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Morphology of Silicon Nitride Grown from a Liquid Phase
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To explain the recent experimental observation of liquid-
grown silicon nitride (SizN,) crystals with a concave depres-
sion in the center of the (0001) end face, we propose a new
growth mechanism and develop an analytical solution for
the steady state. The model allows for atoms that diffuse via
the liquid to the side surface but demands that the majority
of these atoms be transported to the end caps to feed axial
growth. The analysis shows that, for a large radius crystal,
the redistribution of atoms by surface diffusion on the end
caps requires a long relaxation time; hence, a nonequilib-
rium shape results. For an isolated SjN, crystal growing in

a liquid environment, the shape of the end cap is largely
determined by the ratio of the supersaturation to the equi-
librium surface potential, which is inversely proportional to
the crystal radius. A large shape distortion is predicted to
occur during the growth stage for large-radius crystals and
during the coarsening stage for a population of crystals
with a large size distribution. This mechanism ceases to
operate when the liquid flux to the side surface is blocked,
as in silicon nitride ceramics, but is otherwise insensitive to
factors such as radial growth kinetics and liquid diffusivity.

I. Introduction

ANISOTROPlcgrain growth is an important feature that makes
silicon nitride (SiN,) a tough ceramié=3Si;N, is sintered
using additives that form a liquitt*2 Usually, B-Si;N, grains
grown from the liquid are faceted hexagonal cylinders, aligned
in the (0001) directions with prismatic (QQ) side face$3-16
The ends of the cylinder have a rounded sh&p& Transmis-
sion electron microscopy (TEM) examinations of these sur-
faces further suggest an atomically flat interface on the side,
with occasional ledges and an atomically rough interface at the
ends!”-*8 Because atomically rough interfaces are expected to
have little difficulty in accepting and accommodating new at-
oms (compared to atomically flat interfaces), the anisotropic
growth of SgN, has been attributed to different growth kinetics
on (0001) and (100) surfaced8-2°The attention of research-
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diffusion in the liquid or the attachment on the interface that is
the rate-controlling step in the growth kinetit%&24

A recent model experiment gd+Si;N, crystals grown from
a liquid with alumina (ALO,), yttria (Y,03), and magnesia
(MgO) additives revealed a very different pict#feAs shown
in Fig. 1, the shape of the end cap of the hexag®&i;N,
grains can be convex or concave, depending on the width of the
cross section. These crystals are well separated in the liquid,
which contains only a small (15 vol%) fraction of solid, so that
the interference of the diffusion field between the crystals is not
a serious concern. The above-mentioned observation suggests a
new transport mechanism that has been previously overlooked;
namely, the atoms are first collected on the side surface and
then transported through the edge of the end cap to the end
surface. This mechanism can be inferred by comparing the
curvature, hence the chemical potential, of the surface at dif-
ferent points on the end cap. Referring to Fig. 1, we see that the
edge of the cap has a convex curvature and a positive chemical
potential, whereas the center of the cap has a concave curvature
and a negative chemical potential. Thus, a radially inward
atomic flux must flow from the edge to the center. A continuity
of fluxes, in turn, implies material transport from the side sur-
faces to the edge.

The two growth modes of the end face—(i) liquid diffusion
from the surroundings and (ii) surface diffusion from the
edge—are additive to each other. For a shape such as that in
Fig. 1, with the chemical potential at the center much lower
than that at the edge, the liquid-diffusion mode will have a
tendency to smooth out the curvature difference and restore a
spherical cap shape as it grows. On the other hand, if the source
of atoms is primarily from the edge, then the curvature differ-
ence must continue, to sustain the driving force for surface
diffusion. Indeed, the larger the flux of matter from the edge,
the larger the curvature difference. The observation that such
shapes do exist suggests that the surface mode is the dominant
form of atomic transport. It then follows that the shape evolu-
tion in the same liquid is dependent on the width of the cylin-
drical crystal, because surface curvature generated by surface
diffusion is known to be strongly size dependent, as observed

ers in the last decade has been focused on whether it is thein such phenomena as grain-boundary groo#h&ayleigh
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instability 27~20and creep cavitatioft:—34

To better understand the morphology of/$j and to guide
future experiments, we have undertaken a theoretical analysis
of the kinetics of axial growth in a liquid environment. For
simplicity, we will assume that the cylindrical crystal has a
circular cross section and solve the steady-state problems first.
It will be shown that these simplified solutions provide an
adequate description of the experimentally observed shape evo-
lution. Although the radial growth is initially ignored in the
analysis, its incorporation will be considered in the Discussion
section. The effect of a higher volume fraction of solid that
forces the impingement of grain will also be discussed, to bring
the present analysis into contact with the observed growth ki-
netics in silicon nitride ceramics.
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Increasing Width

Fig. 1. SizN, crystals grown from a melt containing8i,, Al,O;, Y,05, and MgO at 1600°C o2 h in 10 atm ofitrogen gas; the solid fraction
of SizN, is 15 vol%, to minimize crystal impingement.

