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Background: The etiology of alcoholism and alcohol abuse, like many other complex diseases, is
heterogeneous and multifactorial. Numerous studies demonstrate a genetic contribution to variation
in the expression of alcohol-related disorders in humans. Over the past decade, nonhuman primates
have emerged as a valuable model for some aspects of human alcohol abuse because of their phylo-
genetic proximity to humans. Long-term, longitudinal studies of rhesus macaques (Macaca mulatta)
have provided much insight into environmental influences, especially early life experiences, on alcohol
consumption and behavior patterns that characterize alcohol intake later in life. It is not known,
however, whether there is a genetic component as well to the variation seen in alcohol consumption in
rhesus macaques. A significant genetic component to variation in alcohol consumption in rhesus
macaques would show for the first time that like humans, for nonhuman primates additive genetic
influences are important. Moreover, their use as a model for alcohol-related disorders in humans
would have even greater relevance and utility for designing experiments incorporating the expanding
molecular genetics field, and allow researchers to investigate the interaction among the known envi-
ronmental influences and various genotypes.

Methods: In this study, we investigate factors contributing to variation in alcohol consumption of
156 rhesus macaques collected over 10 years when subjects were adolescent in age, belonging to a
single extended pedigree, with each cohort receiving identical early rearing backgrounds and
subsequent treatments. To measure alcohol consumption each animal was provided unfettered
simultaneous access both to an aspartame-sweetened 8.4% (v/v) alcohol-water solution, the
aspartame-sweetened vehicle, and to water for 1 hour each day during the early afternoon between
13:00 and 15:00 in their home cages for a period of 5 to 7 weeks. We use multiple regression to identify
factors that significantly affect alcohol consumption among these animals and a maximum likelihood
program (ASReml) that, controlling for the significant factors, estimates the genetic contribution to
the variance in alcohol consumption.

Results: Multiple regression analysis identified test cohort and rearing environment as contribut-
ing to 57 and 2%, respectively, of the total variance in alcohol consumption. Of the remaining 41% of
the variance about half (19.8%) was attributable to additive genetic effects using a maximum likeli-
hood program.

Conclusion: This study demonstrates that, as in humans, there are additive genetic factors that
contribute to variation in alcohol consumption in rhesus macaques, with other nongenetic factors
accounting for substantial portions of the variance in alcohol consumption, Our findings show the
presence of an additive genetic component and suggest the potential utility of the nonhuman primate
as a molecular genetics tool for understanding alcohol abuse and alcoholism.
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XCESSIVE ALCOHOL CONSUMPTION is a

fundamental behavior that underlies the develop-
ment, onset, and maintenance of diverse problems,
including accidental injury, birth defects, psychiatric
disorders, and addiction. Twin and adoption studies have
provided evidence in humans for a heritable component of
variation underlying differences in alcohol consumption
but the heritability estimates vary widely across studies,
anywhere from 0.10 to 0.75 (Clifford et al., 1984; de
Castro, 1993; Heath et al., 1991; Heath and Martin, 1994;
Kaprio et al., 1987; Reed et al., 1994; Swan et al., 1990).
Many of the differences in findings among studies are
likely because of differences in study design including the
definition of alcohol consumption variables, sample sizes,
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which covariates are included, and whether or not abstain-
ers are analyzed along with drinkers (Grant and Bennett,
2003). However, less tractable factors such as shared
environment and genotype by environment interaction
may also contribute to differences among studies (Barr
et al., 2004b). Moreover, it is becoming clear that different
environments modulate genetic effects at times even inhib-
iting or exaggerating the genetic influence. Because their
backgrounds are variable, it is difficult to control environ-
mental factors when studying humans. The environment is
more easily controlled in analyses of experimental animals
thus allowing for sharper insights into genetic effects.

In our first study investigating alcohol intake in a group
of macaques we showed that stress and early parental
absence induce alcohol consumption at rates producing
frequent intoxication in nonhuman primates (Higley et al.,
1991). Since that original report, several cohorts have been
tested under more or less similar conditions, allowing us
to increase our sample size considerably. With over 150
subjects now tested for alcohol intake, we can for the first
time perform complex analyses that elucidate both genetic
and environmental influences. It has become clear that
independent of early rearing history some individual
subjects will consume alcohol in excess. Primates such as
the widely studied rhesus macaques are excellent animal
models for alcohol-related behaviors in humans. They are
close phylogenetic relatives with a complex social structure
and an extended period of maturation and parental
investment. When offered a palatable solution with an
alcohol concentration less than 20%, most monkeys
will voluntarily consume enough alcohol to experience
pharmacological effects (Higley and Bennett, 1999;
Higley et al., 1996b, 1996c; Kraemer and McKinney,
1985). As in humans, monkeys vary considerably in
the quantity of alcohol that they consume. Although the
amount of alcohol consumed depends on factors such
as early experiences, particularly parental absence early
in life (Higley and Bennett, 1999), sex, and the animal’s
previous experience in drug self-administration (Grant
and Johanson, 1988), alcohol consumption is generally
trait-like in rhesus macaques and remains relatively stable
over time (Higley et al., 1991). Alcohol metabolism in
macaques is similar to that seen in humans. For example,
Green et al. (1999) found that the rate of metabolism was
similar to that seen in humans with sex differences in the
rate of ethanol elimination in cynomolgus macaques
(Macaca fasicularis) that parallels those observed in
humans. Moreover, behaviors and neurophysiology that
characterize types of human alcoholism have been shown
to be present in rhesus macaques that consume alcohol
excessively, at rates producing daily intoxication (Higley
et al., 1991). As in humans, stress and an impulsive
temperament increase the risk for excessive alcohol intake
(Higley et al., 1991; Higley et al., 1996b, 1996¢). Work by
a number of researchers has delineated a wide variety
of variables that are responsible for motivating alcohol
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intake, such as induction procedures and gustatory
incentives (Gomez and Meisch, 2003; Vivian et al., 1999),
reinforcement (Stewart et al., 2002), and neurochemical
and neurophysiological systems that underlie high-alcohol
intake (Fahlke et al., 2002; Floyd et al., 2004).

