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To explain the recent experimental observation of liquid-
grown silicon nitride (Si3N4) crystals with a concave depres-
sion in the center of the (0001) end face, we propose a new
growth mechanism and develop an analytical solution for
the steady state. The model allows for atoms that diffuse via
the liquid to the side surface but demands that the majority
of these atoms be transported to the end caps to feed axial
growth. The analysis shows that, for a large radius crystal,
the redistribution of atoms by surface diffusion on the end
caps requires a long relaxation time; hence, a nonequilib-
rium shape results. For an isolated Si3N4 crystal growing in
a liquid environment, the shape of the end cap is largely
determined by the ratio of the supersaturation to the equi-
librium surface potential, which is inversely proportional to
the crystal radius. A large shape distortion is predicted to
occur during the growth stage for large-radius crystals and
during the coarsening stage for a population of crystals
with a large size distribution. This mechanism ceases to
operate when the liquid flux to the side surface is blocked,
as in silicon nitride ceramics, but is otherwise insensitive to
factors such as radial growth kinetics and liquid diffusivity.

I. Introduction

ANISOTROPICgrain growth is an important feature that makes
silicon nitride (Si3N4) a tough ceramic.1–3Si3N4 is sintered

using additives that form a liquid.4–12 Usually,b-Si3N4 grains
grown from the liquid are faceted hexagonal cylinders, aligned
in the (0001) directions with prismatic (1100) side faces.13–16

The ends of the cylinder have a rounded shape.13–16Transmis-
sion electron microscopy (TEM) examinations of these sur-
faces further suggest an atomically flat interface on the side,
with occasional ledges and an atomically rough interface at the
ends.17,18Because atomically rough interfaces are expected to
have little difficulty in accepting and accommodating new at-
oms (compared to atomically flat interfaces), the anisotropic
growth of Si3N4 has been attributed to different growth kinetics
on (0001) and (1100) surfaces.18–20The attention of research-
ers in the last decade has been focused on whether it is the

diffusion in the liquid or the attachment on the interface that is
the rate-controlling step in the growth kinetics.19–24

A recent model experiment onb-Si3N4 crystals grown from
a liquid with alumina (Al2O3), yttria (Y2O3), and magnesia
(MgO) additives revealed a very different picture.25 As shown
in Fig. 1, the shape of the end cap of the hexagonalb-Si3N4
grains can be convex or concave, depending on the width of the
cross section. These crystals are well separated in the liquid,
which contains only a small (15 vol%) fraction of solid, so that
the interference of the diffusion field between the crystals is not
a serious concern. The above-mentioned observation suggests a
new transport mechanism that has been previously overlooked;
namely, the atoms are first collected on the side surface and
then transported through the edge of the end cap to the end
surface. This mechanism can be inferred by comparing the
curvature, hence the chemical potential, of the surface at dif-
ferent points on the end cap. Referring to Fig. 1, we see that the
edge of the cap has a convex curvature and a positive chemical
potential, whereas the center of the cap has a concave curvature
and a negative chemical potential. Thus, a radially inward
atomic flux must flow from the edge to the center. A continuity
of fluxes, in turn, implies material transport from the side sur-
faces to the edge.

The two growth modes of the end face—(i) liquid diffusion
from the surroundings and (ii) surface diffusion from the
edge—are additive to each other. For a shape such as that in
Fig. 1, with the chemical potential at the center much lower
than that at the edge, the liquid-diffusion mode will have a
tendency to smooth out the curvature difference and restore a
spherical cap shape as it grows. On the other hand, if the source
of atoms is primarily from the edge, then the curvature differ-
ence must continue, to sustain the driving force for surface
diffusion. Indeed, the larger the flux of matter from the edge,
the larger the curvature difference. The observation that such
shapes do exist suggests that the surface mode is the dominant
form of atomic transport. It then follows that the shape evolu-
tion in the same liquid is dependent on the width of the cylin-
drical crystal, because surface curvature generated by surface
diffusion is known to be strongly size dependent, as observed
in such phenomena as grain-boundary grooving,26 Rayleigh
instability,27–30 and creep cavitation.31–34

