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SUMMARY. We consider a Markov structure for partially unobserved time-varying compliance classes in the Imbens—Rubin
(1997, The Annals of Statistics 25, 305-327) compliance model framework. The context is a longitudinal randomized inter-
vention study where subjects are randomized once at baseline, outcomes and patient adherence are measured at multiple
follow-ups, and patient adherence to their randomized treatment could vary over time. We propose a nested latent compli-
ance class model where we use time-invariant subject-specific compliance principal strata to summarize longitudinal trends of
subject-specific time-varying compliance patterns. The principal strata are formed using Markov models that relate current
compliance behavior to compliance history. Treatment effects are estimated as intent-to-treat effects within the compliance
principal strata.
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1. Introduction

In randomized intervention studies where interventions are
administered repeatedly, subject adherence to the random-
ized treatment may vary over time. In addition, the effect of
the treatment from previous time points on the outcome may
be nontransient. We propose a longitudinal compliance class
model with decay parameters for treatment effects that uses
a nested principal stratification structure to characterize lon-
gitudinal compliance patterns over time within which intent-
to-treat (ITT) effects are estimated. We consider a Markov
structure for the time-varying subject adherence to random-
ized treatment. We illustrate the model with analysis of the
“Prevention of Suicide in Primary Care Elderly: Collaborative
Trial” (PROSPECT; Bruce et al., 2004).

The PROSPECT study was a randomized intervention
study targeted at elderly patients with depression in primary
care practices. There were two treatment groups: usual care
and the intervention. In the usual care group, patients re-
ceived standard care. In the intervention group, patients were
assigned to meet with health specialists who educated pa-
tients, their families, and physicians about depression, treat-
ment, and monitored adherence to treatment. Primary care
practices were randomized to the treatments rather than indi-
vidual patients to prevent contamination of treatments among
patients within the same practice and for practicality. Patients
were followed for 2 years from the initial randomization. Clin-
ical depression outcome and adherence to randomized treat-
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ment were measured at 4, 8, 12, 18, and 24 months. There
were 598 patients in the study. The clinical outcome of inter-
est was the severity of depression measured by the Hamilton
depression score (HAMD). We consider an all-or-none treat-
ment adherence measured by whether patients met with the
health specialists at least once since the previous follow-up
period. We are interested in investigating the effect of the
intervention on depression severity accounting for treatment
adherence over time.

When subjects do not adhere to the treatment to which
they are randomized, subject noncompliance could confound
the relationship between the treatment and the outcome.
Therefore, it is important to account for subject noncompli-
ance when estimating the effect of the treatment. One way to
do that is by using principal stratification strategies (Fran-
gakis and Rubin, 1999, 2002). Angrist, Imbens, and Rubin
(1996) and Imbens and Rubin (1997) proposed to use compli-
ance classes to describe subject compliance behaviors within
which ITT contrasts are made to estimate the causal effect of
the treatment on the outcome.

Cross-sectional studies with two treatment arms, exper-
imental treatment and control treatment, have four possi-
ble compliance classes: compliers, always-takers, never-takers,
and defiers. Compliers are those who would adhere to the
treatment to which they are assigned; always-takers are those
who would seek the experimental treatment regardless of their
treatment assignment; never-takers are those who would opt
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for the control treatment regardless of their treatment assign-
ment; and defiers are those who would refuse the treatment
to which they are assigned and choose to receive the other
treatment.

In studies, such as the PROSPECT, where those assigned
to the control treatment have no access to the experimental
treatment, there are only compliers and never-takers. Always-
takers and defiers cannot exist because those randomiz-
ed to the control treatment cannot receive the experimen-
tal treatment. The compliance classes for those assigned to
the experimental treatment in this study design are observed.
Subjects assigned to and receiving the experimental treatment
are compliers; subjects assigned to the experimental treat-
ment but receiving the control treatment are never-takers.
The compliance classes for those assigned to the control treat-
ment are unobserved.

We propose an extension of the cross-sectional model in Im-
bens and Rubin (1997) to longitudinal settings. Yau and Little
(2001) proposed an extension where outcome was measured
repeatedly over time; however, adherence to intervention was
only recorded once and did not vary. Our proposed model
allows treatment adherence to vary over time. In Frangakis
et al. (2004), outcome was repeatedly measured over time,
and subject compliance could vary over time. This model dif-
fers from our proposed model in two ways: (i) we restrict
our method to study designs where randomization status do
not change over time; and (ii) we propose a nested model
structure that uses subject-specific time-invariant principal
strata to summarize subject-specific time-varying compliance
behavior. The subject-level time-invariant strata allows us to
classify subjects based on their longitudinal compliance, and
relate longitudinal compliance to outcomes.

