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Summary. We consider estimation in generalized linear mixed models (GLMM) for longitudinal data
with informative dropouts. At the time a unit drops out, time-varying covariates are often unobserved in
addition to the missing outcome. However, existing informative dropout models typically require covariates
to be completely observed. This assumption is not realistic in the presence of time-varying covariates. In this
article, we first study the asymptotic bias that would result from applying existing methods, where missing
time-varying covariates are handled using naive approaches, which include: (1) using only baseline values;
(2) carrying forward the last observation; and (3) assuming the missing data are ignorable. Our asymptotic
bias analysis shows that these naive approaches yield inconsistent estimators of model parameters. We
next propose a selection/transition model that allows covariates to be missing in addition to the outcome
variable at the time of dropout. The EM algorithm is used for inference in the proposed model. Data from
a longitudinal study of human immunodeficiency virus (HIV)–infected women are used to illustrate the
methodology.
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1. Introduction
A substantial proportion of subjects often drop out from lon-
gitudinal studies prior to completion of the study. Dropouts
may be nonignorable, in the sense that methods that ignore
the mechanism that leads to dropout will often yield biased
results. A variety of methods have been proposed for analyz-
ing these types of data, including parametric (e.g., Diggle and
Kenward, 1994; Little, 1995; Ibrahim, Chen, and Lipsitz,
2001) and semiparametric (e.g., Rotnitzky, Robins, and
Scharfstein, 1998; Scharfstein, Rotnitzky, and Robins, 1999)
approaches. It is commonly assumed in the longitudinal
dropout literature that the outcomes are missing at the time
of dropout, but all covariates are completely observed. For
example, the approaches reviewed by Little (1995) require
the covariates to be completely observed. However, time-
varying covariates are common in longitudinal studies. These
covariates, along with the outcome variable, are generally not
observed at the time of dropout. Hence, the assumption of
completely observed covariates is often not realistic in the
presence of time-varying covariates. To illustrate, consider the
following example.

Tashima et al. (2001) reported results from a longitudi-
nal study of human immunodeficiency virus (HIV)–infected
women. This was a substudy of the HIV Epidemiological Re-
search Study (HERS; Smith et al., 1997), where interest was
in determining whether the use of protease inhibitors (PIs)
reduced the number of hospitalizations and emergency de-
partment visits. The HERS recruited 1310 participants from
four cities, beginning in 1993, with follow-up visits every
6 months. Tashima et al. (2001) found a decreased risk of
hospitalization for patients treated with PI, but only for those
with CD4 count less than 200 cells/mL. However, a substan-
tial number of women dropped out from the study, and a
preliminary look at the data suggests they were more likely
to have been hospitalized in the past 6 months. We are there-
fore interested in models that account for the possibility that
missing data are missing not at random. That is, the prob-
ability of dropout may depend on whether or not a subject
had a recent hospitalization. A further complication is certain
PI use changes over time and therefore has the same pattern
of missingness as the response. Models that account for both
missing response and covariate data are therefore necessary.
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Roy and Lin (2002) and Stubbendick and Ibrahim (2003)
proposed maximum likelihood methods for dealing with both
dropout-related missing response and missing covariates in
a longitudinal setting. These methods require the specifica-
tion of models for the dropout mechanism and covariates that
have at least some missing values. Roy and Lin (2002) specif-
ically focused on continuous time-varying covariates that are
missing due to dropout. Both continuous and discrete co-
variates subject to missingness were modeled via a series of
one-dimensional conditional distributions in Stubbendick and
Ibrahim (2003). A limitation of their modeling approaches is
they are only appropriate for normally distributed outcomes.
However, it is very common to have a discrete response vari-
able along with time-varying covariates of discrete or mixed
type. For cross-sectional data, maximum likelihood methods
have been developed for generalized linear models (GLMs)
with nonignorable missing covariates (Ibrahim, Lipsitz, and
Chen, 1999), but these methods have not yet been extended
to the longitudinal setting. Further, although several naive
methods have been proposed in the literature to handle miss-
ing time-varying covariates, such as the last observation car-
ried forward (LOCF) method, little is known about how these
naive methods perform, particularly in comparison to more
complicated modeling strategies such as is proposed in this
manuscript.

In this article, we consider the situation where dropouts
are informative and both the outcome and time-varying co-
variates are missing at the time of dropout. We study the
asymptotic bias that results from dealing with missing time-
varying covariates using one of the following naive approaches:
(1) using baseline measures throughout; (2) using the LOCF,
i.e., for units that dropped out, assume the value of the
time-varying covariates has not changed since the previous
time point; and (3) assuming dropouts are ignorable. Our
asymptotic bias analysis shows situations in which these naive
approaches yield substantially biased estimators of model
parameters.

In view of the asymptotic bias analysis results, we pro-
pose a model that allows for nonignorable dropouts as well
as missing covariates. This is done by generalizing the mod-
els for dealing with dropout-related missing covariates pro-
posed by Roy and Lin (2002) and Stubbendick and Ibrahim
(2003) to allow a generalized linear mixed model (GLMM) for
the response. The covariates may be continuous, discrete, or
mixed type. To account for possibly nonignorable dropouts,
we utilize a selection model. The time-varying covariates that
are subject to missingness are assumed to follow a transi-
tion model. In view of multidimensional integration required
for a full likelihood analysis, a Monte Carlo EM algorithm
(Wei and Tanner, 1990) is developed for inference in the pro-
posed model. Because the observed data cannot distinguish
between missing at random (MAR) and informative miss-
ingness (Little, 1995), we proceed with a sensitivity analysis
(Rotnitzky et al., 1998; Verbeke et al., 2001), which is com-
monly recommended.

The remainder of the article is organized as follows.
Section 2 introduces the model. In Section 3, an asymp-
totic bias analysis is performed to study the impact of the
use of naive approaches to handle missing covariates. Sec-
tion 4 describes the EM algorithm for inference in the pro-

posed model. Two simulation studies are carried out in
Section 5, comparing the proposed methods to the naive
approaches in finite samples. This is done for continuous
and binary data. We illustrate the proposed approach in
Section 6 using the hospitalization data. A discussion is given
in Section 7.