Because alcohol abuse in nonhuman primates has only
recently been quantified and its underlying etiological
mechanisms studied, there are to our knowledge no
systematic overall genetic analyses of individual differences
in alcohol consumption patterns. Many experimental
treatments applied to rhesus monkeys amplify drinking
behavior variation in dimensions that are relevant to
human drinking (Higley et al., 1991, 1996b, 1996¢). For
example, to the extent that human drinking habits are
shaped by early experience and parental treatment, impos-
ing rearing differences on animals will mimic a human
component of shared family environment. As drinking in
humans often occurs in adolescence and early adulthood, a
time when the immediate influence of the natal family has
waned, the potential effects of modifying rhesus group
composition and housing conditions would relate to
aspects of individual environment in humans. However,
these experimental treatments can serve to amplify envi-
ronmental variance in experimental animals. They will
potentially diminish the importance of genetic differences
either by swamping the genetic effects or creating interac-
tions that will reduce the correlations among relatives.
The critical question then becomes will genetic effects be
detectable in this situation and if so, to what extent are
genetic effects present in nonhuman primates, as well as
in humans?

In this study, we present data on the etiology of alcohol
consumption in 156 rhesus macaques with known pedi-
grees. A specific goal of this research was to assess the
overall genetic contribution to the variation in alcohol
consumption. These animals are part of an ongoing longi-
tudinal experimental study on the effects of early rearing
experiences and other experimental factors on alcohol
consumption and correlated behaviors (Higley et al.,
1994). Experiments on these animals have demonstrated
that alcohol consumption is augmented as a result of early
rearing experiences. For example, on the average, paren-
tally deprived, peer-reared monkeys drink more as adults
than monkeys raised by their parents. Unlike most paren-
tally reared subjects, peer-reared subjects often voluntarily
drink to the point of intoxication, showing ataxia, stupor,
and at times unconsciousness (Higley et al., 1991, 1996b,
1996¢). Nevertheless, there are wide individual differences
in rates of consumption such that a few mother-reared
subjects drink at rates equal to the peer-reared subjects.
Conversely, some peer-reared subjects’ are resilient to the
deleterious effects of peer rearing, showing only modest
rates of alcohol consumption. Such findings suggest that
other variables such as the drinking setting, social factors,
gender, and possibly genes play an important role in
determining individual rates of consumption.
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What follows is the first comprehensive assessment of
variables that contribute to alcohol consumption in the
nonhuman primate. The study was specifically designed to
test whether nonhuman primates’ alcohol consumption
patterns, like human’s, are influenced by genetic
background. Demonstrating this is a crucial first step in
determining whether more specific genetic influences, such
as specific neurobiological or biochemical candidate genes
contribute to overall alcohol consumption. Moreover,
establishing genetic influences is of critical importance in
understanding the degree that nonhuman primates can be
used as a model for human alcohol abuse and alcoholism
and in understanding the parallels and differences between
humans and nonhuman primates. Moreover, the joint
action of genotypes and environments can be studied in a
manner not possible in humans. For example, a recent
study in this same population of macaques demonstrated
a unique interaction between serotonin transporter
genotype and CNS serotonin functioning. A deleterious
effect of the less efficient genotype (i.e., carrying the
“short” allele) was only phenotypically expressed if the
subjects were reared in deleterious environments (Bennett
et al., 2002; Champoux et al., 2002; Barr et al., 2003,
2004a, 2004b). Finding an overall genetic effect would
increase the probability that such interactions could be
studied in the nonhuman primate.