In the presence of time-varying compliance behaviors, it
may be useful to consider patterns of longitudinal compliance
behavior when examining longitudinal outcomes. Subjects
with different compliance trajectories may differ in treatment
outcomes. We may make inferences on different longitudinal
compliance patterns and the longitudinal outcomes associated
with those patterns. In a study like the PROSPECT where
there are two possible compliance classes and five follow-up
visits, we have 32 (2°) possible compliance patterns. It may
be impractical and not clinically meaningful to look at the
longitudinal outcomes in all of the 32 patterns. Hence, it may
be more helpful to have summary measures of the longitudi-
nal compliance patterns in the data, and look at longitudinal
outcomes within broader latent classes.

We use the nested latent class model framework proposed
by Lin, Ten Have, and Elliott (2008) to accommodate time-
varying latent compliance classes by specifying broader princi-
pal strata that summarize the compliance classes. The nested
latent class model involves two levels of compliance class mod-
els. The first level uses subject-specific time-varying compli-
ance classes to describe the time-varying treatment adherence;
the second level uses subject-specific time-invariant compli-
ance “superclasses” to summarize the longitudinal patterns
of compliance classes. The superclass defined here is a princi-
pal stratum in the sense that the superclass is a function of
compliance classes, in which the compliance classes describe
the relationship between treatment received and treatment
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randomization, and that the function itself is not affected by
the actual treatment randomization. Treatment received is
a function of the compliance classes and the treatment ran-
domization. It is consistent with the definition of principal
stratum in Frangakis and Rubin (2002), and similar to the
principal stratum in Frangakis et al. (2004). The superclass
is a “coarser” principal stratum. The ITT effect of the inter-
vention stratified on compliance superclass, or the principal
effect (Frangakis and Rubin, 2002), is estimated to control for
longitudinal subject treatment noncompliance.

Lin et al. (2008) makes the conditional independence (CI)
assumption that compliance classes at each time point within
an individual are independent from each other given the in-
dividual’s compliance superclass and baseline covariates. In
other words, knowing the compliance superclass and subject
baseline characteristics, the history of compliance behaviors
does not provide any more information on the current com-
pliance behavior. This may be a strong assumption, which
we now propose to assess with a Markov model for the time-
varying compliance classes. We fit a latent transitional model
(Collins and Wugalter, 1992) incorporating covariates in esti-
mating transitional probabilities (Reboussin, Liang, and Re-
boussin, 1999). We assume a first-order Markov structure for
the compliance classes given superclass and baseline covari-
ates where compliance behaviors are assumed to depend on
the compliance class in the previous time point. Modeling the
Markov structure of the time-varying compliance classes will
allow us to: (i) utilize information from history of compliance
to predict compliance behaviors; and (ii) examine how history
of compliance relates to compliance behavior.

As another extension of Lin et al. (2008), this article con-
siders the nontransient effect of treatment over time. In the
PROSPECT we may consider the decay of the ITT effect of
the treatment on the outcome. It is conceivable that informa-
tion ascertained in meetings with health specialists may have
lasting effects on the subjects and their treatment outcomes.

We will define notation, discuss assumptions, principal ef-
fects, the parametric model, parameter estimation, the han-
dling of missing outcomes, and assessment of model fit in Sec-
tion 2. Then we will proceed to discuss the analysis results in
Section 3, and make concluding remarks in Section 4.

2. Nested Compliance Class Model
2.1 Notation

Let Z; denote the randomization status for subject i, where
i=(1,...,N),and Z; € (0, 1) for usual care and the interven-
tion, respectively. Similarly, let D;; denote the time-varying
treatment received for subject 4 at time j, where j = (1, 2, 3,
4, 5) for 4, 8, 12, 18, and 24 months, respectively, and D;; €
(0, 1) for usual care and intervention, respectively. Note that
Z; does not have the subscript j because we are restricting to
designs where randomization does not change over time. Let
Y;; denote the observed outcome for subject ¢ at time j. We
use Z,D,Y to denote vectors of Z;, D;;, and Y;;.

Following Little and Rubin (2000), we use Y;;(Z) to de-
note the partially latent potential outcome, an outcome that
would have been observed, for subject ¢ at time j if ran-
domized to treatment Z. Let C;; denote membership of the
partially latent compliance classes for subject i at time j. In
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the PROSPECT, because those randomized to the usual care
group have no access to the intervention, there are only two
possible compliance classes: compliers and never-takers; there-
fore, C;; € (¢, n). We use C to denote the vector of C;;.
The proposed principal stratification strategy uses compliance
“superclasses” to summarize the longitudinal compliance pat-
terns in the data within which we can stratify on and compare
potential outcomes. It precludes the confounding when strat-
ifying on observed postrandomization compliance patterns.
Let U; denote membership of the latent superclass for sub-
ject 4, where U; = (1,..., K) for assumed K numbers of latent
superclasses. We use U to denote the vector of U;.

Subject-level baseline covariates A; and Q; are used in
modeling the outcome and compliance probabilities, respec-
tively. We use A and Q to denote vectors of A; and Q;.