Il. Shape of End Caps surface energy is isotropic, given by, Then, the chemical
potential of a surface atom at the end is
(1) Equilibrium Shape 2y,Q2
We first solve the equilibrium shape of a cylindrical rod with M= ©)

two spherical caps at the ends, assuming knowledge of the o _ )
surface energies. The chemical potential of a surface atom isAt equilibrium, these two chemical potentials are the same and

given by equal to the equilibrium surface chemical potentidl Thus,
==Y (k; + k) & a_xm 4
b 2y, ()

wherexk, andk, are principal curvatures (negative for a convex . . o
body) of the surface angis the surface energy-We assume  Referring to Fig. 2, it is also clear that

the side of the cylindrical rod is straight, with a radasand a
the surface energy is independent of orientation, giveryhy siny b (5)
Then, the chemical potential of a surface atom on the side is
wherey is the angle made between the spherical cap and a flat
_ el end. Thus,
o= a (2

. . x=sint|=)=sin?|=— (6)

We also assume that the spherical cap has a rddarsd the b 2y,
w
X
b r
0
< 2a > < 23 —>
(A) (B)

Fig. 2. Cross section of a crystal with cylindrical symmetry and (A) an equilibrium end cap of raditawn from the center of curvature and
(B) a nonequilibrium end cap of a wavy shape with a profile specified by the coordingtg¢gthe reference point (0,0) is set at the center of the
end cap).
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wherey is a thermodynamic quantity that is determined by the 5 dw
ratio of the surface energies. For a cylindrical rod with a rela- M, 8, QVZVEW + a0 (13)

tively low side surface energy, compared to the end surface
energy, a smalk is expected.

According to Hwang and Chet?;3%the morphology of the
hexagonal SN, prism can be rationalized in terms of the
periodic bond chain (PBC) theory of Hartm#hThey found
from the PBC theory that {100} surfaces should be the flat
faces, as are {101} surfaces. TheB-Si;N, single crystals The boundary conditions ane = 0 atr = 0 by definition,
grown from a silicon melt or formed via a chemical vapor dw/dt = 0 atr = O from symmetry, d/dt = —-tany = x at
deposition (CVD) process are indeed enveloped by these facesy = a within the linearization approximation, and all curva-
which grow along the [0001] direction. The angle between tures are finite and continuous, especially at 0. The solu-
{1101} and the (0001) plane is 24°, which correspondg te tion to Eq. (13) that satisfies the above-mentioned boundary
0.4189%° This value will be used in the example calculations conditions is
shown below.

w S\/r\* /1 r\2

(2) Steady-State, Nonequilibrium Shape 2 ‘<Z> (5) + <§>(S‘ X)(5> (15)

During growth, the shape of either the side or the ends may
depart from equilibrium. However, continuity of the chemical
potential must be observed. The singular nature of the edge
also guarantees that the same anglat the corner is main-
tained. As the shape deviates from equilibrium, the local
chemical potential may deviate from the equilibrium value.
The atomic flux driven by the gradient of the chemical poten-
tial alters the shape until a steady state is finally obtained.

We solve the shape of the end cap in the cylindrical coor- ;. L - .
dinates by assuming that surface diffusion is the only transport tion approximation, whe$ = 0, giving
mechanism and that a steady state can be attained. Attachment X
of atoms that arrive directly from the liquid is treated as sec- w= _<5>r2 a7
ondary (see discussion at the end of the section). A steady state
is defined by a constant axial velocity at every point of the  As Sincreases to2 the end cap becomes almost “flat,” with
end cap. The governing equation obtained from surface diffu- w = 0 at bothr = 0 andr = a. As Sincreases further, a
sion and mass conservation is then severely concave shape develops, except near a. This
shape evolution has been experimentally observed in the
(Si,Al,Mg,Y)(O,N) system.