The population of rhesus macaques used in this study is
unique and provides several advantages: it is outbred with
an average idenity by descent of 1.68%, a measure of
pairwise relatedness equivalent to eighth-degree relatives
(third cousins), which is sufficiently low to be considered
essentially unrelated (Robbins et al. 1997). In addition,
the pedigrees are large, the genetic relationships are
known for several generations, and the rearing and
drinking environments are uniformly manipulated,
measured, and highly controlled. The developmental
period of the rhesus macaque is extensive, with full
adulthood not obtained until subjects are 4 and 5 yeas of
age. A major advantage of this long-term study that has
allowed us to acquire a relatively large sample is that
over the 10-year study period, a uniform treatment
protocol has been imposed assuring that each cohort
receives identical rearing and experimental manipulations,
caging arrangements, and diets. Even variables such as
handling, feeding, and day-night light cycles have been
held constant. Given these advantages, we have been
able to amass a large number of subjects reared under
homogeneous conditions, allowing for the first time
a study of the role that environmental and quantitative
genetic factors play in alcohol consumption in a
nonhuman primate. Because the structure of these
outbred pedigrees is dominated by unilineal relatives,
raised separately in controlled environments, we are
able to control for the possibly confounding influences
of common family environment while at the same time
exploring the effect of extreme differences in early
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experience that affect alcohol consumption. In addition
to the genetic influences, with such a large population and
carefully controlled testing conditions, we are able to also
better assess the variables which are of most impact when
considering situational and developmental influences on
excessive alcohol consumption.

MATERIALS AND METHODS
Animals and Pedigree

The animals in this study are drawn from a large ongoing
longitudinal study investigating genetic and environmental factors
affecting neurobiology, behavior, and alcohol consumption (Higley
and Linnoila, 1997). Alcohol consumption was measured for 156 (77
males, 79 females) rhesus macaques. Seventy-four of the animals
were born at the Harlow Primate Laboratory (HPL) (University of
Wisconsin, Madison, WI). Most of the HPL animals (n = 58) were
born between 1983 and 1986; 10 others were born between 1971 and
1979, and 6 animals were born between 1988 and 1989. The remain-
ing animals (n = 82) were born between 1991 and 1994 and tested at
the National Institutes of Health Animal Center (NIHAC) at Pool-
esville, Maryland (see Table 1 for a summary of the characteristics of
each test cohort). All of the NIHAC animals tested are descended
from HPL ancestors. Founding animals arrived at HPL and NIHAC
at different dates and from different locations beginning in the 1950s
and were thus unlikely to have been related as they came from distant
geographic locations. Thus, the pedigree from which the NIHAC
colony was derived consists of unrelated founder males and females.
Inbreeding, even with distant kin, is typically prevented by planned
matings, and each breeding generation has seen the import of new
unrelated males to the breeding program.

Pedigree relationships for the animals in this study were ascer-
tained from colony management records and by genetic parentage
testing. Where paternity was uncertain for the HPL animals it was
resolved by genotyping offspring, dams, and potential sires for
immunogenetic and protein electrophoretic markers (Newman
et al., 2002; Rogers et al., 2000). Paternity was established for the
NIHAC animals by genotyping offspring, dams, and potential sires
for short-tandem repeat (STR) loci. The STRs were amplified by
polymerase chain reaction using primer sequences designed to
amplify homologous human sequences. A set of STRs that amplified
well and was informative for parentage testing in rhesus macaques
(Table 2) was identified by screening the Genethon marker set (Dib
et al., 1996). Alleles were detected using fluorescent-dye methods
with an ABI 373 Prism Sequencer (PE, Foster City, CA). The
inbreeding coefficient was computed for each monkey, and the
genetic kinship coefficient was computed for all pairs of monkeys
using the recursive steps outlined by Lange, 1997.

Rearing Conditions

After birth animals were assigned to 1 of 4 rearing conditions.
Mother-reared (MR, n = 65) subjects were housed with their mother,
either in single-caged mother—infant dyads or in a social group con-
taining the mother, other adults, and age-mates. Peer-reared animals
(PR, n = 54) were immediately removed from their mothers at birth
and placed into the neonatal nursery where they received standard-
ized care (Ruppenthal, 1979). At 30 days of age they were placed in a
cage with 3 other age-mates with whom they had continuous and sole
contact for the next 6 months. Surrogate peer-reared (SPR, n=19)
animals received care identical to the peer-reared subjects, except the
time spent with same-aged peers was limited to only a few hours each
day and they had continuous access to a surrogate. Specifically, from
30 days of life until they were weaned at 7 to 8 months of age, the
SPR animals were housed singly in cages containing an inanimate
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Table 1. Summary of the Distribution of Experimental Conditions and Covariates Across Test Cohorts

Year of birth

Housing condition Drinking condition

Year Sex Mean weight Mean age Primate Rearing

Mean alcohol consumption

Test
cohort

Single 1971-79 1983 1984 1985 1986-89 1991 1992 1993 1994

Group

Center MR PR SPR n XF Group Pair Single

(SD)
51 (4.1

(SD)
5.1(1.4)

Tested M F

n
10

SE

(g/kg/day)

10

6 0 10 4 5

1

1

1989 4 6
to 1990

0.139

0.761

23
14
17
10
26

13

4
0
17

10 6 0 237
7 4 0 143
7 7 0 17 3
6 4 0 100
513 8 26 0

1
1
1
1
2

111.5 (65.1)
107.9 (52.4)
116.9 (5.6)

109.4 (41.6)

44.6 (1.0)

7.2(3.2)
7.5(2.6)
49(0.7)
9.1 3.5
5.3(0.9)

1991 21 2

23

0.084
0.167
0.093
0.182
0.143

0.95
0.89

0.