We use uppercase letter to denote random variables or in-
dices of potential outcomes (e.g., Y;;(Z)), and lowercase letter
to denote realized or observed values of random variables or
indices (e.g., Z; = z).

2.2 Assumptions

We make the randomization (Rubin, 1978), stable unit-
treatment value (SUTVA; Rubin, 1986), and model assump-
tions to identify causal model parameters. We assume that
potential outcomes, latent compliance classes, and latent
compliance superclasses (which are assumed to be baseline
characteristics) are independent of the randomization assign-
ment status. We make the no interference assumption of the
SUTVA and assume that the potential outcomes of an in-
dividual are not influenced by the treatment assignment of
another individual. We also make the consistency assumption
of the SUTVA which assumes that the potential outcome of a
certain treatment will be the same regardless of the treatment
assignment mechanism. It implies that the observed outcome
is a function of the potential outcomes and treatment assign-
ment: Y;; = Z; * Y;;(1) + (1 — Z;) = Y;;(0). The SUTVA
assumption is violated when there is interference among sub-
jects or when there are versions of treatments not represented
by the treatment indicator variable.

2.3 Principal Effects

We utilize the compliance superclasses to summarize the lon-
gitudinal compliance patterns and estimate the ITT effects
stratified on these superclasses. A compliance superclass is a
latent subject-level principal stratum that is time invariant,
and is considered to be a prerandomization characteristic that
allows us to model potential outcomes conditional on prospec-
tive postrandomization behavior.

Our effect of interest is the principal effect of treatment
assignment on the outcome within a compliance superclass at
time j:

ElY;(Z=1)|Ui =k - E[Y;;(Z=0)|U; = k. (1)

It is an ITT contrast stratified on the compliance superclass.
Because the superclasses defined here create baseline principal
strata summarizing longitudinal compliance behaviors and do
not represent specific longitudinal compliance patterns, the
principal effect may sacrifice straightforward causal interpre-
tation. The interpretation of the principal effects relies on the
interpretation of the superclasses. Nonetheless, it allows us to

consider the effect of treatment randomization controlling for
longitudinal compliance.

The principal effect can be defined by observed outcomes
under the randomization and the SUTVA consistency as-
sumption:

BIY:; (7 =1)|U; = k] - BIY;;(Z = 0)| U =K
= E[Y;(2=1)|Z = LU, = K]
~E[Y;(2=0)]Z =0,U; = H
=EY;;|Z =1,U; = k|- E[Y;; | Z; =0,U; = k].

(2)

The first equal sign follows from the randomization assump-
tion, which says that randomization is independent of base-
line characteristics (e.g., potential outcomes) conditional on
baseline covariates (e.g., compliance superclass). The second
equal sign follows from the SUTVA consistency assumption,
which implies that the observed outcome given treatment as-
signment z is the potential outcome for treatment assignment
Z =z

2.4 Parametric Model

The CI model proposed in Lin et al. (2008) assumes that lon-
gitudinal compliance classes within an individual are indepen-
dent given compliance superclass and baseline covariates. Un-
der the current proposed model we relax the CI assumption.
We assume compliance classes are dependent on the compli-
ance classes at one or more previous time points, the com-
pliance superclass, and baseline covariates. As one reviewer
pointed out, this model is a hidden Markov model similar to
those used in “mover-stayer” applications (Langeheine and
Van de Pol, 2002).

Following the CI model, we assume outcomes within in-
dividuals are independent given randomization, time-varying
compliance class, baseline covariates, and subject-level ran-
dom effect.

(Yij \Cih .. ~:Cij7Z£ =2z,A;, Wy,
>‘7C(tmj)v’yv(piaa-Q)ian(:u’ijz7O—2)7

j 3
Mijz = Z ZI(Cn = 7],>Zi = Z)Afr]’z((tuj) ( )

t=1 n'
+ ATy + Wl ;.

The conditional mean of the outcome has three components:
compliance class-specific effect of randomization, the effect
of baseline covariates, and the subject-specific random ef-
fects to account for within-subject correlation in the out-
comes. The compliance class-specific effect of randomization
on the outcome is represented by Zle[zn, I(Cy =02 =
Z2)Ayr-C(t, )], where Ay, for ¢ < j describes the compliance-
class specific ITT effect of the treatment on the outcome, A
denotes the vector of A,., and ((¢, j) modifies that ITT effect
at time ¢t on the outcome at time j. The effect of the base-
line covariates on the outcome is represented by AT+, where
A; denotes the vector of baseline covariates of subject 4, and
the column vector 4 denotes the corresponding coefficients.
The random effects ¢; are used to account for within-subject
correlation in the outcomes, where W; denotes the random
effect design matrix for subject 4. In our preliminary analysis
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we found small within-practice correlation (0.075); hence,
clustering by primary care practice was ignored, as in Bruce
et al. (2004) and Small et al. (2006). We consider a random
subject-level intercept model.