The physical meaning of the shape param&ean be ap-
preciated from the following consideration. At the steady state,
a characteristic timeo for axial growth can be defined as

respectively, where

1\ d

2
Vr—;z

Here,Sis a shape parameter that is defined as
__ay
T 16M,3, v,

The above-mentioned solution is plotted in Fig. 3 for several
shape parameters, assumjng= 0.4189 (i.e., 24°). A convex,
spherical cap shape is recovered, within the spirit of lineariza-

(16)

8 M, Vip, =V, @)

In this equationV?2 is the Laplace operator in the radial direc-
tion in the cylindrical coordinates, is the chemical potential
at radiusr from the centerp, is the thickness of the surface

diffusion layer at the end caps, aM}, which is defined as a (18)
To =
D, Vi
M, = KT ®) This parameter is the time required to grow a distance compa-

rable to the cylindrical radius. Meanwhile, the relaxation time
(whereD, is the surface diffusivity in the radial direction and  (r,) for surface diffusion along the spherical cap of an aac 2
KT has its usual thermodynamic meaning), is the atomic mo- may be expressed #s
bility due to surface diffusion in the radial direction on the end
caps. This equation can be solved to determine the shape of the a’kT at (19)
H HT H T. = -

end cap, under appropriate boundary conditions, if we express "7 16D,5,v,Q  16M,3,y,
W, in terms of spatial coordinates, using Eq. (1).

To obtain an analytical solution, we linearize Eqgs. (1) and (7) It follows thatSis simply the ratio of surface relaxation timge
in terms of the axial displacemem, with reference to the to the characteristic growth time. When this ratio is small,
position atr = 0. The linearization procedure is accurate if the end cap is fully relaxed by surface diffusion so that an

w << a (which is equivalent ty << 1); however, it also allows
us to obtain some insight even at largefa values when its
accuracy is less adequate. This procedure gives

d°w
=3 ©
1\ dw
Ky = T ar (20)
and
dw
V= Iy (11)
which transforms Eqgs. (1) and (7) to
M = _Q'Y”VrzW (12)

and

equilibrium, spherical shape is retained. Conversely, when this
ratio is large, the end cap severely deviates from the equilib-
rium shape. A large cylinder radius, a fast growth velocity, and
a slow surface diffusivity favor nonequilibrium and a lar§e
value.

(3) Fluxes and Growth Rates

The concave shape of a nonequilibrium end cap implies a
surface flux that transports matter from the edge at a
toward the center at = 0. This influx is responsible for the
axial growth. We can compute the surface flux at the edge
using the following equation:

dis, d
3= —Mr(d—‘t) - Mm@(a)(Vf\N) (20)
giving
avj
== 1)

25,
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Fig. 3. Predicted steady-state profile of the end of a growingNgcrystal. AtS = 0, a spherical shape is obtained. && 2y = 0.8378,w =
0 atr = a; the angle at = ais fixed at 24° § = 0.4189).

atr = a. In Eqg. (21), the subscript faI* has been omitted for hence, the axial velocityM["®)—through Egs. (21), (22), and

simplicity. This result can be easily verified, because the rate of (24):

total mass accumulation on the end cap?V,, must be sup-

plied by J* at the edge over a conduit of an areadd,. Thus, max_ SMS (W — °)

a fast growth rate requires a large surface flux at the edge. Vi :T (26)
The magnitude of the surface flux passing the circular edge

atr = aalso determines the shape of the end caps. For a givenThjs maximum velocity is only dependent on the surface dif-

radiusa, Scan be rewritten as fusivity at the end cap, because all of the driving forge,-
22T 2 KT W°, is dissipated_ there. Qonversely, the Iower_ Iir_nitpm‘is e
(22) and the lower limit ofSis zero. The lower limit of growth

velocity, atS = 0, however, does not originate from surface
diffusion, because when the equilibrium shape is attained, there
is no gradient in the surface chemical potential and, hence, no
flux. In this case, the other growth mode, namely atoms arriv-
ing directly from the liquid to the end caps, becomes important.
This case is treated as a problem of steady-state diffusion to-
ward a spherical sink of radids which is a standard problem

in diffusion and gives a growth raté

S= =
8Mr'Y|rQ 8Dr'Y|rQ

Thus, a large influx, a large cylindrical radius, and a small
surface diffusivity on the end surface lead to a nonequilibrium
shape.