2. Model Specifications
Suppose that n units are sampled repeatedly over time. The
intent is to sample each unit K times, but due to dropouts
the ith unit is sampled at Ki ≤ K time points. Therefore, we
observe the continuous or discrete response variable Y ik, co-
variates Xik(p × 1) and Zik (q × 1), associated with the fixed
effects and the random effects, respectively, and a dropout in-
dicator Ri for units i = 1, . . . ,n and time points k = 1, . . . ,Ki.
The variable Ri takes value k if unit i dropped out after time
point k − 1 (i.e., the first missing value was at time point k).
We distinguish between two types of covariates: those that are
known even at the time of dropout Sik (p1 × 1) (i.e., time-
invariant covariates), and those whose values are unknown at
the time of dropout T ik(p2 × 1) (i.e., time-varying covariates).
Write Xik = (ST

ik, T
T
ik)

T. We assume that the covariates as-
sociated with the random effects Zik are completely observed.

We assume a GLMM (Breslow and Clayton, 1993) for the
outcome variable Y ik. Specifically, given Xik, Zik, and the
random effects bi, the Y ik are independent with means µik

and variances φya
−1
ik v(µik), where φy is a scale parameter, aik

is a weight, and v(·) is a variance function. The conditional
mean is related to the covariates through the following GLM:

g(µik) = ST
ikβ1 + TT

ikβ2 + ZT
ikbi, (1)

where g(·) is a link function, β1 and β2 are p1 × 1 and p2 × 1
vectors of unknown parameters, and the q × 1 random effects
bi are normally distributed with mean 0 and variance D(θ),
where θ is a vector of variance components.

The dropout indicator Ri is assumed to be associated
with the complete repeated measures data through a logis-
tic model:

logit(Pik) = α0k + HT
i(k−1)α1 + α2Yik, (2)

where P ik = Pr(Ri = k |Ri ≥ k, Hi(k)), α0k and α1 are un-
known parameters, and Hi(k) denotes the history data and is
some subset of the covariates and response up to time point
k, i.e., some subset of {Si(k), T i(k), Y i(k)}, where (k) denotes
the history up to time point k. Because the data contain little
information about the dropout parameter α2, estimation of
α2 would be heavily driven by modeling assumptions instead
of by the data (Little, 1995). A sensitivity analysis by fixing
α2 at different values is often recommended (Rotnitzky et al.,
1998; Verbeke et al., 2001). Model (2) can be easily extended
to allow the dropout probability P ik to depend on (Sik, T ik).
For more details, see discussion in Section 7.

The above standard selection model requires covariates to
be completely observed. However, time-varying covariates are
common in longitudinal studies. They are often missing at the
time of dropout in addition to the outcome variable Y ik. As
a result, the conventional assumption of completely observed
covariates is often violated. Likelihood-based inference there-
fore requires the specification of a model for these missing
covariates.
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For simplicity, we here assume the p2 time-varying covari-
ates T ik are fully observed at the baseline. We propose a tran-
sition model to model missing time-varying covariates T ik.
We assume the lth time-varying covariate follows a first-order
transitional model (l = 1, . . . , p2; k = 2, . . . ,K)

h(νikl) = λ0l + λ1lTi,k−1,l + λT
2lSi(k), (3)

where ν ikl = E(T ikl ), h(·) is a known link function, and λl =
(λ0l, λ1l, λT

2l)
T is an unknown parameter vector. As [T ikl |

T i(k−1)l, Si(k)] follows a GLM, there may be an associated
scale parameter φTl . This model assumes that the lth time-
varying covariate at the current time depends on its value at
the previous time point and the history of the covariates Si(k).
In addition, we assume the p2 time-varying covariates are in-
dependent of each other conditional on their history and the
history of the complete covariates, i.e., T ikl is independent of
T ikl ′ conditional on the history T i(k−1) and Si(k). However, we
do not make any assumptions about the joint distribution of
the p2 covariates at baseline T i1. It follows that even under
the conditional independence assumption, the p2 covariates
Ti are still allowed to be correlated marginally at each time
point.

The assumptions of model (3) could be relaxed by: (i) al-
lowing the current value of each time-varying covariate T ikl

to depend on the other time-varying covariates T ikl ′ (l′ �= l);
or (ii) by allowing the time-varying covariates to be both
continuous and discrete. For more details, see discussion in
Section 7.

Let Y obs,i = (Y i1, . . . ,Y iKi )
T, T obs,i = (T i1, . . . ,T iKi )

T de-
note the observed values of Y i and T i, with Sobs,i and Zobs,i

defined similarly. Further, for units that dropped out from
the study, let Ymis,i = Y i,Ki+1 and Tmis,i = T i,K i+1 denote the
missing observations. Then, define Y i = Y obs,i if Ki = K (i.e.,
unit i did not drop out) and Y i = (Y T

obs,i, Y mis,i)
T otherwise

(i.e., unit i drops out at time point Ki + 1). Define T i simi-
larly. Let Si = (Si1, . . . ,Si,K i+1)

T and Zi defined similarly. If
α2 = 0, then equation (2) does not depend on missing data,
and the dropout mechanism is ignorable. Inference could then
be based on the integrated quasilikelihood L(Y obs,i |T obs,i,
Sobs,i, Zobs,i; β, θ), as in Breslow and Clayton (1993).