To model the nontransient effect of the treatment on sub-
sequent outcomes, we use the parameter ((¢, j) to modify the
impact of the ITT effect at time ¢t on the outcome at time j.
We can assume a transient relationship where the outcome at
time j is not dependent on the ITT effect at time ¢ (i.e., ((t,
j) = I(t = j)); assume a nontransient relationship where the
outcome at time j is dependent on the cumulative ITT effect
of current and all prior time periods (i.e., ((¢, j) = I(t < j));
or assume a decaying relationship where the outcome at time
jis dependent on the cumulative ITT effect of current and all
prior time periods, but the influence of past treatment effects
diminish as time lag increases (i.e., ((t, j) = ¢ 70~" where 7 >
0). Preliminary analysis of the data using a decay model sug-
gested 7 — 00, or a transient relationship. Hence, we consider
the transient model:

Hijz = Z [I(Cij =0, Zi = 2)\jy:] + ATy + Wi, (4)
,,7/

To relax the CI assumption of the time-varying compliance
classes of the CI model, we propose a Markov compliance
class (MCC) model where the compliance classes are de-
pendent on past compliance behavior. Similar to the CI
model, we assume that compliance superclass is an under-
lying factor that drives subject compliance over time. We
model the compliance class at the first time point condi-
tional on the compliance superclass and baseline covariates
Q; using logit models: P(Ciy1 =n | U; =k, Qi) = wiy (Qi)
and wkr](Qi) = eXp(a()kn + aani)/[E,]/eXp(aOknl + aln/QiH
where Zr] wiy (Qi) = 1V k. We constrain ag, and oy, for
one of the compliance class  to be 0 for identifiability. In
the presence of more than two compliance classes, we can use
multinomial logit models instead of logistic models to model
the compliance probabilities.

We assume subject compliance superclass (U; = k) ~
Multinomial(1, py, ), where Zk pr, = 1. Compliance superclass
between subjects are assumed to be independent: f(U) =

N, f(U; =k) for k=1,..., K, where f(.) denotes the dis-
tribution function.

We utilize latent transition models (Collins and Wugal-
ter, 1992) to characterize the Markov process of compliance
classes across time. In this article, we consider a nonstation-
ary first-order MCC model. The number of model parame-
ters in multiple-order Markov models increases exponentially
without additional constraints such as stationarity. Because
of the lack of good predictors of compliance transitions, we
assume that there are no associated covariates influencing the
transitional probabilities. Covariates can be incorporated us-
ing logit models as in Reboussin et al. (1999). We assume the
compliance class transitions (C;; =n | C; ;.1 =0,U; =k) ~
Multinomial(1, 7;,,), where Zn Thjnm = 1Vk, 5,1, The
joint distribution of the compliance classes given compliance
superclass then becomes:

P(Ci17~~~7ci5|Ui7Qi)
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If compliance class and compliance superclass memberships,
and missing outcomes are known, the joint distribution of the
complete data for subject i given the model specifications is
as follows:

FYi, ..., Y5, 0, Ciny ..., Cis, Ui | Zi, Ay, Qi , W4, 0)
= f(Yilw--aY;B“ch’ilw--aC£57UiaZiyAi7Qiywi79)
x f(e; |Ci1y...,Cis, Ui, Zi Ay, Qi , W, 0)
X f(City.. o, Cis | Ui, Zi, Ay, Qi , Wi, )
x f(Ui|Zi, Ay, Qi, Wi, 0)
= f(Yir,...,Yis|Cir, ..., Cis, Zi y Ai yu Wi, Ay, 0, 02)
X fle; [ Eo) f(Citso oo, Cis | Ui, Qi) f(UL), (6)

where 6 = (X, v, 02, 5,).

Knowing the time-varying compliance classes, the super-
class does not provide additional information on the longi-
tudinal compliance behavior. Therefore, we assume that the
potential outcomes are conditionally independent of the su-
perclasses given compliance classes. However, because super-
classes are functions of the compliance classes, we can use
estimated effects associated with the compliance classes to
estimate effects associated with the superclasses.

Under these model specifications, the principal ITT effect
of the intervention on the outcome stratified on compliance
superclass defined in equation (1) becomes

E[Y,;(Z =1)|U; = k] - B[Y;;(Z = 0) | Ui = K

= gyt = Xigo) P(Cij =1 |U; = k). (M
"

2.5 Estimation

We use Bayesian Markov chain Monte Carlo (MCMC) meth-
ods to estimate model parameters. For details of the priors
and the conditional draws of the Gibbs sampler, please refer
to the Web Appendix.