A nonequilibrium shape of the end cap also implies a non-
equilibrium edge potential at = a. The value can be com-
puted from Eq. (12), which gives

2y|rQ> - o

F=(x+9| —— 23 o Me(p” —p°)

W= (x >( 3 (23) (e -
atr = a. (The subscript of w* has again been omitted for b__R

simplicity.) At equilibrium,S = 0 andp* = 2v,{x/a, which

reduces to Eq. (3) within the spirit of linearization. For a non- Here M, is the atomic mobility in the liquid anR s the radius
equilibrium shape, the chemical potentialrat= a is higher  of the influence sphere around a rod, which may be assumed to
than that of the equilibrium shape by a factor3y; the larger  pe the half spacing between rods. For> b and substituting

the shape factor, the higher the edge potential. aly for b, we obtain the growth rate of an equilibriated end cap:
Using the edge potential, we can further obtain the upper and

lower limits of SandV, from the following consideration. For M x(n” = u°)

a cylindrical rod embedded in a field of supersaturation, the ﬁ:'T (28)

maximum value ofu* is simply w*, which is the chemical
potential at a far distance from the cylinder. From this obser- njore generally, for end caps of nonequilibrium shapes, we
vation, we obtain the upper limit ¢ (S"*), using Eq. (23): may obtain the approximate total growth rate by addijgo

o anyV, due to surface flux. Here, we have assumed that liquid
gnax— (“_ - 1)X (24) diffusion does not alter the surface shape; that is, atoms that are
[T transported to the end cap by surface diffusion do not redis-

S . - . solve into the liquid and redeposit elsewhere.
where the equilibrium surface chemical potentidlis defined q P

by
lll. Effect of Supersaturation, Aspect Ratio, and
o Yot _ 2y 25) Liquid/Surface Mobilities

a b L . - .
The solution in Section Il clearly indicates the importance of
This relation also sets the upper limit of the surface flux—and, the surface flux3* at the edge. This flux originates from atoms
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collected on the side surface of the cylinder, which are poured 3,/3, to convert the surface flux on the side surface to that on
into the end caps by surface diffusion. Qualitatively, we expect the end cap.)
J* to increase as the supersaturation increases in the liquid

1/2

from which the initial atoms originate. We also expdttto = (- ) O MM,
increase, up to a certain limit, as the length of the cylinder that bR 5
determines the collection distance increases. A more-precise 5raln a
determination ofl*, by solving the appropriate diffusion equa- M L2 2
tions in the liquid and on the side surface, is made below, again xtanh| —— (33)
for the steady state. R

We assume that the chemical potential on the side surface MBaln |~

varies with the axial coordinatg from ., = p* at the end . ) . .
(z = L) to higher values toward the mid-section of the cylinder RewritingJ* in terms of the axial velocity of the end caps (Eq.
(z = 0). The difference betweep” and ., causes atomic  (21)), we obtain

transport in the liquid toward the cylinder, and the difference ©_

betweenu, andp* causes atomic transport by surface diffusion V= 2( L >

along the side surface toward the end caps. For simplicity, we a

allow no radial growth on the side surface. This condition is 5,M,M, |2 M,L? vz
equivalent to the assumption that there is a threshold value of | =gy | @ &y (39
. that must be exceeded on the side surface before radial aln (-) M,3,aln (-)

growth occurs, and that the driving force available is insuffi- a

cient to overcome this threShOTﬁ(ln other WOI’dS, we assume Also rewriting }L* in terms OfV”, using Eqs (23) and (16), we
that the side surface may accept adsorbed atoms, but the adpptain
sorbed atoms are not permanently attached to the side surface.

Rather, they are constantly transported away by surface diffu- e e o = a2V”
sion.) Then, conservation of mass demands e LTV (35)
., Eliminating the termu” — pn* from Egs. (34) and (35) in favor
BzMzg =-J,, (29) of V,, we obtain

- pe S, MM, 12 M(;LZ 1/2
Here, M, is the atomic mobility due to surface diffusion along Vi~ < a ) 2 R tanh| ——————=+
thez-axis, 3, the thickness of surface diffusion layer on the side aln <—> Mzd.aln (5)
surface, and,, the atomic flux from liquid arriving at the side

surface at the position [ amm, V2 M, L? e
We will not solvelJ,, in the general case afvarying .. I Ry | A R
Instead, we will use the solution of steady-state diffusion to- 5MrIn (5) M2ln (5>
ward an infinitely long cylindrical sink of a constant surface (36)

potential. This surface potential is takenwas The problem is . N . .
then reduced to a standard one in diffusion and has the follow- TUS, the axial growth velocity), is entirely determined by the