13

1992 6 8

14
17
10

10

1993 413

85

4
26

1994 6 4
January 14 12

1.186
2.359

26

1996
20 May to July 910

19

19

2 712 0 200 19

60.4 (1.9)

6.8 (1.0)

0.085

1.131

1996

16 September

13

16

41 (3.0) 2 13 0 1 162 16

5.3(0.6)

511

0.081

0.791

1996
August

2 80

0

35 (3.4) 2

4.4(1.3)

8 0

8

0.135

0.83

1997

13 November

13

13

41 (2.5) 2 3 2 8 130 13

5.6 (0.9)

013

0.515 0.072

10

1997
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Table2. STR Loci Used in Paternity Analysis

Primer Pair Size H

D015213 CATTATCCAAGGTCAGGAGG
AGCTGTTAATCCAATCTATGATGTG
D015223 TAACATGAGCGAATGGACAA
CAAGGTTTCACCACAGTTCT
D015235 CAGCAAGAGTTCATGGGA
AACAGTCAATTACAAAATATGTGTG
D025144 TCTCCCTGACAGACTCTGCG

Locus

88to 112  0.747

222 to 256 0.667

170 to 182 0.171

166 to 190 0.817

GCTGCATAGGCCGTACTGAG

D045S243 TCAGTCTCTCTTTCTCCTTGCA 194 to 270 0.916
TAGGAGCCTGTGGTCCTGTT

D065284 CATGGCTGTCTATCAAACCC 114 to 118 0.560
AAGCATTTGTGTGGCTCTTG

D075650 AGGCTGCTTAGCCATAATC
CCACTGGTATAAGTACATCAGAAA
D115928 AAGTGATCCACCTGCCTTG
GCCTCTGAGAATTAGTGTCTGTC
D125325 GGGCACTATGGTGTCTTCA
AGGGCATTGTCTTACTGACTG
D155519 GGTCAAAGTGGCTGTGTAAGGA
TTTAAATGGGTGAATGTATGGTG
D175804 GCCTGTGCTGCTGATAACC
CACTGTGATGAGATGTCATTCC
D185S537 TCCATCTATCTTTGATGTATCTATG
AGTTAGCAGACTATGTTAATCAGGA
D205S114 CCCTCAGAGGCATTATCCACC
TTAACCTAGCCCCATCTTGTGATAC
D205S177 AGCAATGAGTAAACCTGCCT
CCACCTATCCACCTATGGTATG
D20S189 AGCTACACCAGTTGTCAGCG
GAATGGATGTGGCATCTTCT
D225280 GCTCCAGCCTATCAGGATG
GATTCCAGATCACAAAACTGGT
DM CTTCCCAGGCCTGCAGTTTGCCCATC
GAACGGGGCTCGAAGGGTCCTTGTAGC

282 to 308 0.797

258 to 282 0.742

198 to 234 0.747

174to 196 0.838

152to 166 0.183

154 to 178 0.650

246 to 258 0.633

88t0 100  0.476

296 to 316  0.550

196 to 220 0.794

128 to 137 0.223

All loci are dinucleotide repeats with the exception of DM, a trinucleo-
tide repeat locus, and D4s243 and D18s537, which are tetranucleotide
repeat loci.

heated, terry cloth—covered, rocking “surrogate mother” from which
the subject received warmth, nutrition, and kinesthetic stimulation.
Surrogate peer-reared animals were allowed to socialize in
playgroups for a fixed number of hours each day. They were then
returned to their home cage where they spent the evening, sleeping
alone. These play groups consisted of the same animals each
day. Cross-fostered (XF, n = 18) animals were removed from their
mother at birth and placed on another unrelated, lactating female
that had recently given birth and she then raised the infant as her
own as in the MR treatment.