2.6 Missing Outcome Imputation

To deal with missing outcomes we assume a latent ignor-
able missing data mechanism (Peng, Little, and Raghunathan,
2004), which assumes missing at random given latent compli-
ance class and covariates. At each iteration of the MCMC
procedure, we impute the missing outcomes conditional on
compliance classes, treatment randomization, baseline covari-
ates, and subject-level random effects. We draw the missing
outcome Y;;‘is for subject i at time j from its predictive distri-
bution given current values of parameters C;;, Aj,.,7, @i, 07,
and vector of observed outcomes Y°%.

(Yj?is YObs7 Cijvz’i = Z7Ai7Wi7 )‘j112777‘10i70—2) ~ N(:u;jz70—2>

(8)

n

2.7 Model Fit Assessment

We compare the fits of the MCC model and the CI model by
comparing the posterior predictive distributions (PPD; Gel-
man et al., 2004) of the time-varying compliance classes. Let
G,, denote the number of individuals in the m™ of the 32
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possible longitudinal compliance patterns and let x,, be the
estimated probability of exhibiting the m™ longitudinal com-

pliance pattern. We consider the y2-type statistics:

s =3 and 57 =3

m

(G;;Pq - Nﬁm )2

(G — Nk, )’
N"/V-m (1 — R )

Ney, (1 —

Km ) ’

(9)

where G°* is the observed statistics and G™ is the re-
peated statistic obtained from draws of the parameters gen-
erated by the Gibbs sampler. The PPD p-value is then given
by: Y, I[(S°™)" < (5™0)']/>7, 1, where (S°™)" and (S™P)" de-
note the S°» and S™ from the [ Gibbs draw. A PPD
p-value close to 0.50 indicates a good fit of the model to the
data.

3. Results

We demonstrate the MCC model with analysis of the
PROSPECT data and compare the results to the analysis
under the CI model. In the PROSPECT, those randomized
to the usual care group do not have access to the interven-
tion; therefore, there are only two compliance classes: com-
pliers and never-takers. Goodman (1974) suggests that we
can only identify at most three latent compliance superclasses
given five dichotomous compliance classes; hence, we consider
a maximum of three superclasses.

Unrecorded treatment received (D;;) is assumed to be 0,
indicating no visits with health specialists. In this analysis
we let A; be the baseline HAMD score and baseline suici-
dal ideation. We adjust for the baseline HAMD because we
are interested in the change in HAMD scores from baseline.
Treatment randomization failed to balance the proportion of
subjects with suicidal ideation at baseline between the treat-
ment groups; therefore, we adjust for it in modeling the out-
come. We let Q; be the baseline HAMD score in estimating
the compliance probabilities in the CI model and in estimat-
ing the initial compliance probabilities in the MCC model.

We use relatively flat priors in the Bayesian MCMC estima-
tion of the model parameters because we do not have strong
prior inclinations. Following Garrett and Zeger (2000) and
Ten Have et al. (2004), we assume e ~ MVN(0, X, = diag(50,
4)). The difference in variance component in the priors reflect
the different scaling of the covariates. A larger variance is used
for binary covariates (i.e., intercept) and a smaller variance

is used for continuous covariates (i.e., baseline HAMD score).
The identifiability of the e parameter is checked by comparing
the prior and the posterior distributions (Garrett and Zeger,
2000). We assume the prior (7, Tpjym ) ~ Dirichlet(0.01,
0.01) Vk, j, o' for the transitional probabilities. This is equiv-
alent to adding 0.01 subject to each of the (C; ;.1 =17/, C;; =
n | U; = k) groups. Let B8 = [A1co, - - -, Asn1, 7], and we assume
B~ MVN(us =0,%5 = 1000 x I) and 0 ~ Inv — x*(v, =
1, ¥ = 1/10). For the random effect variance parameter we
assume X, ~ Inv — x*(v, = 1, ' = 1/10). We assume the
prior (p1,...,px ) ~ Dirichlet(1,...,1), assigning a priori one
subject to each of the K superclasses.

To assess the convergence of the MCMC chains we used the
Gelman-Rubin R statistic (Gelman et al., 2004, p. 296-297),
and R < 1.1 is accepted as evidence of convergence. We ran
three chains of the CI model for 10,000 iterations each with
the first 1000 iterations discarded as burn-in, and ran three
chains of the MCC model for 150,000 iterations each with
the first 75,000 iterations discarded as burn-in. The maxi-
mum R was 1.05 and 1.08 for the CI and the MCC models,
respectively.

We present the results under the CI model as specified in
Lin et al. (2008), then the results under the MCC model, fol-
lowed by comparison of the two models. We can assess the con-
ditional independence assumption made under the CI model
by comparing the fit of the CI model to the fit of the MCC
model to the data.

3.1 Conditional Independence Model

In Lin et al. (2008) we found that the three-class CI model has
a better fit to the data than the two-class CI model. Hence, we
compare the three-superclass CI model to the MCC model.
Table 1 shows the time- and superclass-varying compliance
probabilities under the CI model assuming the average base-
line HAMD of 18.1, and Table 2 shows the ITT effect of ran-
domization on the outcome within each compliance super-
class adjusting for the baseline HAMD and baseline suicidal
ideation.