ing solution3” difference between the supersaturation in the far figft) @nd
' the equilibrium chemical potential of a rogh{). Only the
M, (n* = ) kinetics are dependent on geometayl(, andR) and mobilities
Jezze—R (30) M., M,, andM,. Using Eg. (35) again, we obtain
aln <E> L LAy
VY
. . . - 1 5. MM 1/2 M L2 1/2
Substituting Eq. (30) into Eq. (29), we obtain o (0 ) : ad M, é wanh P _
2w, - ) M, ~ 32MZ1n <—) M,3,aln <—)
d22 - (“IZ - p“ ) (31) 1/2a 2 1/2a -1
M.5,a |n<5> < |1 +E as MM, tanh L
4 R R
) - ) 32MZ In (—) M,3,aIn (—)
with the boundary condition gf, = p* at z = L. Equation a a
(31) is the governing equation for diffusion on the side surface. (37

~ The solution of Eq. (32) that satisfies the boundary condition Therefore, the chemical potential at the edge is also dependent
is on the quantityn™ — w° and the same sets of geometric and
mobility parameters. Lastly, from Egs. (16) and (36), we obtain

cosh M—‘ZZR - s=X< b 1) 1 asMM, |2 anh M, L? 2
. ) S RE| R P
wr = - [ M,L? 142 (32 1T as.MM 12 M.L2 12y -1
cosh R\ X {l+Z|:2:—Zée:| tanh|:%R (38)
M3.aln (5) 3/M? In (5) M3,aln <5>

from which we can determine the shape of the end cap. The

Thus, the surface potential has now been determined within a |\~ o steady-state problem is now complete.

constantu* value. This constant is not an independent one: it
is related to the surface flu¥ at the edge through Egs. (22) N o
and (23). The surface flud* can be obtained by either inte- IV. Limiting gﬁses fTor K'f_‘t?t'c Control and

grating J, over the half lengthz = 0 to L, or by directly ape fransition

evaluating\, (dw.,/dz) atz = L. These two methods, of course, We have already obtained two limiting solutions in Section
give the same result. (Here, we need to include a factor II(3) by settingu* as eitherp™ or w°. This determination, in
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turn, leads tasS™*> andV{"™®or S = 0 andVﬁ as the limiting (apla, << 1 anda,/a, << 1 by combining the two inequalities
solution. These two limits are absolute ones, which respec- of case (ii)). The side surface acts as a collector that enhances
tively correspond to the maximum deviation from the equilib- the axial growth rate. The total growth rate, considering the
rium shape and the equilibrium shape itself, and they are in- side contribution (Eq. (44)) and the end-cap contribution (Eq.
dependent of the length of the cylinder, the kinetics of surface (28)), is
diffusion on the side, and the atomic mobility in the liquid. L M —
However, the latter factors are expected to lead to intermediate ytotal - 2<_ + 1)’(““—“‘)
solutions that are applicable in intermediate cases of kinetics I a R
and aspect ratio. This expectation is explored below. aln a

(3) Case (iii): ¥a(a, o /a?)*? tanh (e, /et,)Y? << 1 and
aclo,>> 1
The shape factos becomes

(49)

The limiting cases are examined by referring to the shape
parameter. To simplify the discussion, we introduce the fol-
lowing parameters:

ML

= (39) {2 (ut "
aln<5> AN X\ e ™ (46)
M.S By combining the two inequalities of case (iii)), we obtain

=22 (40) Ya(o,oja?)V? << 1. It follows thatS << 1. Thus, a quasi-

z L equilibrium shape is again maintained, which implies= p.°.

M.S The axial growth rate is obtained from Eg. (36) in the appro-

o = —— (41) priate limit:

r a . s
R
a

P
a

BZMZMf >

] i

Itis controlled by the geometric mean of the conductance of the
liquid and the side surface but is independent of the length of
the cylinder. Thus, it is obviously an intermediate case between
cases (i) and (ii), despite the quasi-equilibrium shape being
similar to that of case (ii).

The reason for the length independence in this case can be
found from the conditionx,/a, >> 1 of case (iii). Using the

definitions ofa, andw,, we find the condition to be equivalent

(1) Case (i):Ya(a,a,/a?)V? tanh (o la)t?>> 1

to
Mz R 1/2
_ : L>> [(—)Bzaln (—)] =L*
With S = x[(p.” - p°) - 1], this reduces to the case of M, a
p* = p” and V< The kinetics are entirely controlled by  Thus, as the cylinder becomes longer than a certain Idrgth
surface diffusion on the end cap and are independent of theonly side surface diffusion near the end cap within a distance
aspect ratio and kinetics elsewhere. The shape is at the maxi{* becomes relevant. Beyond that, = p*, because of the
mum deviation from the equilibrium. relatively high ratio ofa,/a,. (Mathematically, this is mani-
(2) Case (ii): (e, o,/ )2 tanh (o fe,)2 << 1 and fested by tankx = 1 whenx>> 1.) This is equivalent to stating
alo, << 1 that the efficiency of the side surface acting as a collector
Under these condition§ becomes diminishes as the length increases when the liquid conductance
is high relative to the surface conductance. This situation must
(o, po
Z<Z>X<E ) 1)