When α2 �= 0, the missing data mechanism is nonignor-
able, and inference needs to be based on the joint integrated
quasilikelihood

L(Yobs,i,Tobs,i, Ri |Si,Ti1; Ω)

=

∫
L(Yi,Ti, Ri |Si,Ti1; Ω) dbidTmis,idYmis,i

=

∫
L(Yi |Si,Ti, bi;β, φy)L(Ti |Ti1, Si;λ, φT )L(bi; θ)

×L(Ri |Yi,Tobs,i,Sobs,i;α) dbidTmis,idYmis,i, (4)

where λ = (λT
1 , . . . ,λT

p2
)T, α = (αT

0 , αT
1 )T, and Ω is a vector

containing all the parameters in the model. The dimension
of integration in the likelihood (4) is q + 1 + p2 for units
that dropped out and q for those that did not. Denote the log
likelihood �(·) = lnL(·). The log likelihoods in the integrand
in (4) are

�(Yi |Si,Ti, bi;β, φy) = −
(Ki+1)∧K∑

k=1

d(Yik, µik),

�(Ti |Ti1;λ, φT ) = −
p2∑
l=1

(Ki+1)∧K∑
k=2

d(Tikl, νikl),

�(bi | θ) = −1

2
ln |D(θ)| − 1

2
bT
i D(θ)−1bi,

�(Ri |Yi,Tobs,i,Sobs,i;α) =

Ki∑
k=2

ln(1 − Pik)

+ I[Ki < K] ln(Pi,Ki+1),

where d(y, µ) = −2
∫ µ

y
{φa−1

ik v(u)}−1(y − u) du is the deviance

function, P ik is defined in (2), and I[Ki < K] is an indicator
function.

3. Asymptotic Bias Analysis
In this section, we investigate the asymptotic bias of the model
parameters if missing time-varying covariates are handled us-
ing naive approaches. Three naive approaches are consid-
ered: (1) using the baseline measures throughout by assuming
the time-varying covariates have not changed since baseline;
(2) carrying forward the last observation, i.e., assuming their
values at the time of dropout are the same as the previous
values; and (3) ignoring missing data completely by assuming
MAR. These naive approaches enable one to fit models using
the existing approaches that assume covariates are completely
observed. For example, Diggle and Kenward’s (1994) method
could be applied to the data filled in using the baseline or
LOCF approaches; a standard GLMM could be applied if we
assume ignorable missingness (IM). The question of interest
is how much asymptotic bias would arise by doing so.

3.1 The Specific Model Considered in the Bias Analysis
To demonstrate the fundamental impact of the naive ap-
proaches, we consider a simple case in the asymptotic bias
analysis. Specifically, we assume there is a single time-varying
covariate and the outcomes are Gaussian. The outcomes Y ik

are assumed to follow a linear random intercept model

Yik = β0 + β1Xik + bi + εik, k = 1, . . . ,K, (5)

where bi and εik are independently distributed as N(0, θ) and
N(0, τ 2), respectively. The time-varying covariate is assumed
to follow a transition model

Xik = λ0 + λ1Xi,k−1 + eik, (6)

where Xi1 ∼ N(µ1, δ) and eik ∼ N(0, σ2) for k = 2, . . . ,K.
Finally, the dropout model is

logit(Pik) = α0k + α1Yi,k−1 + α2Yik, (7)

where Pik is defined in Section 2.
The naive model assumes

Yik = β0,naive + β1,naiveX
∗
ik + bi + εik, (8)

where bi ∼N(0, θnaive) and εik ∼N(0, τ 2
naive), and the covariate

Xik is made complete by setting it equal to X∗
ik using one of
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the three naive approaches. We further assume that when us-
ing either the baseline or LOCF approach, the dropout mecha-
nism (7) is correctly specified with α being known. Therefore,
the naive model only differs from model (5) in the way miss-
ing covariates are handled. Note that the true model accounts
for missing Xik by assuming the transition model (6).

Let ξ = (θ, τ 2)T. Denote by γ = {βT, ξT}T the true values
and γnaive = (βT

naive, ξ
T
naive)

T their asymptotic limits as n → ∞
using one of the naive approaches. Denote by �naive(Yi , Ri )
the log likelihood of γ for unit i under each of the three
naive approaches. The naive score function is Unaive(Y,R) =
n−1

∑n

i=1 ∂�naive(Yi, Ri)/∂γ = n−1
∑n

i=1 Unaive(Yi, Ri). It fol-
lows that the asymptotic limits of the naive MLEs γnaive solve

E{Unaive(Yi, Ri |βnaive, ξnaive)} = 0, (9)

where the expectation is taken under the true models (5)–
(7). Hence, the solution {βnaive, ξnaive} is a function of the
true parameters {β, ξ}. Equation (9) generally does not have
a closed-form solution and needs to be solved numerically.
Details about these calculations can be obtained from the
authors upon request.

3.2 The Results
We now consider numerical calculations of bias for the simple
case where K = 2. Equation (9) does not have a closed-form
solution. The Gauss–Hermite quadrature was used to evaluate
the integrals and the Newton–Raphson method was used to
solve the equations.

We assumed in our numerical calculations the true values
of the parameters were β0 = 1, β1 = 1, θ = 1, τ 2 = 1, µ1 = 1,
δ = 1, σ2 = 1, α0 = −10, and α1 = 0. We then made dif-
ferent assumptions about the relationship between X at time
points 1 and 2 by varying (λ0, λ1) = (0.5, 0.5), (1.0, 0.0), (0.0,
1.0). In each case, we calculated the asymptotic biases by in-
creasing the values of α2. This allowed us to investigate how
the asymptotic biases changed as the marginal probability of
dropout increased. Note that the probability of dropout is es-
sentially 0 when α2 ≤ 0. Therefore, in the plots that follow,
all dropouts can be thought of as arising from a nonignorable
mechanism.

Figure 1 shows the relative bias plots for the baseline,
LOCF, and IM approaches for (λ0, λ1) = (0.5, 0.5), which
assumes the value of X at the first and second time points
are positively correlated. When the marginal probability of
dropout is 0, the LOCF and IM approaches yield unbiased
parameters. This is because all of the data are used. How-
ever, the baseline approach still yields biased estimates even
when there are no dropouts. As the marginal probability of
dropout goes to 1, the amount of bias from the baseline and
LOCF approaches converge to each other (curves not shown),
since the methods are equivalent when all units drop out af-
ter time point 1. The LOCF approach yields parameters with
a smaller bias than the baseline approach. The IM approach
results in similar biases in the estimates of β1 and τ to those
using the LOCF approach, but a more biased estimate of the
variance component θ. All three naive approaches give atten-
uated estimates of β1. Both the baseline and IM approaches
underestimate the variance components θ while the bias of the
LOCF estimate of θ is small. Both the baseline and LOCF ap-
proaches overestimate τ while the IM estimate of τ has little
bias.
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Figure 1. Asymptotic relative biases in the naive param-
eters of β, θ, and τ 2 when the transition model for the time-
varying covariate holds. The true parameter values are β0 =
1, β1 = 1, θ = 1, τ 2 = 1, λ0 = 0.5, λ1 = 0.5, µ1 = 1, δ = 1,
σ2 = 1, α0 = −10, and α1 = 0. The three curves in each plot
are — baseline; · · · LOCF; −−− IM.

