SHORT COMMUNICATION

Tele-methylhistamine¹ distribution in rat brain

(Received 4 October 1978. Accepted 6 November 1978)

EVIDENCE accumulated from a variety of biochemical and physiological observations makes it likely that histamine serves as a transmitter in mammalian brain (GREEN *et al.*, 1977; SCHWARTZ, 1977). The metabolic fate of brain histamine is methylation, yielding *tele*-methylhistamine [1-methyl-4-(β -aminoethyl)-imidazole, *t*-MH]. For the structure or a nomenclatural discussion see BLACK & GANELLIN (1974). The role of *t*-MH in brain is likely to be nothing more than that of a transmitter metabolite. On the other hand, it has been suggested that *t*-MH might have an independent brain function (GREEN, 1970). This would be reminiscent of the relationship between dopamine and norepinephrine or serotonin and melatonin. In fact, t-MH has been shown to be as potent as histamine when applied iontophoretically to cortical neurons (PHILLIS et al., 1968). It lacks activity on classical H_1 or H_2 receptors, however, (BLACK et al., 1972).

Recently, we have developed a sensitive and specific gas chromatographic-mass spectrometric (GC-MS) method for measuring subnanogram amounts of t-MH in tissue (HOUGH *et al.*, in press) and shown t-MH to be an endogenous substrate for type B monoamine oxidase (HOUGH

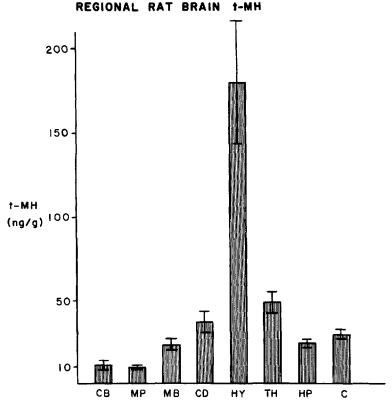


FIG. 1. Regional rat brain t-methylhistamine. The mean ± s.E. are shown for 6-8 determinations of the eight regions, abbreviated CB (cerebellum), MP (medulla-pons), MB (midbrain), CD (caudate nucleus), HY (hypothalamus), TH (thalamus), HP (hippocampus), and C (neocortex).

& DOMINO, in press). Presently, we have examined the content of t-MH in eight regions of the rat brain and compared the results with identical studies of histamine content. We have attempted to discover an independent distribution for t-MH, or confirm its similarity to that of histamine.

¹ Tele-methylhistamine (t-MH) is 1-methyl-4-(β -aminoethyl)-imidazole, in contrast to pros-methylhistamine (1-methyl-5-(β -aminoethyl)-imidazole, as per BLACK & GANELLIN (1974).

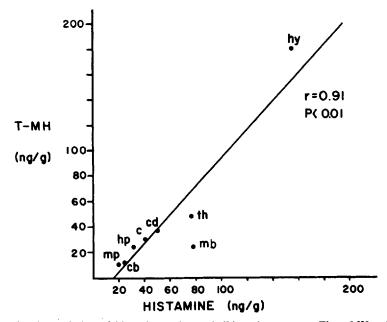


FIG. 2. Regional correlation of histamine and *t*-methylhistamine content. The *t*-MH values plotted are from Fig. 1. The histamine data were each from a mean of 4 determinations. A highly significant correlation is evident.

Male albino rats (Holtzman), weighing 200–400 g, were maintained in 12 h light-dark cycles and used for all studies. Following room temperature decapitation 2–4 h into the light cycle, the brains were rapidly removed, chilled with ice cold saline, and dissected into eight regions by a previously described modification (VASKO & DOMINO, 1978) of the method of GLOWINSKI & IVERSEN (1966). t-MH was measured by organic extraction, derivatization and analysis by GC-MS, as described by HOUGH et al. (in press). Histamine was measured following decapitation using a previously described modification (HOUGH & DOMINO, 1977) of the radioenzymatic assay. The results are expressed as ng amine (free base) per g wet wt. tissue. The results were the same when expressed per mg protein.

Figure 1 shows the striking assymmetry in the rat brain content of t-MH. The regions vary in their content by more than 15-fold, from 9.5 (medulla-pons) to 177 ng/g(hypothalamus). This distribution is quite similar to that found for histamine, as shown in Fig. 2. A highly significant correlation is evident for the histamine and t-MH content of each region.

These results support the earlier suggestion (WHITE, 1966) that the regional *t*-MH content resembles that of histamine. They also make it likely that brain *t*-MH is related to the histaminergic system, although an independent function cannot be completely ruled out. Recently, it has been suggested (BISCHOFF & KORF, 1978) that brain *t*-MH levels may be the best index to histaminergic function, much like other transmitter metabolites. While the present results do not prove the suggestion, they are definitely consistent with it.

Department of Pharmacology,	Lindsay B. Hough ¹
The University of Michigan,	Edward F. Domino ²
Ann Arbor, MI 48109, U.S.A.	

¹ Present address: Department of Pharmacology, Mount Sinai Medical School, 1 Gustave Levy Pl., New York, NY 10029, U.S.A.

² To whom correspondence should be addressed.

REFERENCES

- BISCHOFF S. & KORF J. (1978) Different localization of histidine decarboxylase and histamine-N-methyltransferase in the rat brain. Brain Res. 141, 375-379.
- BLACK J. W. & GANELLIN C. R. (1974) Naming of substituted histamines. *Experientia* 30, 111-113.
- BLACK J. W., DUNCAN W. A. M., DURANT C. J., GANELLIN C. R. & PARSONS E. M. (1972) Definition and antagonism of histamine H₂-receptors. *Nature*, Lond. 236, 385–390.
- GREEN J. P. (1970) Histamine, in Handbook of Neurochemistry (LAJTHA A., ed.) Vol. 4, pp. 221–250. Plenum Press, New York.
- GREEN J. P., JOHNSON C. L. & WEINSTEIN H. (1977) Histamine as a neurotransmitter, in *Psychopharmacology—A Generation of Progress* (LIPTON M., DIMASCIO A. & KILLAM K., eds.) pp. 319–322. Raven Press, New York.
- HOUGH L. B. & DOMINO E. F. (1977) Elevation in rat brain histamine content after focused microwave irradiation. J. Neurochem. 29, 119–204.
- HOUGH L. B. & DOMINO E. F. Tele-methylhistamine oxidation by type B MAO. J. Pharmac. exp. Ther., in press.
- HOUGH L. B., STETSON P. & DOMINO E. F. Gas chromatography-mass spectrometry of *tele*-methylhistamine and its assay in tissues. *Analyt. Biochem.*, in press.
- PHILLIS J. W., TEBECIS A. K. & YORK D. H. (1968) Histamine and some antihistamines: their actions on cerebral cortical neurons. Br. J. Pharmac. 33, 426-440.
- SCHWARTZ J. C. (1977) Histaminergic mechanisms in brain. A. Rev. Pharmac. 17, 325-340.
- VASKO M. R. & DOMINO E. F. (1978) Tolerance development to the biphasic effects of morphine on locomotor activity and brain acetylcholine in the rat. J. Pharmac. exp. Ther. 207, 848–858.
- WHITE T. (1966) Histamine and methylhistamine in cat brain and other tissues. Br. J. Pharmac. 26, 494-501.