be the case; otherwise, an infinitely long cylinder would have
It follows thatS<< 1. Thus, a quasi-equilibrium shape is main-

collected an infinite mass to be poured into the end caps.
In summary, we can restate the above-discussed three cases
tained, which implieqw* = n°. The axial growth rate can be
obtained from Eq. (36), which is reduced to

as follows. When the liquid conductance is the smallest, as
given by case (i), the side surface acts as an efficient collector
and the axial velocity is enhanced by a factor df/af over the
L\Me(p” = 1)
Vir= 2<5>—R
aln (—)
a
That is, it is entirely controlled bw,.

(liquid) diffusion-controlled solution of a spherical cap. The
Comparing Eq. (44) (quasi-equilibrium growth) with Eq.

These parameters have the physical meaning of “conduc- V”:2<
tance,” because they are proportional to the mobility and the

cross section of each pathway and are inversely proportional to
the effective diffusion distance along the respective pathway.
In terms of these parameters, the shape pararBdteg. (38))

can be recast as

1 OL({OLZ 1/2 OL(; 1/2
= — tanh| —
Moc 4 01_2 Olz

S=y 1 -
M 1 O‘eaz 1/2 0(6 1/2
1+ — tanh| —
4 OLrZ o,

Three limiting cases can now be differentiated.

o

(42)

(48)

(43)

(44)

as given by case (iii), the side surface acts as an inefficient

collector and the axial velocity is controlled by the geometric
enhanced by an aspect ratid_2{). This result can be easily  surface conductance is high, compared to the end surface con-
verified from the consideration of mass conservation. The total ductance, as given by case (i), the side surface and the edge

mean of the atomic mobilities in the liquid and on the side
surface but is independent of the lengthrhe shape of the end

rate of incoming material from the side isr@LM, (n* — p°)/

[a In (R/@)] by settingp, = w° in Eqg. (30). The total growth

shape of the end cap is almost an equilibrium one. As the liquid
conductance becomes larger than the side surface conductance,
(28) (equilibrium growth) & = 0 andp* = n°), we see that cap is still almost an equilibrium one; this condition is case
the axial growth rate is similarly controlled by, but is also (iii). When the combination of liquid conductance and the side
rate of material on the cap isa?V,. Thus,V, of Eq. (44)
results.

have a potential that is equal to the supersaturation pi,e=

w* = p~, and the shape reaches the maximum deviation from
equilibrium. The kinetics are entirely controlled by surface
diffusion on the end cap and are independent of the aspect ratio

The present case applies when the liquid conductance isand the kinetics elsewhere.

much smaller than either surface conductance. This obser-

vation is evident from the above-discussed consideration

Generally, the last case (case (i)) can be satisfied if the
following condition is met:
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a0, dition of nonequilibrium growth is given by Eq. (50). Because
> >>1 (49) we expect liquid diffusion to be at least as fast as surface
& diffusion, M,M,)¥? is probably on the same order 4.
which is equivalent to Meanwhile,a >> &, = §,, and again InR/a) = 1, so Eq. (48)
should also be readily satisfied. This observation means the
MM, (a3, growth of isolated SN, crystals is probably controlled by
M2 ? surface diffusion on the end cap, and the shape is simply de-
r o> (50) termined by the ratio of supersaturationuit®dthrough Eq. (24).
n (_) The above prediction suggests that, essentially from the very
a beginning, the nonequilibrium form has manifested itself.

o B - ) However, the shape parame&which is equal to [j¢*/n°) —

Then, this is the condition for the shape transition and highly 1]y, is dependent on size. When a critical nucleus forms, the
nonequilibrium growth. Conversely, when the inequality of Eq. sjze of the critical nucleuss*, is given by the relatiora* =
(50) is reversed, quasi-equilibrium shape and growth are y_0/u~.3° Thus,u*/pn° = 1 andS = 0. As the crystal grows
achieved, although two subcases can be further differentiated |arger, . (which is equal toyQ)/a) decreases, so that the value
depending on whether or nat> L* (Eq. (48)). _ of Sincreases. In reality, the supersaturation probably also