Alcohol Consumption

Animals were tested for differences in voluntary alcohol consump-
tion as described in earlier studies (Higley et al., 1991, 1996b, 1996¢).
Alcohol consumption rates were measured as grams of alcohol
consumed/kg body weight/d and the average was computed for each
animal. To test for alcohol consumption rates, each animal was
provided unfettered simultaneous access to an aspartame-sweetened
(14 g/gallon) 8.5% (v/v) alcohol-water solution, the aspartame-
sweetened vehicle, as well as water for 1 hour in the early afternoon
between 13:00 and 15:00 hours each day in their home cages for a
period of 5 to 7 weeks. The animals were not deprived of food or
water during the study. During the duration of the study the animals
were housed singly (n = 20), in pairs (n = 24), or in groups (n = 112).
For the hour in which they were exposed to alcohol, most of the
subjects (i.e., Test Cohorts 1 through 9; n = 144) were separated into



GENETIC CONTRIBUTIONS TO ALCOHOL INTAKE IN RHESUS MACAQUES

individual cages. However, some of the subjects (i.e., Test Cohort 10)
remained in their intact social group where they were
exposed to alcohol in a cage with cage-mates (n = 13). In the latter
case alcohol consumption was recorded by an automatic dispenser,
which could identify individual monkeys by a microchip embedded
in their collar. Most of the monkeys were exposed to the alcohol
as adolescents or very young adults. The ages at which animals
were exposed to alcohol differed between the HPL and the NIHAC.
The HPL subjects were older (range 45 to 244 months, median
78 months) than the NIHAC subjects, which were tested as adoles-
cents (range 32 to 63 months, median 44 months). The animals
at both facilities were tested in cohort groups that ranged in size from
8 to 26 individuals. The test cohorts were composed of animals born
during the same breeding season and thus were of approximately the
same age.

Statistical Analysis

Single and multiple regression were performed to determine which
experimental treatments and covariates contributed significantly to
nonheritable differences in alcohol consumption among animals.
Nine variables were analyzed: sex, weight at the time of alcohol
consumption (kg), age at the time of alcohol consumption (months),
birth year, primate center (HPL, NIHAC), housing condition
(group, pair, single), drinking condition (single, group), rearing
condition (MR, PR, SPR, XF), and test cohort. Categorical
variables were entered into the regression analyses using indicator
variables as described by Neter et al. (1985). Multiple regression
analysis served 2 purposes here. First, it identified which specific
categories of the polychotomous treatments and covariates differed
with respect to alcohol consumption. Second, it was used to identify
a subset of covariates and treatments that best accounted for
differences in drinking. This was necessary because the covariates
and treatments were not independent; e.g., age and weight are
significantly interrelated.

The phenotypic variance for alcohol consumption was partitioned
into additive genetic and environmental components using the
ASReml program (Gilmour et al., 1998). The ASReml is well suited
for multigenerational animal breeding situations such as ours
because it accommodates large complex pedigrees with multiple
matings and inbreeding. The ASReml uses the average information
algorithm to obtain maximum likelihood estimates of variance
components and their standard errors under a variety of animal
models while controlling for specified covariates and fixed effects.
The appropriate fixed effects and covariates for the analysis of
alcohol consumption in these rhesus monkeys were identified by the
multiple regression analysis described above. Narrow-sense herita-
bility (#%) was estimated as the ratio

where 62 and 62 are estimates of the additive genetic and environ-
mental variance components, respectively. The null hypothesis
1? =0 was testing using a log likelihood ratio chi-squared statistic
comparing a model with both additive genetic and environmental
variance to a model with environmental variance alone.

RESULTS
Pedigree

The 156 tested animals belong to a single extended ped-
igree. The complete genealogy of the 156 animals tested in
this study includes 396 untested ancestors. The average
genetic kinship among pairs of tested animals was 0.018,
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Table 3. Summary of Pedigree Relationships

Relationship N (pairs)
Father/offspring 107
Mother/offspring 58
Full sibling 19
Maternal half-sibling 79
Paternal half-sibling 452

1.e., roughly second cousins. Only 21 animals were inbred,
the average inbreeding coefficient among these inbred
animals was 0.067, i.e., resulting from first cousin unions.
The genealogical relationships among the 156 tested
animals are summarized in Table 3. As there is a large
preponderance of unilineal relatives, it was unfeasible to
estimate the extent of dominance variance or the broad
sense heritability.

Statistical Results

Alcohol consumption (g/kg/d) differed among animals
depending on standard covariates and experimental
treatments (Table 4). The sex difference in alcohol
consumption relative to body weight (g/kg/d) was not
statistically significant, but males drank slightly more
than females (p =0.104). On average, within the narrow
adolescent-young adult range we tested, older monkeys
consumed more than younger monkeys (p=0.034),
and monkeys that weighed more consumed more per
kilogram of body weight than monkeys that weighed
less (p =0.024). Alcohol consumption was greater at
NIHAC than HPL (p<0.001). There was also a birth
cohort difference, with the heaviest drinkers being born in
the years 1991 and 1992 (p<0.001). Relative to alcohol
consumption in the remaining cohorts, test cohort 6
consumed significantly more and cohort 10 consumed
significantly less than the average. In terms of living
contributions, there was no apparent difference in alcohol
consumption among monkeys housed singly, in pairs, or in
larger groups (p = 0.310). In terms of testing conditions,
the animals which were offered alcohol in the group
situation (i.e., Test Cohort 10) drank significantly less than
the animals that were offered alcohol when alone
(p=0.001). As shown elsewhere (Higley et al., 1996b,
1996¢), early rearing condition significantly affected the
quantity of alcohol consumed at maturity. Subjects reared
with their biological mother (i.e., mother-reared animals)
drank significantly less (p =0.001) than cross-fostered,
peer-reared, or surrogate peer-reared animals.