We also calculated bias curves under other scenarios. When
we assumed that the values of X at time points 1 and 2 are
uncorrelated (e.g., λ0 = 1, λ1 = 0), the shape of the curves
looked similar to Figure 1, but the magnitude of the biases
was larger. In the situation when X2 is equal to X1 plus ran-
dom noise (i.e., λ0 = 0 and λ1 = 1), other than for τ 2, the
magnitude of the biases is smaller than in Figure 1. For τ 2

the bias plot is nearly identical to that of Figure 1.
Our asymptotic bias analysis shows that the three naive

approaches to handle missing time-varying covariates of-
ten yield biased estimates in the model parameters. The
amount of bias depends on the values of the true pa-
rameters of the model. The naive estimates in the regres-
sion parameter of main interest β1 are attenuated and the
bias in β1 increases as the correlation between X at time
points 1 and 2 decreases. Our results hence suggest that
appropriate analysis needs to account for missing time-
varying covariates in the presence of informative dropouts.
Such an estimation procedure is proposed in the next
section.

4. Estimation and Inference
In view of the asymptotic bias results in Section 3, we
model missing time-varying covariates for longitudinal data
with informative dropouts using the selection–transition
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model (1)–(3). We develop in this section an estimation
procedure using the EM algorithm. Specifically, statistical in-
ference for model (1)–(3) is challenged by the possibly high-
dimensional integrals in the joint quasilikelihood (4). For a
Gaussian outcome Yi with an identity link function, i.e., Yi

follows a linear mixed model, the quasilikelihood (4) can be
simplified and only involves one-dimensional integral. How-
ever, for non-Gaussian data the dimension of integration of
the joint quasilikelihood (4) is q + 1 + p2, which may be quite
large. Estimation by directly maximizing (4) is computation-
ally difficult. We hence develop an EM algorithm approach
for estimation.

The complete data for subject i are {Yi , Ri , Ti , Si , bi} and
the observed data are {Yobs,i , Ri , Tobs,i , Si}. The complete
data log likelihood is �c(Ω) =

∑n

i=1{�(Yi |Si,Ti, bi;β, φ) +
�(Ti |Ti1, Si;λ, σ) + �(bi; θ) + �(Ri |Yi,Tobs,i,Sobs,i;α)}, where
each of the terms was defined in Section 2.

The M-step is as follows. Let Ω(k) denote the estimate of Ω
at the kth iteration. The updated estimates of β are obtained
by solving

n∑
i=1

(Ki+1)∧K∑
k=1

E
{
Xikµ

′
ikV

−1
ik (Yik − µik)

∣∣Yobs,i,

Tobs,i, Si, Ri; Ω
(k)

}
= 0,

where µ′
ik = 1/g ′(µik) and V ik = φya

−1
ik v(µik). In some cases

this will have closed form (e.g., linear mixed models for nor-
mal data), but in other cases (e.g., GLMMs for nonnormal
data) the equation will have to be solved iteratively using
the Fisher scoring algorithm. The updated estimate of φy

is obtained similarly (i.e., using standard GLM maximiza-
tion techniques). The parameters λ and φT are updated in
an analogous manner, since [T ikl |T i(k)l] is assumed to fol-
low a GLM. If D(θ) is unstructured, then it is updated using
D(k+1) = 1

n

∑n

i=1 E(bib
T
i |Yobs,i, Tobs,i, Si, Ri; Ω

(k)). The param-
eters in the dropout model α = (α02, . . . ,α0K , αT

1 )T are
updated iteratively using the following Newton–Raphson
algorithm

α(k+1) = α(k) −
(

∂2�R
∂α∂αT

)−1
∂�R
∂α

∣∣∣∣
α(k)

,

where

∂�R
∂α

=

n∑
i=1

[{
Ki∑
k=2

−E(Pik∆ik |Yobs,i, Tobs,i, Si, Ri)

}

+E{(1 − Pi,Ki+1)∆i,Ki+1 |Yobs,i, Tobs,i, Si, Ri}

× I[Ki < K]

]
,

∂2�R
∂α∂αT =

n∑
i=1

(Ki+1)∧K∑
k=2

−E
[
Pik(1 − Pik)∆ik∆

T
ik

∣∣Yobs,i,

Tobs,i, Si, Ri

]
,

and ∆ik = (δk, HT
i(k−1))

T and δk is a (K − 1) × 1 vector
with all elements equal to 0 except that the kth element equal
to 1.

The E-step involves taking expectations of functions of the
“missing data” conditional on the observed data and take the
form E{h(bi , Ymis,i , Tmis,i ) |Yobs,i , Tobs,i , Si , Ri}, where h is
some function of the missing data (e.g., h(bi , Ymis,i, Tmis,i) =
bi bT

i ). For subjects that did not drop out, the expectation is
as follows:

E{h(bi) |Yi, Ti, Ri}

=

∫
h(bi)L(Yi |Ti, Si)L(Ri |Yi, Ti, Si)L(Ti)L(bi) dbi∫

L(Yi |Ti, Si)L(Ri |Yi, Ti, Si)L(Ti)L(bi) dbi

,

where the integrals are q-dimensional. Because we assume
the random effects have a normal distribution, the Gaussian
quadrature can be used to evaluate the integral. For subjects
that did drop out of the study, the expectations take the
form

E{h(bi, Ymis,i, Tmis,i) |Yobs,i, Tobs,i, Ri} =

∫
h(bi, Ymis,i, Tmis,i)L(Yi |Ti, Si)L(Ri |Yi, Ti, Si)L(Ti)L(bi) dYmis,i dTmis,i dbi∫

