnullite after sintering at 1400°C for 20 h: (A) 50M-50Z (77A); 
(B) 50M-50Z (68A). The weight percent of AlzO, is indicated in parentheses. 
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coarse mullite grains, was found to deform with a slightly 
lower strain rate, by 200/0, than a composite of the same com- 
position but with only fine mullite grains, once the grain size 
effect of the zirconia was taken into effect. This comparison 
is illustrated by the upper two branches of data in Fig. 18. At 
a lower fraction of mullite concentration, i.e., 10 vol%, the 
mullite grains were mostly uniform in size and the deforma- 
tions of composites containing mullite grains of different sizes 
were essentially indistinguishable from each other once the 
grain size effect of zirconia was taken into effect. These re- 
sults are shown in Fig. 18 in the lower two branches of data. 
Considering the very large variation of mullite sizes studied, 
we conclude that the superplastic flow is not sensitive to the 
mullite grain size, in accordance with our continuum picture 
of rigid inclusions. 

10' I! Discussion 
l o - '  1 0 . ~  l o m 3  lo '*  l o - '  

Our theory predicts that flow reduction due to the presence 
of a rigid phase in a non-Newtonian creeping material is 
much more drastic than in a Newtonian material. This is ap- 
Parent from an examination of 9 s -  (12), (18)~ and (20) and 
Fig. 2 as a function of n. Interestingly, the model also predicts 
that stress concentration in a rigid inclusion is less in a non- 
Newtonian material than in a Newtonian material. This is 

k ( d I d77~ )3, (1/s) 
Fig. 15. Stress versus strain rate, normalized by the grain size for 
two zirconia/mullite composites of different mullite compositions 
and sintered for different times. 

by fiber alignment along the tensile axis. In such case, flow 
suppression would increase as predicted by Eq. (18). 

(5) Effect of Mullite Inclusion Size 
As a final check on our theory, we investigated composites 

with mullite grains of different sizes. According to our con- 
tinuum picture, composite flow should be insensitive to the 
size of the rigid inclusions. These experiments also provided 
a justification, a posteriori, of our use of zirconia grain size 
only in the representation of the constitutive relation 
(Section IV(3)). 

Zirconia-mullite composites containing 10 and 30 vol% 
mullite were prepared by prefiring the mullite powders at 
1600°C for 10 h before mixing. In samples containing 30 vol% 
mullite, a bimodal distribution of mullite inclusion size was 
observed. On a finer scale, mullite grains are comparable in 
size with the zirconia matrix grains, e.g., 0.4 pm (see 
Fig. 17(A)). On a coarser scale, an additional group of large 
equiaxed inclusions of a size of 150 pm were uniformly dis- 
persed (see Fig. 17(B)). This composite, which contains 

apparent from Eqs. (11), (17), and (19) and Fig. 1. The reason 
that the stress concentration in rigid inclusions is less in a 
non-Newtonian matrix is directly related to the lesser harden- 
ing capability of such material. (In the limit of n being infin- 
ity, there is no hardening at all.) Thus, load transfer from 
matrix to inclusion is also less. On the other hand, since 
strain rate increases with stress in a power-law manner for 
non-Newtonian materials, the resultant flow reduction is 
more despite a less effective load sharing by rigid inclusions. 
These flow characteristics are unique to composites obeying 
a non-Newtonian constitutive relation. 

The effect of rigid inclusions on superplastic deformation 
of a soft matrix was previously studied in an a//3 brass by 
Suery and Baudelet.' As shown by Chen: their data could be 
fitted to a form E = (1 - V,)3.m, where V, is the volume frac- 
tion of a phase which is rigid compared to /3 phase. Because of 
difficulties in obtaining a fine grain microstructure without a 
second phase, phase-pure /3 matrix was not tested to verify its 
superplastic characteristics. Wakai and co-workers4 also in- 
vestigated a soft/hard composite, e.g., 3Y-TZP with 20 wt% 
alumina, and found flow reduction. They used a previous ver- 
sion of our theory to interpret these results.' Unfortunately, 
in their analysis, which was done for only one volume frac- 

PERPENDICULAR 

2 6  33.1 33.4 2 8  40.8 41.2 
(B) 