Table 1 shows that the first superclass under the CI model
consists of subjects who are noncompliant at the 4-month
follow-up and become even more noncompliant for the re-
mainder of the study (low compliers). The second superclass
consists of subjects who are highly compliant for the first
8 months and become increasingly noncompliant (decreasing

Table 1
Posterior means and 95% credible intervals (in parentheses) for the time- and compliance
superclass-varying compliance probabilities assuming the average baseline HAMD of 18.1
and superclass probabilities under the CI model

Low Decreasing High

Time compliers compliers compliers

4 months 0.43 (0.33, 0.53) 0.99 (0.96, 1.00) 1.00 (0.98, 1.00)
8 months 0.01 (O 00, 0.07) 0.99 (0.94, 1.00) 1.00 (0.99, 1.00)
12 months 0.01 (0.00, 0.04) 0.51 (0.36, 0.66) 1.00 (0.98, 1.00)
18 months 0.06 (0.02, 0.12) 0.11 (0.00, 0.28) 0.99 (0.98, 1.00)
24 months 0.04 (0.01, 0.09) 0.01 (0.00, 0.07) 0.83 (0.77, 0.90)
PU;) 0.28 (0.23, 0.33) 0.16 (0.12, 0.22) 0.56 (0.50, 0.62)
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Table 2
Posterior means and 95% credible intervals (in parentheses) for the ITT contrasts of the
outcome within compliance superclasses under the CI model

Low Decreasing High
Time compliers compliers compliers
4 months —7.54 (—10.05, —2.00) —1.35 (—3.23, 0.10) —1.32 (—3.20, 0.09)
8 months —3.39 (—7.24, 0.81) —0.93 (—2.78, 0.83) —0.92 (—2.78, 0.86)
12 months 0.84 (—2.21, 3.95) —0.61 (—2.11, 1.05) —2.03 (—3.86, —0.14)
18 months 1.44 (—1.40, 4.07) 1.28 (—1.35, 3.85) —1.34 (—3.33, 0.64)
24 months 0.04 (—2.58, 2.69) 0.10 (—2.61, 2.85) —1.50 (—3.72, 0.63)

Table 3
Posterior means and 95% credible intervals (in parentheses) for the time- and compliance
superclass-varying compliance probabilities assuming the average baseline HAMD of 18.1
and superclass probabilities under the MCC model

Increasing Erratic High

Time noncompliers compliers compliers

4 months 0.66 (0.53, 0.80) 0.38 (0.00, 1.00) 0.99 (0.88, 1.00)
8 months 0.38 (0.20, 0.56) 0.83 (0.07, 1.00) 0.98 (0.86, 1.00)
12 months 0.19 (0.00, 0.40) 0.32 (0.00, 1.00) 0.99 (0.86, 1.00)
18 months 0.10 (0.02, 0.31) 0.93 (0.12, 1.00) 0.96 (0.76, 1.00)
24 months 0.02 (0.00, 0.07) 0.66 (0.00, 1.00) 0.88 (0.65, 1.00)
P(U;) 0.42 (0.25, 0.56) 0.04 (0.00, 0.15) 0.54 (0.42, 0.72)

compliers). The third superclass consists of subjects who are
highly compliant but become less compliant at the last follow-
up visit (high compliers). More than half of the subjects are
high compliers and about a quarter of subjects are low com-
pliers, leaving decreasing compliers as the smallest superclass.

The log odds of compliance for every unit increase in the
baseline HAMD and its 95% credible interval is 0.003(—0.04,
0.05) suggesting those with more severe depression at base-
line (higher baseline HAMD) may be slightly more likely to
comply with treatment assignment than those with less severe
depression at baseline.

The within-superclass ITT contrasts of equation (7) are
shown in Table 2. The contrasts suggest strong direct effect
of randomization at the 4-month follow-up in the low-complier
superclass, which consists of largely never-takers unlikely to
meet with health specialists regardless of the treatment as-
signed. After the first year, only the high compliers random-
ized to the intervention group, who are still highly likely to
meet with their health specialists, showed greater reduction
in the HAMD than high compliers in usual care. None of
the superclasses show strong I'TT effects on depression after
2 years.

3.2 Markov Compliance Class Model

The MCC model relaxes the CI assumption of the time-
varying compliance classes given compliance superclass and
baseline covariates, and instead, assumes a first-order Markov
structure for the time-varying compliance classes given com-
pliance superclass. We present results under the three-
compliance superclass model.