L(Yi |Ti, Si)L(Ri |Yi, Ti, Si)L(Ti)L(bi) dYmis,i dTmis,i dbi

,

where the integrals have higher dimensions and are q + 1 +
p2-dimensional. In some special cases the integral can be eval-
uated directly. For example, if the response is binary in-
tegration over missing Y is just a two-part summation. If
the response is normal, Gaussian quadrature can be used.
Similarly, components of T that are binary or normal could
be integrated over directly, if the dimension of T is rela-
tively small. Otherwise a Monte Carlo approximation (Wei
and Tanner, 1990; Booth and Hobert, 1999) is used for all
or part of the integrals. Following Ibrahim et al. (2001),
we first repeatedly draw values from the conditional distri-
bution of [bi ,Ymis,i ,Tmis,i |Yobs,i ,Tobs,i , Ri ] using the Gibbs
sampler along with rejection sampling. We then evaluate
the integrands in the numerator and denominator for each
set of draws, and average over the draws. At the tth it-
eration, we draw Mt values from the conditional distribu-
tion. It is often recommended to select a small value for
Mt at early iterations, then increase it as the parameters
get closer to their ML estimates (Booth and Hobert, 1999).
For the final iterations a large Mt should be chosen to min-
imize Monte Carlo error. Convergence of EM is declared
when the maximum relative change in the parameter es-
timates in consecutive iterations is smaller in magnitude
than some predetermined value (e.g., <10−4). The method of
Louis (1982) is used for obtaining estimates of the standard
errors.
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5. Simulations
We carry out two sets of simulations studies—one for con-
tinuous data and another for binary data. The purpose is
twofold: (1) to evaluate the finite sample performance of the
EM algorithm for the proposed model; and (2) to further as-
sess the bias that results from implementing naive methods
for filling in missing covariate data. In the previous section,
we considered asymptotic bias for data with a continuous re-
sponse, continuous time-varying covariate and only two time
points. The simulation study will provide insight into the bias
that arises in finite samples, with more than two time points
for both continuous and discrete response and time-varying
covariates.

For both sets of simulations, we generated complete data
from n= 100 subjects with K =3 observations each. The vec-
tor Sik consisted of an intercept and time itself. One time-
varying covariate T ik was generated. Data were missing after
time point k with probability 1 if data were missing at time
point k − 1, and with probability P ik otherwise, where

logit(Pik) = α0k + α1Yi,k−1 + α2Yik

for k = 2, 3.
Each simulated data set was analyzed using four methods—

MLE based on the correct model and three naive models.
Two of the naive methods filled in missing T ik (using baseline
values or carrying forward the last observation), and then
fitted a selection model using the filled-in covariate data. The
other naive method assumed the missing data were ignorable,
and a random intercept model for binary data was fitted to
the observed data.

5.1 Continuous Response
For this simulation study, we assumed both a continuous re-
sponse and continuous time-varying covariate. First, we gen-
erated T i1 from a standard normal distribution. We then gen-
erated T ik = λ0 + λ1T i,k−1 + ei,k for k = 2, 3, where eik ∼
N(0, 1). The response was then Yik = β0 + βsk + βTTik +

Table 1
Results from simulation study with continuous response. Percentage bias and MSE in estimation of βs (coefficient of time) and
βT (coefficient of time-varying covariate) from the proposed method, along with the three naive approaches. Results are based on

1000 replications each.

Method

Baseline LOCF IM Proposed

α2 (λ0, λ1) Statistic βs βT βs βT βs βT βs βT

0.5 (0.5,0.5) Bias 72.8 −30.9 1.6 −2.9 −15.3 −1.7 −0.4 0.0
MSE 0.145 0.117 0.006 0.006 0.018 0.006 0.008 0.007

(0,1) Bias −12.2 4.2 −0.1 0.1 −12.8 −1.5 −1.0 0.1
MSE 0.016 0.021 0.005 0.006 0.013 0.005 0.006 0.005

(1,0) Bias 104.2 −51.7 5.1 −5.0 −15.9 −2.4 0.2 −0.6
MSE 0.287 0.284 0.008 0.007 0.017 0.005 0.009 0.006

1.0 (0.5,0.5) Bias 60.4 −24.0 8.8 −10.9 −46.6 −5.5 0.1 −0.5
MSE 0.114 0.079 0.015 0.021 0.066 0.010 0.013 0.010

(0,1) Bias −42.0 3.0 −1.9 −0.1 −25.4 −0.2 −0.8 −0.4
MSE 0.058 0.023 0.008 0.005 0.026 0.006 0.009 0.007

(1,0) Bias 108.3 −40.5 30.6 −20.9 −51.4 −8.6 −1.4 −0.5
MSE 0.309 0.189 0.041 0.053 0.080 0.015 0.017 0.009

εik, where bi and εi were independently distributed as
N(0, 1).

We set β0 = 1, βs = 0.5, βT = 1, α02 = α03 = 0.5, and
α1 = 0. We simulated data under various values for α2 and λ in
order to change the amount of missing data, the dependence
of missingness on Y, and the degree to which Tik depends
on the past. Percentage bias and mean square error (MSE)
are given in Table 1. First, note that the proposed method
(which is based on a correctly specified model) yielded nearly
unbiased estimates of βs and βT (<2% bias in all cases). The
baseline approach performed poorly in all cases except for the
parameter βT when λ0 = 0 and λ1 = 1. For those values of
λ, future values of T were strongly predicted by the past, and
therefore imputing using baseline values was not too costly,
although the method still performed poorly for estimating
βs . The LOCF approach outperformed the baseline approach
in every instance. The amount of bias was 5% or less when
α2 = 0.5, and for α2 = 1 when λ1 = 1 (serial observations of T
highly correlated). Not surprisingly, the baseline and LOCF
methods performed the worst when there was no correlation
in the repeated measurements of T. The IM approach led
to bias of less than 10% for βT in each scenario. However,
the method performed very poorly for estimating the slope
βs , with bias ranging from 13% to 51%. In terms of MSE,
LOCF was competitive with the proposed approach when
α2 = 0.5, but when dropout more heavily depended on miss-
ing values (i.e., α2 = 1), the proposed approach tended to
have the smaller MSE.