Fig. 16. (A) Deformed microstructures of 50M-50Z (68A) showing an elongated mullite grain lying normal to the compression axis, as indi- 
cated by arrows. (B) XRD patterns of the mullite reflections indicating a crystallographic texture. 
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Fig. 17. Microstructures of a zirconia/mullite composite containing 30 vol% mullite: (A) small mullite inclusions, 
(B) large mullite inclusions. 

tion, they had to assume alumina to be rigid, which was not 
strictly valid under their deformation conditions. Covering a 
wider range of composition in a more ideal model system, the 
present work on zirconia/mullite composites has provided a 
rigorous test of the composite theory presented in Section 11. 
At least for equiaxed inclusions, the agreement seems to be 
good. For nonequiaxed inclusions, the agreement is qualita- 
tive at the present time, for reasons related to stereographical 
and geometrical complications as discussed in Section IV(4). 

Application of the present description of two-phase flow is 
not limited to superplasticity. It can be adopted for non- 
Newtonian fluid flow with solid particles or for creep flow of 
ceramic/ceramic composites. In applying this theory, readers 
are advised to first verify that the deformation mechanism 
remains unchanged by the addition of rigid inclusions, to be 
ascertained at least by the same stress exponent. It can also 
be applied to rate-independent phenomena, since the me- 
chanics of stress-strain field and steady-state stress-strain 
rate field are formally the same in corresponding boundary 
value problems. 

In retrospect, it is remarkable that composites with rein- 
forcement particles as small as 0.2 pm, as in the present 
work, can be described by continuum plasticity theory, which 

10 
1350°C 
d* = 0.2 pm 

Inclusion Size(Mul1ite) 
A 0.56 pm 

10M-90Z A 0.19 pm 
0 0.46 pm 
o 0.18 pm 

loo . ’ . ‘ ’ ‘ . . I  ‘ . ...‘.’ I . ..”... I . . ‘.....I 
1 lo - ’  10” 1 oo 

3 

Fig. 18. Stress versus strain rate normalized by the grain size for 
two zirconia/mullite composites of different mullite inclusion 
sizes. 

k ( d / d* ) , (l/S) 

is often reserved for coarser microstructures in which the 
second phase is at least of a size of a few micrometers.’’*24 
This size condition is thought to be necessary since finer in- 
clusions may be small enough to interact with single disloca- 
tions for which the mechanics are nonlocal, as in the case of 
dispersion hardening. Only when the inclusions are so large 
that each interacts with “clouds” of dislocations is a contin- 
uum description appropriate. In the zirconia-mullite com- 
posite we studied, however, lattice dislocation mechanisms 
are not expected to operate. This can be verified by recalling 
two scaling “laws” which relate dislocation spacing A and dis- 
location subgrain size D to flow stress” 

Alb = 2G/X 

Dlb = 10OGlZ (23) 

where b is the lattice Burgers vector (0.36 nm in zirconia) and 
G is the shear modulus (80 GPa in zirconia). (The numerical 
constants above are only approximate but regarded adequate 
for order-of-magnitude estimation.) Taking Z to be 40 MPa, 
which is in the middle range of the stresses used in our study, 
we calculated A and D to be 1.4 and 70 pm, respectively. 
These dimensions are much larger than the matrix grain size 
in our specimens, implying that superplasticity in the present 
material operates via a nondislocation, diffusional mecha- 
nism with a diffusion distance (grain size) much smaller than 
dislocation spacing. 

Based on the above observation we may now state that the 
continuum picture is applicable under two circumstances: 
first, in dislocation creep when microstructures are much 
coarser than the dislocation cell size, and second, in diffu- 
sional creep and superplastic flow when microstructures are 
much finer than dislocation spacing. Of course, implicit in 
the continuum picture is that each constituent phase deforms 
according to its own constitutive relation, and that stress- 
driven kinetic demixing, due to different mobilities of com- 
mon constituent atoms or ions shared by two phases, is not 
predominant. We have pointed out previously’ that the 
application of the continuum picture may also be justified 
based on bounding theorems26 specialized to diffusional creep 
problems, e.g., grain-switching problems” and inclusion 
problems?’ 