The above-discussed three cases can also be illustrated byjecreases after nucleation begins. However, to provide the
the profile of chemical potential on the side surface; this profile driving force for growth, it is clear that*/p.° must be >1, and
is schematically shown in Fig. 4. In case (i), the potential on the it probably continues to increase for at least some time during
side surface is the same @s. In case (ii), the potential onthe  the growth stage. Eventually, as the concentration of excess
side surface is very similar fo°, although the exact magnitude  atoms is depleted, the source of supersaturation changes to that
is dependent oM,. The chemical potential in the intermediate  provided by the dissolution of the smaller crystals. This super-

case (case (iii)) increases fropf at the end to.” within a saturation continues to feed the large crystals in what is known
distance on the order af*, which is dependent oM., as the Oswald ripening proce&sDuring this process, the ratio
w</ne is determined by.°(a;,)/n°(a,) = a,/a;, wherea, anda,
V. Discussion are the radii of the (smaller) dissolving crystal and the (larger)
. growing crystal, respectively.
(1) Shape Evolution In summary, we suggest that the shapes observed in the

The analysis of the previous section suggests three cases ofjrowth of isolated grains represent a spectrum of shape evo-
interest for the growth of well-separated crystals: quasi- lution controlled byu*/p.°. This is illustrated schematically in
equilibrium with liquid control, quasi-equilibrium with mixed  Fig. 5 by the evolution ofw*, n°, w*/n°, andS during the
control, and nonequilibrium with surface control. For growth stages of nucleation, growth, and coarsening. We suggest that,
conditions in a liquid that contains a small amount of solid, we after nucleation, although™ andu.° both decrease monotoni-
believe the second and the third cases will be very easy to cally, their ratio increases as the radius of the crystal increases.
realize. The condition of quasi-equilibrium with mixed control As the growth stage passes and the coarsening stage begins, the
is given by Eq. (48), which is equivalent to an aspect ratio value of p*/i° becomes the ratio of the crystal size and is
L/a>>[(M,M,)(3,/a) In (Rla)]*/2. Typically, 3, is on the order determined by the size dispersity of the crystal population.
of a unit-cell dimension and is on the order of Jum, s03, << Therefore, highly nonequilibrium shapes can be observed in
a. Because we exped, to be smaller thai, and In R/a) is two cases: (i) in the growth stage when the crystals are large,
of the order of unity, the right-hand side of the above- and (ii) in the coarsening stage when the polydispersity is large.
mentioned inequality is probably <1 and the condition is This prediction is consistent with the experimental observa-
readily satisfied. Therefore, we can state that the growth of tions2> For example, large shape distortions ofN\gj have
well-isolated SiN, crystals is at least partially controlled by been observed in three liquid systems ((Si,Al,Mg)(O,N),
surface diffusion, even in the quasi-equilibrium case. The con- (Si,Al,Y)(O,N), and (Si,Al,Mg,Y)(O,N)) when the crystals are

(1) W= (1)
4
( oL—> 7 0
oL )
Gi) MR
1
Z==1 Z=0 Z=L

Fig. 4. Schematic distribution of the chemical potential on the side surface of a cylindrical rod of a léngednset). In case (i), liquid diffusion

is very fast and the chemical potential on the side surface is the same as supersaturation. In case (ii), liquid diffusion is very slow and the chemical

potential is approximately° but is slightly higher, following a parabolic curve centere@at 0. Case (iii) shows an intermediate case, with the
chemical potential increasing from® to > within a distance_* from either end.
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With the definition ofp., we then find that all the solutions of
Ko ¥, § andVin Sections -1V are recovered if we simply
substitutep” for n”, because the only effect of radial growth
is to take away a portion of the liquid influx, which is equiva-
lent to a decrease of the supersaturation. Since the conditions
for the kinetic and shape transitions (given in Section V) are
all independent of the driving force, the radial growth has no
effect on the transitions. In this sense, we have found justifi-
cation to “decouple” the radial growth problem from the shape
transition problem. However, we recognize that the radial
growth does reducg*, S andV,, becausdgi” is smaller than
=, according to Eq. (52).