5.2 Binary Response
We next simulated data with a binary response and binary
time-varying covariate. We generated T i1 from a Bernoulli
distribution with success probability equal to 0.5. We then
generated T ik from a Bernoulli distribution with success prob-
ability logit−1(λ0 + λ1T i,k−1) for k = 2, 3. Finally, the re-
sponse Y ik was equal to 1 with probability logit−1(β0 + βsk +
βTTik + bi ) for k = 1, 2, 3, where bi ∼ N(0, 1).
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Table 2
Results from simulation study with binary response. Percentage bias and MSE in estimation of βs (coefficient of time) and βT

(coefficient of time-varying covariate) from the proposed method, along with the three naive approaches. Results are based on
1000 replications each.

Method

Baseline LOCF IM Proposed

α2 (λ0, λ1) Statistic βs βT βs βT βs βT βs βT

0.5 (−0.5,1) Bias 2.4 −43.7 3.8 4.5 −9.7 −42.4 1.6 1.3
MSE 0.037 0.358 0.059 0.130 0.061 0.352 0.046 0.168

(−1.5,3) Bias 4.7 −16.2 3.2 3.0 −8.0 −21.3 0.9 1.6
MSE 0.053 0.166 0.050 0.128 0.044 0.206 0.056 0.170

(0,0) Bias 6.5 −40.1 6.5 4.5 −11.4 −51.8 1.1 1.2
MSE 0.058 0.299 0.047 0.135 0.051 0.401 0.049 0.159

1.0 (−0.5,1) Bias 8.2 −32.0 4.2 4.1 −24.7 −80.2 1.0 1.5
MSE 0.061 0.240 0.051 0.169 0.067 0.784 0.063 0.179

(−1.5,3) Bias 10.3 −13.2 4.3 3.6 −21.2 −19.7 1.2 2.2
MSE 0.039 0.218 0.046 0.194 0.058 0.210 0.058 0.204

(0,0) Bias 8.1 −37.9 7.2 8.9 −26.8 −46.7 0.6 1.6
MSE 0.052 0.308 0.051 0.176 0.071 0.362 0.045 0.154

In each set of simulations, we set β0 = −1, βS = −0.5,
βT = 1, α02 = α03 = −2, and α1 = 0. We varied α2 as 0.5
or 1 in order to affect the probability of dropout and the de-
pendence of dropout on the current value of the response.
We also considered several values of λ in order to assess
how the methods performed as serial correlation in T varied.
Table 2 displays the results from the simulations. The pro-
posed method generally yielded parameters with little bias
(<3%). The bias that is present is a finite-sample bias,
as it does substantially decrease if we instead generated
data with n= 500 (results not shown). Assuming the miss-
ing data are MAR (third column) results in a substantial
amount of bias for both βS and βT . Parameters from the
baseline approach are nearly as biased as those assuming
MAR. As expected, the percentage bias with the baseline
approach is smallest when serial correlation in T is large
(i.e., when λ = (−1.5, 3)). Surprisingly, the LOCF approach
performed fairly well in these simulations, with <10% bias
for βS and βT in all cases. This is different than what we
found in the continuous case, where LOCF performed poorly
when there was no serial correlation in T. The MSEs in
most cases were smallest for the LOCF approach, although
the MSEs from the full model were not much larger. The
MSEs corresponding to βT were much larger for the base-
line and IM approaches, than for LOCF or the proposed
model.

Table 3
Proportion of patients with a hospitalization and proportion of protease inhibitor (PI) use at each interval

Interval between HERS visit numbers

Characteristic 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13

Subjects 126 115 109 95 78 69 67 61 55 44 33 21
Hospitalization 0.48 0.43 0.47 0.39 0.38 0.29 0.22 0.18 0.13 0.20 0.18 0.19
PI use 0 0 0.01 0.02 0.14 0.26 0.39 0.59 0.58 0.59 0.64 0.67

6. Application
We next analyzed a subset of the HERS data, which were
briefly described in Section 1. We were interested in whether
or not the use of PIs affected the risk of hospitalization
among women in the HERS data who had acquired im-
mune deficiency syndrome (AIDS) at baseline (defined here as
CD4< 200 cells/mL). This subset of women is of particular
interest, because Tashima et al. (2001) showed a beneficial
effect of PIs for this group only. In addition, subjects with
CD4 cell counts <200 have the most advanced disease, and
are prime candidates for the therapy.

At baseline, 126 women from the HERS had CD4 cell count
<200 cells/mL. These women were followed up every 6 months
for up to a total of 12 visits. The response variable of interest
is whether or not each subject was hospitalized since the pre-
vious visit (about 6 months). PI use at each visit was recorded,
which was defined as having taken PIs at any time during the
interval. In addition, we have data on a wide variety of vari-
ables, including age, race, history of drug use, baseline HIV-1
RNA level, and study site. Table 3 presents the proportion
of hospitalizations and PI use at each visit, along with the
number of subjects still remaining in the study. For example,
48% of the women had a hospitalization between the baseline
and second visit. Some things to note. First, several women
dropped out at each visit, with only 21 of 126 women with
data at every visit. Also, note that PIs were not available
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at the start of the study; virtually no one used PIs prior to
visit 5. Once PIs were introduced as a method of treatment,
PI use in this population increased steadily over time. The
proportion of hospitalization declines over time. Note that
over time three things are happening: we were losing subjects
to follow-up, the observed proportion of hospitalizations was
going down, and PI use was going up. A naive analysis ignor-
ing dropouts would lead one to conclude that PI use reduced
the probability of hospitalization. However, it is not hard to
imagine that less healthy patients may be more likely to drop
out from the study. Therefore, that could be the cause of the
observed decline in the proportion of hospitalizations. In par-
ticular, the probability of dropout at visit k may depend on
whether or not the subject was hospitalized between visits
k − 1 and k, which would be unobserved for subjects who
dropped out at that time. In addition, the subject’s PI sta-
tus would also be unobserved at that time. We therefore use
the methods described in this article to account for possible
nonignorable missing data, along with a missing time-varying
covariate.