To better understand the morphology of Si3N4 and to guide
future experiments, we have undertaken a theoretical analysis
of the kinetics of axial growth in a liquid environment. For
simplicity, we will assume that the cylindrical crystal has a
circular cross section and solve the steady-state problems first.
It will be shown that these simplified solutions provide an
adequate description of the experimentally observed shape evo-
lution. Although the radial growth is initially ignored in the
analysis, its incorporation will be considered in the Discussion
section. The effect of a higher volume fraction of solid that
forces the impingement of grain will also be discussed, to bring
the present analysis into contact with the observed growth ki-
netics in silicon nitride ceramics.
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II. Shape of End Caps

(1) Equilibrium Shape
We first solve the equilibrium shape of a cylindrical rod with

two spherical caps at the ends, assuming knowledge of the
surface energies. The chemical potential of a surface atom is
given by

m = −gV~k1 + k2! (1)

wherek1 andk2 are principal curvatures (negative for a convex
body) of the surface andg is the surface energy.31 We assume
the side of the cylindrical rod is straight, with a radiusa, and
the surface energy is independent of orientation, given byg⊥.
Then, the chemical potential of a surface atom on the side is

m⊥ =
g⊥V

a
(2)

We also assume that the spherical cap has a radiusb and the

surface energy is isotropic, given byg||. Then, the chemical
potential of a surface atom at the end is

m|| =
2g||V

b
(3)

At equilibrium, these two chemical potentials are the same and
equal to the equilibrium surface chemical potentialm°. Thus,

a

b
=

g⊥

2g||
(4)

Referring to Fig. 2, it is also clear that

sin x =
a

b
(5)

wherex is the angle made between the spherical cap and a flat
end. Thus,

x = sin−1 Sa

bD = sin−1 S g⊥

2g||
D (6)

Fig. 1. Si3N4 crystals grown from a melt containing Si3N4, Al2O3, Y2O3, and MgO at 1600°C for 2 h in 10 atm ofnitrogen gas; the solid fraction
of Si3N4 is 15 vol%, to minimize crystal impingement.

Fig. 2. Cross section of a crystal with cylindrical symmetry and (A) an equilibrium end cap of radiusb drawn from the center of curvature and
(B) a nonequilibrium end cap of a wavy shape with a profile specified by the coordinates (w,r) (the reference point (0,0) is set at the center of the
end cap).

2678 Journal of the American Ceramic Society—Wang et al. Vol. 81, No. 10



wherex is a thermodynamic quantity that is determined by the
ratio of the surface energies. For a cylindrical rod with a rela-
tively low side surface energy, compared to the end surface
energy, a smallx is expected.

According to Hwang and Chen,20,35 the morphology of the
hexagonal Si3N4 prism can be rationalized in terms of the
periodic bond chain (PBC) theory of Hartman.36 They found
from the PBC theory that {1100} surfaces should be the flat
faces, as are {1101} surfaces. Theb-Si3N4 single crystals
grown from a silicon melt or formed via a chemical vapor
deposition (CVD) process are indeed enveloped by these faces,
which grow along the [0001] direction. The angle between
{1101} and the (0001) plane is 24°, which corresponds tox 4
0.4189.35 This value will be used in the example calculations
shown below.

(2) Steady-State, Nonequilibrium Shape
During growth, the shape of either the side or the ends may

depart from equilibrium. However, continuity of the chemical
potential must be observed. The singular nature of the edge
also guarantees that the same anglex at the corner is main-
tained. As the shape deviates from equilibrium, the local
chemical potential may deviate from the equilibrium value.
The atomic flux driven by the gradient of the chemical poten-
tial alters the shape until a steady state is finally obtained.