The log odds of compliance at 4 months adjusting for base-
line HAMD are —0.52(—1.87, 0.81), —3.61(—15.56, 4.37), and
4.99(1.11, 13.69) for the first, second, and third superclass,

respectively. This suggests that those in the first and second
superclasses are less likely to comply with their treatment as-
signment whereas those in the third superclass are more likely
to comply with their treatment assignment. Our model as-
sumes that the association between the baseline HAMD and
compliance at 4 months is the same across all three super-
classes. The log odds of 4-month compliance for a unit increase
in the baseline HAMD is 0.07(0.01, 0.13) suggesting that those
with more severe depression are more likely to comply with
treatment assignment.

Table 3 shows the time-varying compliance probabilities
when we assume the average baseline HAMD score of 18.1.
The first superclass consists of subjects who are likely to com-
ply with assigned treatment at 4 months then compliance de-
creases over time (increasing noncompliers). The second su-
perclass consists of subjects who exhibit erratic compliance
behavior with abrupt increases and decreases in compliance
probabilities (erratic compliers). The third superclass consists
of subjects who are highly compliant then compliance de-
creased slightly during the last 6 months (high compliers).
More than half of the subjects are high compliers, less than
half are increasing noncompliers, and only a small portion are
erratic compliers.

The transitional probabilities of the time-varying compli-
ance classes within each superclass in Table 4 shows that in-
creasing noncompliers and high compliers are more likely to
stay in the complier class if they are in the complier class in
the previous time point than if they are in the never-taker
class then switch to the complier class. Subjects in the high-
complier superclass are more likely to transition to the com-
plier class than subjects in the increasing noncomplier super-
class. We do not see any clear patterns in the transitional
probabilities of the erratic compliers.
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Table 4
Posterior means and 95% credible intervals (in parentheses) of the transitional probabilities
under the MCC model

Superclass J P(C;;=c|Cij.1=¢U;) P(Cij=c|Cij.1=n,U;)
Increasing 2 0.57 (0.34, 0.77) 0.01 (0.00, 0.06)
noncomplier 3 0.45 (0.00, 0.77) 0.01 (0.00, 0.03)
4 0.27 (0.00, 1.00) 0.06 (0.02, 0.12)
5 0.10 (0.00, 0.51) 0.02 (0.00, 0.05)
Erratic 2 0.67 (0.00, 1.00) 0.56 (0.00, 1.00)
complier 3 0.31 (0.00, 1.00) 0.48 (0.00, 1.00)
4 0.64 (0.00, 1.00) 0.78 (0.00, 1.00)
5 0.68 (0.00, 1.00) 0.54 (0.00, 1.00)
High 2 1.00 (0.99, 1.00) 0.15 (0.00, 1.00)
complier 3 1.00 (1.00, 1.00) 0.44 (0.00, 1.00)
4 0.97 (0.84, 1.00) 0.54 (0.00, 1.00)
5 0.91 (0.76, 1.00) 0.46 (0.00, 1.00)
Table 5

Posterior means and 95% credible intervals (in parentheses) for the ITT contrasts of the
outcome within compliance superclasses under the MCC model

Increasing Erratic High
Time noncompliers compliers compliers
4 months —5.19 (—7.33, —3.04) —8.32 (—15.33, —0.76) —1.46 (—3.05, —0.04)
8 months —2.70 (—5.21, —0.34) —1.39 (—4.71, 0.58) —0.89 (—2.57, 0.77)
12 months 0.52 (—1.92, 3.13) —0.01 (—3.41, 3.75) —2.10 (—3.81, —0.37)
18 months 1.55 (—1.05, 4.23) —1.28 (—3.29, 1.48) —1.38 (—3.23, 0.50)
24 months 0.48 (—2.12, 2.95) —1.31 (—4.57, 2.35) —2.02 (—4.53, 0.11)

The posterior means and credible intervals of the within-
compliance superclass ITT contrasts in equation (7) are dis-
played in Table 5 showing strong ITT effect at 4 months in
the erratic compliers, which consists of mostly never-takers
unlikely to meet with health specialists, suggesting direct ef-
fect of randomization. This direct effect seems to dissipate
over time. We also see an ITT effect at 4 months in the high
compliers, which consists of almost entirely compliers who are
likely to meet with health specialists if assigned to the inter-
vention, suggesting an effect of the intervention. Consistent
with the results under the CI model, at the end of the first
year we see greater decrease in HAMD in the high compliers
assigned to the intervention than high compliers assigned to
the usual care. It suggests that meeting with health specialists
help improve depression, although none of the 95% credible
intervals exclude 0 at the end of 2 years.

3.3 Model Comparison

Under the CI and the MCC compliance class structures we
identified a superclass of high compliers, who are highly com-
pliant with slight decrease in compliance at the last follow-
up. We also identified a superclass with decreasing compli-
ance, although the compliance probability under the CI model
starts out much higher at 4 months and decreases at a faster
rate over subsequent follow-ups than under the MCC model.
Under the CI model we identified a superclass of subjects
who are noncompliant, with no clear compliance trajectory.
Under the MCC model we identified a superclass of sub-
jects exhibiting erratic compliance behavior with fluctuating

compliance probabilities and no clear trend in their compli-
ance class transitions.