For the analysis, we defined the response Yik to take value
of 1 if subject i was hospitalized between visits k − 1 and k,
and take value of 0 otherwise. The covariates Sik included: a
vector of ones (intercept); age at baseline (years); an indica-
tor of whether or not the subject had a history of injection
drug use; baseline HIV-1 RNA level (copies/mL), which was
categorized as <500 (referent), 500–5000, 5000–30,000, and
>30,000; race, which was categorized as African American,
Hispanic or “other,” and white (referent); indicators for study

Table 4
Parameter estimates and estimated standard errors of the parameters of primary interest from a sensitivity

analysis of the hospitalization data

Variable α2 = −1 α2 = −0.5 α2 = 0 α2 = 0.5 α2 = 1

Intercept 0.66 0.60 0.51 0.40 0.29
(0.48) (0.49) (0.51) (0.51) (0.51)

Visit −0.16 −0.14 −0.13 −0.11 −0.09
(0.03) (0.03) (0.03) (0.04) (0.04)

Drug use 0.33 0.33 0.32 0.31 0.30
(0.23) (0.24) (0.24) (0.25) (0.25)

Age 0.01 0.01 0.01 0.01 0.01
(0.02) (0.02) (0.02) (0.02) (0.02)

African American 0.51 0.54 0.57 0.59 0.61
(0.35) (0.36) (0.37) (0.37) (0.38)

Hispanic 0.71 0.75 0.79 0.81 0.82
(0.38) (0.39) (0.40) (0.40) (0.40)

HIV RNA > 30,000 −1.18 −1.15 −1.11 −1.06 −0.99
(0.46) (0.48) (0.49) (0.49) (0.50)

HIV RNA 5000–30,000 −0.77 −0.72 −0.66 −0.58 −0.50
(0.47) (0.48) (0.49) (0.50) (0.50)

HIV RNA 500–5000 −0.51 −0.43 −0.34 −0.23 −0.12
(0.46) (0.47) (0.48) (0.49) (0.50)

Site 1 −0.54 −0.55 −0.56 −0.55 −0.55
(0.33) (0.33) (0.34) (0.35) (0.35)

Site 2 −0.10 −0.10 −0.10 −0.10 −0.09
(0.37) (0.38) (0.39) (0.39) (0.40)

Site 3 −0.56 −0.55 −0.58 −0.58 −0.58
(0.39) (0.40) (0.41) (0.42) (0.42)

PI use −0.76 −0.79 −0.84 −0.89 −0.96
(0.29) (0.29) (0.30) (0.30) (0.30)

site; and time itself (entered into the model as the visit num-
ber). There was one time-varying covariate that was subject
to dropout-related missingness, and that was PI use. There-
fore, Tik was an indicator for PI use between visits k − 1 and
k. We assumed that Yi given covariates and random intercept
bi followed a Bernoulli distribution, with mean modeled by
(1), where g(·) was the logit link. Next we modeled the prob-
ability of dropout using (2). We included indicators of HIV-1
RNA level in the model, as these were important predictors
of dropout. Finally, we modeled PI use using the transition
model (3), where h(·) was the logit link. After conditioning on
past PI use, other covariates were not significant predictors
of PI use, and therefore we only included past PI use in the
transition model.

The data were analyzed assuming several plausible values
of α2 (the parameter linking the current value of Y to the
probability of dropout), ranging from −1 to 1. When α2 was
positive, this implied that dropout is more likely if the sub-
ject had a recent hospitalization. A recent hospitalization was
unrelated to dropout if α2 = 0 (the MAR case). If a hospital-
ization decreased the likelihood of dropout, then α2 < 0. We
believe α2 was likely to be positive, but considered a range of
values that included negative numbers. The results from the
analyses are given in Tables 4 and 5. For each value of α2 (−1,
−0.5, 0, 0.5, 1), there was a significant decline in the risk of
hospitalization for PI uses, after controlling for the other co-
variates. The PI effect was largest (in magnitude; odds ratio =
0.38), assuming α2 = 1, i.e., assuming a recent hospitalization
greatly increased the chances of dropping out. However, the
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Table 5
Parameter estimates and estimated standard errors of the parameters of secondary interest from a sensitivity

analysis of the hospitalization data

Parameter α2 = −1 α2 = −0.5 α2 = 0 α2 = 0.5 α2 = 1

α11 HIV RNA > 30,000 1.32 1.40 1.51 1.64 1.79
(0.64) (0.64) (0.64) (0.65) (0.66)

α12 HIV RNA 5000–30,000 1.62 1.70 1.80 1.90 2.02
(0.64) (0.64) (0.64) (0.65) (0.66)

α13 HIV RNA 500–5000 1.98 2.05 2.13 2.22 2.33
(0.65) (0.64) (0.65) (0.65) (0.66)

α14 Yk−1 0.88 0.81 0.72 0.64 0.53
(0.23) (0.23) (0.23) (0.23) (0.23)

λ0 −2.22 −2.22 −2.23 −2.24 −2.25
(0.14) (0.14) (0.14) (0.14) (0.14)

λ1 4.05 4.05 4.05 4.06 4.06
(0.27) (0.27) (0.27) (0.27) (0.27)

θ 0.52 0.55 0.59 0.62 0.65
(0.18) (0.19) (0.20) (0.21) (0.21)

time effect (coefficient of “visit”) was smallest (in magnitude)
when α2 = 1. This is not surprising, because if less healthy
patients were dropping out, the observed decline in hospital-
izations over time that we saw in Table 3 may be in part due
to this fact.

We next compared the results from the proposed full model
to that from the naive approaches. The baseline approach was
not an option here as all subjects had PI equal to 0 at baseline.
The results assuming IM are given in Tables 4 and 5 under the
α2 = 0 heading. For the LOCF approach, it was possible to fit
the model for each value of α2; those are reported in Table 4.
To keep the discussion concise, however, we instead focused
on the case where α2 = 1 (which we believe is a plausible
value). The estimated effect of PI use in that case was −0.57
with an estimated standard error of 0.30. Thus, the LOCF
method estimated a smaller PI effect (in magnitude) than
did the proposed method or IM approach, and the effect was
only marginally significant. The other parameter estimates
were very similar across the three approaches.