We solve the shape of the end cap in the cylindrical coor-
dinates by assuming that surface diffusion is the only transport
mechanism and that a steady state can be attained. Attachment
of atoms that arrive directly from the liquid is treated as sec-
ondary (see discussion at the end of the section). A steady state
is defined by a constant axial velocityV|| at every point of the
end cap. The governing equation obtained from surface diffu-
sion and mass conservation is then

dr Mr=r
2mr = V|| (7)

In this equation,=r
2 is the Laplace operator in the radial direc-

tion in the cylindrical coordinates,mr is the chemical potential
at radiusr from the center,dr is the thickness of the surface
diffusion layer at the end caps, andMr, which is defined as

Mr =
Dr

kT
(8)

(whereDr is the surface diffusivity in the radial direction and
kT has its usual thermodynamic meaning), is the atomic mo-
bility due to surface diffusion in the radial direction on the end
caps. This equation can be solved to determine the shape of the
end cap, under appropriate boundary conditions, if we express
mr in terms of spatial coordinates, using Eq. (1).

To obtain an analytical solution, we linearize Eqs. (1) and (7)
in terms of the axial displacementw, with reference to the
position atr 4 0. The linearization procedure is accurate if
w << a (which is equivalent tox << 1); however, it also allows
us to obtain some insight even at largerw/a values when its
accuracy is less adequate. This procedure gives

k1 =
d2w

dr 2 (9)

k2 = S1

r D dw

dr
(10)

and

V|| =
dw

dt
(11)

which transforms Eqs. (1) and (7) to

mr = −Vg||=r
2w (12)

and

Mrdrg||V=r
2=r

2w +
dw

dt
= 0 (13)

respectively, where

=r
2 =

d2

dr 2 + S1

r D d

dr
(14)

The boundary conditions arew 4 0 at r 4 0 by definition,
dw/dt 4 0 at r 4 0 from symmetry, dw/dt 4 −tan x ≈ x at
r 4 a within the linearization approximation, and all curva-
tures are finite and continuous, especially atr 4 0. The solu-
tion to Eq. (13) that satisfies the above-mentioned boundary
conditions is

w

a
= −SS

4DS r

aD4

+ S1

2D~S− x!S r

aD2

(15)

Here,S is a shape parameter that is defined as

S=
a3V||

16Mrdrg||V
(16)

The above-mentioned solution is plotted in Fig. 3 for several
shape parameters, assumingx 4 0.4189 (i.e., 24°). A convex,
spherical cap shape is recovered, within the spirit of lineariza-
tion approximation, whenS 4 0, giving

w = −S x

2aDr 2 (17)

As S increases to 2x, the end cap becomes almost ‘‘flat,’’ with
w 4 0 at bothr 4 0 and r 4 a. As S increases further, a
severely concave shape develops, except nearr 4 a. This
shape evolution has been experimentally observed in the
(Si,Al,Mg,Y)(O,N) system.

The physical meaning of the shape parameterS can be ap-
preciated from the following consideration. At the steady state,
a characteristic timet° for axial growth can be defined as

t° =
a

V||
(18)

This parameter is the time required to grow a distance compa-
rable to the cylindrical radius. Meanwhile, the relaxation time
(tr) for surface diffusion along the spherical cap of an arc 2a
may be expressed as31

tr =
a4kT

16Drdrg||V
=

a4

16Mrdrg||V
(19)

It follows thatS is simply the ratio of surface relaxation timetr
to the characteristic growth timet

°
. When this ratio is small,

the end cap is fully relaxed by surface diffusion so that an
equilibrium, spherical shape is retained. Conversely, when this
ratio is large, the end cap severely deviates from the equilib-
rium shape. A large cylinder radius, a fast growth velocity, and
a slow surface diffusivity favor nonequilibrium and a largeS
value.

(3) Fluxes and Growth Rates
The concave shape of a nonequilibrium end cap implies a

surface flux that transports matter from the edge atr 4 a
toward the center atr 4 0. This influx is responsible for the
axial growth. We can compute the surface flux at the edge
using the following equation:

Jr = −MrSdmr

dr D = Mrg||VS d

drD~=r
2w! (20)

giving

J* =
aV||

2dr
(21)
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at r 4 a. In Eq. (21), the subscript forJ* has been omitted for
simplicity. This result can be easily verified, because the rate of
total mass accumulation on the end cap,pa2V||, must be sup-
plied byJ* at the edge over a conduit of an area 2padr. Thus,
a fast growth rate requires a large surface flux at the edge.