The above-mentioned effect is important if the “effective
kinetic” potential (@V/M,) In (R/a)) is large, in comparison
to = — n°. This result is not expected to be the case for the
growth of isolated SN, crystals. For example, using Eq. (26),
we find that the ratio of the quantity® — w° to the kinetic

M,

potential is given by
Mr><_>

3l
Vi
2
This ratio is probably quite large, given the typical anisotropy

M°°-M°_<

5
o

(53)

NG

large. Furthermore, among the three systems, the polydispern the growth rate\;,/Vy, = 10 in most experiment&21-2j and

sity is the largest in the (Si,Al,Mg,Y)(O,N) system, where the

the fact tha/s, > 100,M, > M, (in most cases), and IfR(a)

most-severe shape distortion is observed. Lastly, in the =1 Therefore, the omission of the radial growth in the analysis
(S1,ALY)(O,N) system, the crystals are smaller but more nu- of Sections II-IV is not a serious problem and all our conclu-
merous, and the polydispersity is also the smallest. As expectedsjons, especially those regarding nonequilibrium growth,

from our analysis, the shape distortion is relatively modest in
the (Si,Al,Y)(O,N) system.

(2) Radial Growth

As we mentioned in the introduction, direct influx from the
liquid to the end cap will have a tendency to smooth out the
shape distortion to restore the equilibrium shape. Surface dif-
fusion would have the same effect if the influx were not to
originate only from the edge. However, if the influx does origi-

nate from the edge, then a shape distortion with a convex edge
and a concave center must be maintained to distribute the mat
ter from the edge to the center. Because an isolated crystal with

an atomically flat surface readily receives liquid flux from the

side but is unable to accommodate the influx atoms perma-
nently onto the surface structure on the side, this influx is
directed to the edge and then the end cap, where the surfac
structure is atomically rough and more accommodating. As the

aspect ratio becomes large, this becomes the dominant mecha

nism for axial growth and is responsible for the nonequilibrium
shape distortion of the end caps.

The importance of the above-mentioned mechanism dimin-
ishes if the side surface can accommodate the atomic influx,
i.e., if it grows radially. For an isolated crystal growing in a
liquid environment, our analysis in Sections II-IV can be
readily modified to account for radial growth. We assume that
the radial growth has a velociyy; that is not dependent on the
axial coordinatez. Then, Eqg. (29) is modified to become

d’p.,
dz

BecauseV is independent of, V can be absorbed into the
flux term J, by regarding it as an effective potential, using Eq.
(30). Specifically, by substituting Eq. (30) into Eq. (51) and
changing the variable, we obtain a modified form of Eq. (31) in
which pw” is replaced byg~ (the effective supersaturation).
This supersaturation is defined as follows:

Jold

(dM,) =—-Jy+ Vg (51)

aVy

™, (52)

11°°:u«°°—<

should remain valid, even if radial growth is allowed.

The assumption that radial growth is independentz
tantamount to the assumption of interface control. Under in-
terface control, the velocity is dependent on the potential but is
independent of diffusivity in the liquid or along the surface.
However, the functional form of the velocity dependence on
the surface potential is not knovenpriori. Therefore, we will
not attempt to obtain a solution f&f; in the case of nonequi-
librium growth, considering the lack of importance of radial
growth, as reasoned previously.

(3) Silicon Nitride Ceramics

The other situation in which the surface diffusion mecha-
nism and the nonequilibrium shape may become unimportant is
hen the liquid transport to the side surface is blocked. With-

out the large influx from the side surface, only direct liquid
diffusion to the end cap is significant and the shape distortion
disappears. This phenomenon will occur, to an increasing de-
gree, when the solid fraction increases. In a typical silicon
nitride ceramic that contains 90% solid grains, the crystals are
often stacked so that their side surfaces are in close contact
with neighboring crystals, separated by a thin liquid
film,144%42and only the ends are exposed to the liquid pockets.
Such a geometry makes it difficult to obtain a substantial influx
to the edge. Therefore, $Bl, crystals in high-volume-fraction-
solids ceramics are not likely to develop nonequilibrium
shapes, except perhaps in the early stages of growth. For such
ceramics, several studies have reported a cubic growth law for
the length (i.e.L® = L3 + k;t,'82%22and a higher exponent

for the width (e.g.2> = a3 + k-t??). (Here,L, anda, respec-
tively refer to the length and radius at the reference time, and
t is the time elapsed since the reference time. The rate con-
stants, of an appropriate unit, are represented by the variables
k.) In the following, we will assume an equilibrium shape and
show that these growth laws can be rationalized.

For equilibrium shape, the chemical potentialu$ every-
where on the crystal surface. For axial growth, we refer to Eq.
(28), which is the standard form of diffusive growth of a
spherical particl&” Assuminga « L for the moment (or at least
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