Stepwise Regression Analyses

As the 9 covariates and experimental treatments were
not statistically independent, stepwise multiple regression
was used to find a subset of variables that explained a high
percentage of the variance and eliminated redundancy
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Table 4. Mean Alcohol Consumption for Levels of Each Experimental
Treatment and Standard Covariate and the Results of the Simple Regres-
sion Analysis within each Treatment and Covariate

Mean alcohol

consumption,
Variable n g/kg/d (SE) F(dh p Value
Sex 2.67(1,154) 0.104
Male 77 1.24 (0.09)
Female 79 1.04 (0.08)
Age 156 = —0.003 (0.001) 4.59(1,154) 0.034
Weight 156 = —0.060 (0.027) 5.17(1,154) 0.024
Primate center 11.86(1,154) <0.001
HPL 74 0.93 (0.06)
NIHAC 82 1.33 (0.10)
Birth year 18.09(8,147) <0.001
<1983 10 0.66 (0.09)
1983 17 0.89 (0.13)
1984 14 0.97 (0.10)
1985 12 0.98 (0.14)
1986-1989 21 1.03 (0.12)
1991 19 1.13 (0.09)
1992 29 2.18 (0.16)
1993 13 0.82 (0.10)
1994 21 0.63 (0.07)
Test cohort 23.41(9,146) <0.001
1 10 0.76 (0.14)
2 23 0.95 (0.08)
3 14 0.89 (0.17)
4 17 0.85 (0.09)
5 10 1.19 (0.18)
6 26 2.36 (0.14)
7 19 1.13 (0.09)
8 16 0.79 (0.08)
9 8 0.83(0.14)
10 13 0.52 (0.07)
Rearing condition 5.53(3,152) 0.001
Mother reared 65 0.89 (0.06)
Cross fostered 18 1.07 (0.10)
Peer reared 54 1.34 (0.10)
Surrogate peer reared 19 1.48 (0.29)
Drinking condition 10.77(2,153) <0.001
Single 104 1.32(0.13)
Group 13 0.98 (0.22)
Housing condition 1.18(2,153) 0.31
Group 112 1.20 (0.08)
Pair 24 1.00 (0.11)
Single 20 0.99 (0.12)

HPL = Harlow Primate Laboratory; NIHAC = National Institutes of
Health Animal Center.

of information. This analysis identified 2 statistically
significant variables: Test Cohort and rearing condition.
Specifically, Test Cohort 6, born in 1992 and tested in
January 1996 drank the most (f=1.49 +0.11, p<0.001).
Drinking was also elevated in Test Cohort 5, born before

Table5. Results of the Multiple Regression Analysis for Alcohol
Consumption (g/kg/d)

Variable B (SE) F p value Change in 7
Intercept 0.90 (0.06)

Test Cohort 6 1.49 (0.11) 179.7 0.000 0.54
Test Cohort 7 0.33(0.12) 6.2 0.014 0.02
Mother reared —0.19 (0.08) 5.5 0.021 0.02
Test Cohort 5 0.44 (0.19) 5.4 0.022 0.01
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Table 6. Models for Variance of Alcohol Consumption (g/kg/d) After
Correcting for Experimental Treatments and Standard Covariates

Model estimates ( + SE)

Parameter Environment Genetic+environment
o 0.206" 0.114 + 0.034
oA — 0.111 £ 0.045

— 0.495 + 0.165
-2LnL -29.230 -43.715

The comparison of models reveals y®= —29.230—(—43.715) =
14.485 with 1 df which is statistically significant (p = 0.0001).
@No standard error was computed for 62 by ASRem.

1989 and tested in 1994 (f=0.44 £ 0.19, p =0.022) and
in test cohort 7, born in 1991 and tested May to July
1996 (f=0.33 £0.12, p<0.014). Mother-reared animals
drank significantly less than animals in other rearing
treatments (f = — 0.19 £ 0.08, p = 0.021). Taken together,
these variables accounted for ~ 60% of the interindividual
variation in alcohol consumption (Table 5).

Heritability Analyses

The heritability of alcohol consumption was estimated
to be 0.495 + 0.165 when test cohort and rearing condition
were entered in the model as covariates (Table 6). The log
likelihood chi-squared generated by comparing the model
with additive genetic and environmental effects to a purely
environmental model indicates that the heritability is
significantly different from zero (y*=14.49, df=1,
p<0.0001). As 59% of the observed variation (57%
accounted by test cohort, 2% by rearing condition) in
alcohol consumption is accounted for by 2 covariates the
heritability analysis indicates that additive genetic
variation among the subjects accounts for 49.5% of the
remaining 40% of the variation. Thus additive genetic
variation accounts for ~19.8% of the total observed
variation among animals in alcohol consumption in the
HPL/NIHAC colonies.