The zirconia/mullite composites reported in this study 
have not yet been tested in uniaxial tension. However, they 
have been stretched by a hemispherical punch in biaxial ten- 
sion at 1350°C to large strains when the thin disk samples 
were supported on a ring. Since the latter deformation mode 



June 1990 Superplastic Flow of Two-Phase Ceramics Containing Rigid Inclusions - Zirconia/Mullite Composites 1565 

is even more severe than uniaxial tension, we believe that 
it has adequately demonstrated the superplastic ductility 
of the material. Details of these experiments will be reported 
elsewhere. 

VI. Summary 

A continuum theory for non-Newtonian flow of a 
composite containing rigid inclusions in a power-law matrix 
has been developed. It predicts flow suppression by a factor of 
(1 - V)q, q being a function of power-law exponent and in- 
clusion shape. Stress concentrations in rigid inclusions have 
also been evaluated. As the stress exponent increases, flow 
suppression is more pronounced even though stress concen- 
tration is less. 

B. Superplastic mullite/zirconia composites, containing 
submicron equiaxed grains of 2Y-TZP and alumina-rich mull- 
ite, deform according to the following constitutive equation 

A. 

k = [(l - Vm,~~ilc) ’+“” C En exp( -Q/RT)]/dP 

where n = 1.5, 3, Q = 700 kJ/mol, and C = 4.2 x 

1380”C, with Vmullile up to 0.5. The dependence on the volume 
fraction of mullite can be quantitatively described by the con- 
tinuum theory, in which the mullite phase is treated as non- 
deforming rigid inclusions. The mullite inclusion size was 
found to have little effect on deformation. 

C. When the alumina-to-silica ratio in mullite was de- 
creased to 1.25, the composite showed accelerated deforma- 
tion if mullite grains were small and equiaxed. Prolonged 
annealing at 1400°C resulted in an elongated morphology for 
mullite, which strengthened the  composite by a fiber- 
reinforcement mechanism. Deformation texture of these 
elongated inclusions was observed. The continuum theory 
was found to be in qualitative agreement with the strengthen- 
ing data. 

D. Superplastic flow in the present study had very little 
contribution from lattice dislocation mechanisms. This obser- 
vation is based on scaling considerations of dislocation spac- 
ing and subgrain size, which are much larger than the very 
small grain sizes typically required for ceramic superplasticity. 

lo-’ m3/(s*MPa K’ ) in the temperature range of 1250” and 

Acknowledgments: We are grateful to Dr. Shuzu Kanzaki of the Gov- 
ernment Industrial Research Institute, Nagoya, Japan for providing the elas- 
tic constant data of the mullite quoted in  the Introduction and to his 
collea ue, Dr. Fumihiro Wakai, for providing the creep data of 2Y-TZP 
quotef as Ref. 20. 

References 
‘J.W. Edington, K. N. Melton, and C. P. Cutler, “Superplasticity,” Prog. 

Muter. Sci., 21 61-170 (1976). 
’F. Wakai, S. Sakaguchi, and Y. Matsuno, “Superplasticity of Yttria- 

Stabilized Tetragonal ZrOl Polycrystals,” Adv. Ceram. Mater., 1 [3] 259-61 
(1986). 

‘F. Wakai, N. Murayama, S .  Sakaguchi, H. Kato, and K. Kuroda, “Defor- 
mation of Superplastic Tetragonal Zr02 Polycrystals”; pp. 583-93 in Ad- 
vances in Ceramics, Vol. 24, Science and Technology of Zirconia Ill. Edited 
by S .  Somiya, N. Yamamoto, and N. Yanagida. American Ceramic Society, 
Westerville, OH, 1988. 

‘F. Wakai and H. Kato, “Superplasticity of TZP/AI203 Composites,” Adv. 
Ceram. Muter., 3 [I] 71-78 (1988). 

TW. Chen, “Superplastic Flow of Two-Phase Alloys”; Ch. 5 in Superplas- 
ticity. Edited by B. Baudelet and M. Suery. Edition du CNRS, Grenoble, 
France, 1985. 

61-W. Chen, “Diffusional Creep of Two-Phase Materials,”Acta Metall.. 30. 
1655-64 (1982). 