7. Discussion
In this article, we considered longitudinal data with informa-
tive dropouts and missing time-varying covariates. This prob-
lem is common in practice, because at the time of dropout,
time-varying covariates are often missing in addition to the
missing outcome. The existing statistical models for informa-
tive dropouts generally require covariates to be completely ob-
served. To apply these models in the presence of time-varying
covariates, one has to make the covariate data complete. The
naive approaches to fill in missing covariates include the base-
line approach, the LOCF approach, and the IM approach. As
an alternative to the naive approach, we propose in this article
a selection–transition model to allow for missing time-varying
covariates at the time of dropout for longitudinal data with
informative dropouts.

Both the bias analysis and simulations demonstrated that
when there are nonignorable dropouts, the naive approaches
considered here may perform poorly in terms of bias. In fi-
nite samples, the naive approaches often have a higher MSE

than do estimators from a correctly specified model proposed
in this manuscript. Both the baseline and IM approaches
performed poorly in most of the situations we considered.
Not surprisingly, the LOCF approach performed reasonably
well in situations where within-subject variance of the time-
varying covariate is small (i.e., the covariate is relatively
stable over time within subjects), but performed poorly if
the time-varying covariate fluctuates substantially within a
subject.

For simplicity, we assumed the selection model (2) was
not a function of missing time-varying covariates Ti,k at the
time of dropout. It is possible in practice that the dropout
probability might depend on the missing time-varying co-
variates Ti,k at the time of dropout in addition to the miss-
ing outcome. One can easily extend the selection model (2)
to allow for dependence of the dropout probability on the
missing covariates Ti,k . In addition, we assumed that each
time-varying covariate Tikl , conditional on past values of that
covariate, was independent of Tikl ′ , for l �= l′. This assump-
tion could be weakened by specifying the joint likelihood for
these covariates using a factorization similar to that advo-
cated by Ibrahim et al. (1999) and Stubbendick and Ibrahim
(2003).

The proposed methodology does require extensive model-
ing assumptions, including specification of the dropout mech-
anism and partial specification of the covariate distributions.
An area in need of further research is sensitivity of the re-
sults to a misspecified dropout and/or covariate distribution.
Clearly, there are trade-offs between protection against bias
and increased variance by fitting flexible models with large
numbers of parameters for the covariate and dropout distri-
butions. A possible direction for future research is to develop
semiparametric models for the covariate distributions. An al-
ternative, using the methods proposed here, would be to carry
out a sensitivity analysis, where the data are reanalyzed un-
der several different models for the covariates. The purpose
of such an analysis would be to determine whether inference
about the parameters of primary interest is affected by these
modeling assumptions.



846 Biometrics, September 2005

Acknowledgements

We thank the editor, associate editor, and referees for their
insightful comments, which led to an improved version of
the manuscript. This research was supported in part by NIH
grants R01-CA76404, R01-AI50505, and P30-AI42853 (Lifes-
pan/Tufts/Brown Center for AIDS Research). Data from the
HERS were collected under CDCP grant U64-CCU10675.

References

Booth, J. G. and Hobert, J. P. (1999). Maximizing general-
ized linear mixed models likelihoods with an automated
Monte Carlo EM algorithm. Journal of the Royal Statis-
tical Society, Series B 61, 265–285.

Breslow, N. E. and Clayton, D. G. (1993). Approximate infer-
ence in generalized linear mixed models. Journal of the
American Statistical Association 88, 9–25.

Diggle, P. and Kenward, M. G. (1994). Informative dropout
in longitudinal data analysis (with discussion). Applied
Statistics 43, 49–94.

Ibrahim, J. G., Lipsitz, S. R., and Chen, M.-H. (1999). Missing
covariates in generalized linear models when the missing
data mechanism is non-ignorable. Journal of the Royal
Statistical Society, Series B 61, 173–190.

Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (2001). Missing
responses in generalised linear mixed models when the
missing data mechanism is nonignorable. Biometrika 88,
551–564.

Little, R. J. A. (1995). Modeling the drop-out mechanism
in repeated measures studies. Journal of the American
Statistical Association 90, 1112–1121.

Louis, T. (1982). Finding the observed information matrix
when using the EM algorithm. Journal of the Royal Sta-
tistical Society, Series B 44, 226–233.

Rotnitzky, A., Robins, J. M., and Scharfstein, D. O. (1998).
Semiparametric regression for repeated outcomes with
nonignorable nonresponse. Journal of the American Sta-
tistical Association 93, 1321–1339.

Roy, J. and Lin, X. (2002). Analysis of multivariate longitudi-
nal outcomes with non-ignorable dropouts and missing
covariates: Changes in methadone treatment practices.
Journal of the American Statistical Association 97, 40–
52.

Scharfstein, D. O., Rotnitzky, A., and Robins, J. M. (1999).
Adjusting for nonignorable drop-out using semiparamet-
ric nonresponse models (with discussions). Journal of the
American Statistical Association 94, 1096–1120.

Smith, D. K., Warren, D. L., Vlahov, D., Schuman, P., Stein,
M. D., Greenberg, B. L., and Holmberg, S. D. (1997).
Design and baseline participant characteristics of human
immunodeficiency virus epidemiology research (HER)
study: A prospective cohort study of human immunode-
ficiency virus infection in US women. American Journal
of Epidemiology 146, 459–469.

Stubbendick, A. L. and Ibrahim, J. G. (2003). Maximum
likelihood methods for nonignorable missing responses
and covariates in random effects models. Biometrics 59,
1140–1150.

Tashima, K. T., Hogan, J. W., Gardner, L. I., Korkontzelou,
C., Schoenbaum, E. E., Schuman, P., Rompalo, A., and
Carpenter, C. C. J. (2001). A longitudinal analysis of
hospitalization and emergency department use among
human immunodeficiency virus-infected women report-
ing protease inhibitor use. Clinical Infectious Diseases 33,
2055–2060.

Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E., and
Kenward, M. G. (2001). Sensitivity analysis for nonran-
dom dropout: A local influence approach. Biometrics 57,
7–14.

Wei, G. C. and Tanner, M. A. (1990). A Monte Carlo im-
plementation of the EM algorithm and the poor man’s
data augmentation algorithms. Journal of the American
Statistical Association 85, 699–704.

Received May 2004. Revised September 2004.
Accepted November 2004.