DISCUSSION

Our data show that as in human alcohol consumption,
there is a large genetic contribution in nonhuman primate
alcohol consumption. To test this, we have partitioned the
variance for alcohol consumption in captive rhesus
macaques into heritable and nonheritable components.
Alcohol consumption was measured in 156 animals
housed at 2 primate facilities. All of the animals belonged
to a single-extended pedigree. The nonheritable factors
investigated included test cohort, birth year, primate
center, maternal rearing treatment, and group composi-
tion while drinking. Age, sex, and body weight were also
investigated as nonheritable covariates in the analysis.
Additive genetic effects were calculated using pedigree
likelihood methods. Four main sources of variation in
alcohol consumption were identified after taking into
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account statistical confounding among the various
nonheritable factors. The largest source of variation,
accounting for 57% of the total, was attributed to test
cohort. With cohort controlled, rearing environment,
which was experimentally manipulated, surprisingly
accounted for only 2% of the variance. With these varia-
bles controlled, additive genetic effects accounted for
about 50% of the remaining variance. Additive genetic
effects accounted for 19.8% of the total variation in alco-
hol consumption, and the remaining 20.2% of variance
was attributed to residual environment that could not be
accounted for despite the rigorous laboratory setting.

Test cohort emerged from the stepwise regression anal-
ysis as the only variable that was neither genetic nor an
experimental treatment that was important to alcohol
consumption. Test Cohorts 7, 8, and 9 drank significantly
more than all other test cohorts. Once this source of
variance was accounted for, the differences between
primate centers, birth years, ages, and weights were no
longer statistically significantly. This result was perplexing
because test cohort differences are the least tangible of all
the nonheritable variables tested. The rearing conditions
are tightly controlled, with an identical protocol used each
year, and although different technicians were involved in
the data collection, the same supervisors were present
maintaining identical experimental control. It is reminis-
cent of a recent demonstration of differences among 3
laboratories for measurements of behavioral phenotypes,
including alcohol preference, in mice. These differences
were manifest despite rigorous efforts to standardize experi-
mental and handling procedures (Crabbe et al., 1999).

Rhesus macaques raised by their biological mothers
drank significantly less than did those raised in adult
absent peer groups or by their foster mothers. In humans,
early experience and the effects of mothering contribute to
family environment, which can be confounded with shared
genes. The present research has the advantage of demon-
strating independently the potential for both genetics and
factors such as mothering, which will lead to correlated
family environment. The rearing treatments administered
here constitute an extreme manipulation of the relation-
ship between rhesus macaque mother and child and
routinely produce higher average consumption rates in
the peer-reared and surrogate—peer-reared offspring that
exceed those of the offspring reared by their biological
parents. Across studies, the contribution of early parental
absence on high-alcohol intake is one of our most repli-
cated studies. Yet when the cohorts are aggregated, rearing
accounts for only about 3% of the overall variance, far
less than we have seen in other studies where peer-reared
subjects drink about double the amount of alcohol of
the mother-reared subjects, with peer-reared subjects
averaging more than a gram per kilogram per hour and
consuming 2 g/h in many individual cases (Barr et al.,
2003, 2004b; Higley et al., 1991, 1996a, 1996b). It is there-
fore surprising that the variance attributed to rearing
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condition was only one-sixth that of additive genes. It is
also surprising, given that this is one of our most robust
and replicated findings (Fahlke et al., 2000; Higley et al.,
1991, 1996a, Higley and Suomi, 1996a, Kraemer and
McKinney, 1985). Post hoc analyses of the data show that
one of the effects of the cohort variable is that in the years
there is low consumption, it is the animals reared without
adults whose consumption patterns are most affected.
Further post hoc analysis of individual cohorts show
that among only some of the years is there a statistically
significant difference between mother- and peer-reared
subjects, and among the cohorts where such differences
are extant, the average rate of consumption for both the
mother- and peer-reared subjects is greater, but in
years when a cohorts’ consumption is diminished, the
early rearing experience is typically not present. This
suggests a potential threshold effect that must be achieved
for such rearing effects to be present. Hence, it may be that
the cohort variable modulates the effect of rearing in some
unknown manner, reducing both the overall rate of
consumption and ultimately the contribution of early
rearing experience.

Previous studies have postulated that the higher rate of
alcohol consumption in the peer-reared subjects is largely
a result of adult parental absence. However, somewhat
surprisingly the current results show that the infants that
were fostered to an unrelated female also increased their
alcohol consumption, and suggest that it is the absence of
the biological mother rather than the absence of adults
that produces high-alcohol intake later in life. We interpret
this result with some caution, however, as the offspring
that were fostered to other females were overrepresented
by some fathers and cohorts. Thus, paternal genetic influ-
ences may have confounded this analysis. Alternatively,
studies in human children suggest that because they have
similar genes, biological parents posses temperaments
that are conducive to what is called a “goodness—of-fit”
between the temperament of the child and the parent,
resulting in less parent—offspring conflict (Mangelsdorf
and Frosch, 1999). It is possible that in the absence of the
biological parents to rear the subjects, the temperamental
fit results in less harmonious early relations, resulting in
more negative developmental outcomes. Additional data
from the offspring of other fathers are currently being
collected to address this question. Our model makes it is
clear, however, that in terms of genetic contributions,
mothers and fathers contributed equally to the genetic
variance seen in alcohol consumption.