’P. C. Dokko. J. A. Pask, and K. S. Mazdiyasni, “High-Temperature 
Mechanical Properties of Mullite Under Compression,” 1. Am. Ceram. Soc., 

8R. Hill, The Mathematical Theory of Plasticity. Clarendon Press, 
60 [3-41 150-55 (1977). 

Oxford, U.K., 1975. 
Einstein, ‘A New Determination of Molecular Dimensions” (in Ger.), 

Ann. Phys. (Leipzig), 19, 289 (1906). 
loJ. D. Eshelby, “The Determination of the Elastic Field of an Ellipsoidal 

Inclusion and Related Problems,” Proc. R. Soc. London, A, MIA, 376-96 
(1957). 

“R. Roscoe, “Isotropic Composites with Elastic or Viscoelastic Phases: 
General Bounds for the Moduli and Solutions for Special Geometries,” 
Rheol. Acm, 12,404 (1973). 

12S. Boucher, “Effective Modulus of Quasi-Homogeneous, Quasi- 
Isotropic Composite Materials Constituted of Elastic Matrix and Elastic In- 
clusions” 11. “Case of Finite Concentrations of Inclusions” (in Fr.), Rev. 
Metall. (firis), 22, 31-36 (1976). 

”R. McLaughlin, ‘A Study of the Differential Scheme for Composite 
Materials,” Int. 1. Eng. Sci., 15, 237-44 (1977). 

I4M. P. Cleary, I-W. Chen, and S-M. Lee, “Self-Consistent Techniques for 
Heterogeneous Media,” 1. Eng. Mech. Div., Am. Soc. Civ. Eng., 106 [EMS] 
861-87 (1980). 

’TW. Chen and A. S. Argon, “Steady State Power-Law Creep in Hetero- 
geneous Alloys with Coarse Microstructures,” Acta Mefall., 27, 785-91 
(1979). 

I6J. M. Duva, ‘A Self-Consistent Analysis of the Stiffening Effect of Rigid 
Inclusions on a Power-Law Material,” 1. Eng. Mater. Techml., 106 [4] Octo- 
ber, 317-21 (1984). 

17W. Huang, “Theoretical Study of Stress Concentrations at Circular 
Holes and Inclusions in Strain Hardening Materials,” “Int. 1. Solids Srrucr.,” 
8, 149 (1972). 

laA. S. Argon, J. Im, and A. Needleman, “Distribution of Plastic Strain 
and Negative Pressure in  Necked Steel and Copper Bars,” Metall. Trans. A, 
6 4  815-24 (1975). 

I9H. L. Cox, “The Elasticity and Strength of Paper and Other Fibrous 
Materials,” Br. 1. Appl. Phys., 3, 72-79 (1952). 

”F. Wakai; private communication, 1988. 
2’R. D. Nixon, S. Chevacharoenkul, R. F. Davis, and T. N. Tiegs, “Creep 

of Hot Pressed SIC Whisker Reinforced Mullite”; unpublished work. 
aE. Schmid and W. Boas, Plasticity of Crystals, English Edition. F.A. 

Hughes and Co., London, U.K., 1950. 
UM. Suery and B. Baudelet. “Hydrodynamical Behavior of a Two-Phase 

Superplastic Alloy: a/p Brass,” Philos. Mag. A, 41 [l] 41-64 (1980). 
2‘A. S. Argon, “Inelastic Deformation and Fracture of Crystalline Solids”; 

p. 383 in Surface Effects in Crystal Plasticity. Edited by R. M. Latanision 
and J. F. Fourie. Noordhoff International Publishing, Netherlands, 1977. 

= S .  Takeuchi and A. S. Argon, “Review-Steady-State Creep of Single- 
Phase Crystalline Matter at High Temperature,” 1. Mater. Sci., 11. 1542-66 
(1976). 

%R. Hill, “New Horizons in the Mechanics of Solids,” 1. Mech. Phys. 
Solids, 5, 66-74 (1956). 

27M. F. Ashby, G. H. Edward, J. Davenport, and R. A. Verrall, ‘Applica- 
tion of Bound Theorems for Creeping Solids and Their Application to Large 
Strain Diffusional Flow,” Acta. Metall., 26, 1379 (1978). 

“I-W. Chen; presented at Symposium on Superplastic Forming of Struc- 
0 tural Alloys, San Diego, CA, June 21-24, 1982. 