We saw similar within-compliance superclass ITT effects
under both the CI and the MCC models. The ITT effects
were larger in noncompliant subjects than compliant subjects
at the 4-month follow-up, suggesting a direct effect of ran-
domization early on. This is most evident in the low compli-
ers under the CI model and the erratic compliers under the
MCC model, both of which consist of mostly never-takers at
4 months. However, this direct effect seems to dissipate over
time. At the end of 2 years we see the largest ITT effect in
the high compliers under both the CI and the MCC models,
which consist of mostly compliers.

Assessment of the fits of the PPD to the data using the x-
type statistics in equation (9) yields a PPD p-value of 0.0057
under the three-superclass CI model and 0.1549 under the
MCC model, suggesting a better fit of the MCC model. The
three-class MCC model also has a better fit than the two-class
MCC model (PPD p-value =0.0089).

4. Discussion

Lin et al. (2008) proposed a CI model of the time-varying
compliance classes that assumes the compliance classes within
an individual are independent given compliance superclass
and baseline covariates. In this article, we proposed a Markov
model that assumes the compliance classes at each time point
are dependent on the previous compliance behaviors, com-
pliance superclass, and baseline covariates. The model also



512

accommodates possible nontransient ITT effects of previous
treatment on the outcome using a decay parameter.

Under the MCC model we found those who are more de-
pressed at baseline are more likely to comply with their as-
signed treatment at 4 months. The same trend was also found
under the CI model. More depressed patients may be more ea-
ger to treat their depression and more likely to adhere to their
prescribed treatment. Physicians may also monitor more de-
pressed patients more closely, thus increasing treatment com-
pliance.

The proposed MCC model provides information on how
history of compliance relates to compliance behavior that
was not considered in the CI model. People are creatures of
habit—those who complied with the assigned treatment in the
previous follow-up period were more likely to comply again
than those who were noncompliant in the previous follow-up
period.

We saw evidence of direct effect of randomization during
the first 4 months; though in the long run, compliant sub-
jects who were meeting with health specialists showed greater
improvement in their depression than noncompliant subjects.
The presence or availability of the health specialists may have
had a positive impact on the patients’ depression outcome ini-
tially regardless of whether they actually met, but to benefit
from the intervention longitudinally, the patients had to have
met the health specialists.

In our model, we assumed the potential outcomes are con-
ditionally independent of the superclasses given compliance
classes. The reviewers pointed out that a more parsimonious
alternative would assume that the potential outcomes are con-
ditionally independent of the compliance classes given the su-
perclasses. However, from an interpretive point of view, it
is easier to interpret compliance class-specific ITT estimates
than to interpret superclass-specific ITT estimates. Addition-
ally, the I'TT effects within each of the compliance classes cor-
respond to better estimators than do the ITT effects within
the broader superclasses given that compliance classes at each
time point provide more information than superclass alone.

Comparing the PPD to the data showed that the MCC
model has a better fit than the CI model. In our future re-
search, we plan to explore covariates that relate to compliance
superclasses and time-varying compliance classes to further
improve the fit of the MCC model.

Although the outcome model helps to identify the ITT ef-
fects within compliance classes under the normality and con-
stant variance assumptions, if we have (i) only compliers and
never-takers, and (ii) good pretreatment predictors of com-
pliance, then a parametric outcome model is not necessary
for identifiability of the ITT effects. In our application, we
satisfy the first condition, but only weakly satisfy the second
condition; hence, our results may be sensitive to the normality
assumption. See Rubin (2006) for more discussion on identi-
fiability of principal strata with parametric assumptions and
covariates.

In a simulation study in Gallop et al. (under review) we
found that results are sensitive to the violation of the homoge-
neous variance assumption when the sample size is small. Ad-
ditional assumptions, such as the exclusion restriction (ER)
assumption, may be needed to relax the homogeneous vari-
ance assumption. However, making the ER assumption may
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be unreasonable in the PROSPECT given we found possible
direct effect of randomization. In our future work, we would
like to explore alternative models to relax the homogeneous
variance assumption.

Cheng and Small (2006) proposed a principal stratification
method for a cross-sectional three-treatment arm trial. Fol-
lowing their strategy, with possible additional assumptions,
such as the ER and the monotonicity assumptions, we can ex-
tend our proposed method to accommodate studies with more
than two treatment arms. The number of possible compliance
patterns increases exponentially with increasing numbers of
active treatment arms and time points. Utilizing the super-
classes may provide even greater benefit under these types of
settings.

5. Supplementary Materials

The Web Appendix referenced in Section 2.5 is available un-
der the Paper Information link at the Biometrics website
http://wuw.biometrics.tibs.org.
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