The additive genetic effects accounted for 49.5 £+ 16.5%
of the variance of alcohol consumption in these rhesus
macaques after accounting for the effects of test cohort
and rearing condition. This estimate was based on all rela-
tionships stipulated by the full pedigree. It is worth noting
that father—child and paternal half-sibling relationships
(Table 3) dominate the genetic information in this
pedigree. These relationships are nearly unaffected by
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shared-environmental factors. For example, the male
rhesus monkey plays virtually no active part in rearing his
offspring either in the wild or in our experimental setting.
Moreover, half-siblings sharing the same father are raised
separately and are frequently assigned to different rearing
treatments. Nonetheless, this pedigree contains very few
bilineal relatives, such as full siblings, and it is uninfor-
mative for detecting variance owing to the effects of
dominance or epistasis (Falconer and MacKay, 1996).
We have not attempted to estimate gene-by-environment
interactions from the correlations between relatives
because very large numbers of relative pairs are necessary
for this purpose. However, the additive genetic variance
would be diminished in the presence of gene-by-environ-
ment interactions and recent findings from our laboratory
would make such interactions probable (Barr et al., 2004a,
Bennett et al., 2002; Champoux et al., 2002). Nevertheless,
the fact that considerable additive genetic variance is
present argues against the possibility that gene influences
are expressed principally through interactions, even with
the extreme nature of our environmental interventions.

The opportunity to experience beverage alcohol is novel
for rhesus macaques. Hence, genetic variation underlying
the effects of alcohol has not been molded by natural
selection. Nevertheless, because nonhuman primates are
closely related to humans, it is not unexpected that there is
extensive genetic variation underlying differences in alco-
hol consumption. While the current studies cannot tease
out whether the specific genetic contributions are similar
to those found in humans, they suggest that biological
variation in the disposition to consume alcohol is present
in species closely related to us, with wide variation in its
tendencies. The amount of genetic variation underlying
alcohol consumption in the rhesus may be similar to that
for humans. In addition, the rhesus macaques in this study
derive from founders obtained at different times and
different locations in India and China. Given the relatively
large amount of genetic diversity of rhesus macaques
compared with humans [mtDNA (Hayasaka et al., 1996;
Melnick et al., 1993); microsatellites (Kayser et al., 1995)]
it is possible that the genetic variation segregating in our
rhesus pedigrees is greater than that present in natural
rhesus populations or in human population.

Our findings show that there are genetic contributions to
alcohol consumption, at least in the macaque. Subsequent
studies should tease out more specifically candidate genes
and possible markers that contribute to the genetic influ-
ence on alcohol intake. Cloninger predicted impaired
central nervous system serotonin and norepinephrine in
a subgroup of alcoholics (type 2) with early onset and ag-
gressive behaviors. Higley Linnoila (1997) has shown
many parallels between human type 2 alcoholics and rhe-
sus macaques that consume large quantities of alcohol.
Cerebral spinal fluid (CSF) concentrations of 5-hydroxy-
indol-3-ylacetic acid (5-HIAA), the major CNS metabolite
of serotonin, are inversely correlated with alcohol con-
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sumption in adolescent rhesus macaques (Higley and
Linnoila, 1997) and humans (LeMarquand et al., 1994).
There is evidence for a genetic component of variation in
5-HIAA levels in rhesus macaques (Clarke et al., 1995;
Higley et al., 1993). Recent studies have shown that the
serotonin transporter genotype contributes to both human
(Matsushita et al., 2001; Thompson et al., 2000) and
nonhuman primate alcohol consumption (Barr et al.,
2003). To the extent that an impaired central serotonin
system contributes to excessive alcohol consumption,
there are a number of other recently discovered serotonin
genes that have been investigated in the macaque. It will
be worthwhile to investigate genetic variation in the
serotonergic and other potential systems of the rhesus in
relation to the genetic variance in alcohol consumption.

It is unlikely that all the alleles affecting alcohol
consumption in rhesus macaques are homologous to those
affecting alcohol consumption in humans. Environments
differ between the two species as well. Nevertheless, recent
studies show good harmony between the macaque and
human genome for the genes that have been assessed in
both species (Bennett et al., 2002; Lesch et al., 1997). Thus
the rhesus macaque may serve as a valuable model that
will be useful for identifying genetic loci or pathways that
are important in both species. The demonstration of a
significant component of additive genetic variation in the
rhesus monkey is important in this light, and the demon-
stration of heritability suggests that alcohol consumption
in the rhesus macaque could be manipulated by selective
breeding, thus allowing even more powerful investigations
of gene-environment interactions.
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