The magnitude of the surface flux passing the circular edge
at r 4 a also determines the shape of the end caps. For a given
radiusa, S can be rewritten as

S=
a2J*

8Mrg||V
=

a2J*kT

8Drg||V
(22)

Thus, a large influx, a large cylindrical radius, and a small
surface diffusivity on the end surface lead to a nonequilibrium
shape.

A nonequilibrium shape of the end cap also implies a non-
equilibrium edge potential atr 4 a. The value can be com-
puted from Eq. (12), which gives

m* = ~x + S!S2g||V

a D (23)

at r 4 a. (The subscriptr of m* has again been omitted for
simplicity.) At equilibrium,S4 0 andm* 4 2g||Vx/a, which
reduces to Eq. (3) within the spirit of linearization. For a non-
equilibrium shape, the chemical potential atr 4 a is higher
than that of the equilibrium shape by a factor ofS/x; the larger
the shape factor, the higher the edge potential.

Using the edge potential, we can further obtain the upper and
lower limits of SandV|| from the following consideration. For
a cylindrical rod embedded in a field of supersaturation, the
maximum value ofm* is simply m`, which is the chemical
potential at a far distance from the cylinder. From this obser-
vation, we obtain the upper limit ofS (Smax), using Eq. (23):

Smax = Sm`

m°
− 1Dx (24)

where the equilibrium surface chemical potentialm° is defined
by

m° =
g⊥V

a
=

2g||V

b
(25)

This relation also sets the upper limit of the surface flux—and,

hence, the axial velocity (V||
max)—through Eqs. (21), (22), and

(24):

V||
max =

8Mrdr~m
` − m°!

a2 (26)

This maximum velocity is only dependent on the surface dif-
fusivity at the end cap, because all of the driving force,m` −
m°, is dissipated there. Conversely, the lower limit ofm* is m°
and the lower limit ofS is zero. The lower limit of growth
velocity, atS 4 0, however, does not originate from surface
diffusion, because when the equilibrium shape is attained, there
is no gradient in the surface chemical potential and, hence, no
flux. In this case, the other growth mode, namely atoms arriv-
ing directly from the liquid to the end caps, becomes important.
This case is treated as a problem of steady-state diffusion to-
ward a spherical sink of radiusb, which is a standard problem
in diffusion and gives a growth rate37

V°|| =
M,~m

` − m°!

b −
b2

R

(27)

Here,M, is the atomic mobility in the liquid andR is the radius
of the influence sphere around a rod, which may be assumed to
be the half spacing between rods. ForR >> b and substituting
a/x for b, we obtain the growth rate of an equilibriated end cap:

V°|| =
M,x~m` − m°!

a
(28)

More generally, for end caps of nonequilibrium shapes, we
may obtain the approximate total growth rate by addingV°|| to
any V|| due to surface flux. Here, we have assumed that liquid
diffusion does not alter the surface shape; that is, atoms that are
transported to the end cap by surface diffusion do not redis-
solve into the liquid and redeposit elsewhere.

III. Effect of Supersaturation, Aspect Ratio, and
Liquid/Surface Mobilities

The solution in Section II clearly indicates the importance of
the surface fluxJ* at the edge. This flux originates from atoms

Fig. 3. Predicted steady-state profile of the end of a growing Si3N4 crystal. AtS4 0, a spherical shape is obtained. AtS4 2x 4 0.8378,w 4
0 at r 4 a; the angle atr 4 a is fixed at 24° (x 4 0.4189).
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collected on the side surface of the cylinder, which are poured
into the end caps by surface diffusion. Qualitatively, we expect
J* to increase as the supersaturation increases in the liquid
from which the initial atoms originate. We also expectJ* to
increase, up to a certain limit, as the length of the cylinder that
determines the collection distance increases. A more-precise
determination ofJ*, by solving the appropriate diffusion equa-
tions in the liquid and on the side surface, is made below, again
for the steady state.

We assume that the chemical potential on the side surface
varies with the axial coordinatez, from mz 4 m* at the end
(z4 L) to higher values toward the mid-section of the cylinder
(z 4 0). The difference betweenm` and mz causes atomic
transport in the liquid toward the cylinder, and the difference
betweenmz andm* causes atomic transport by surface diffusion
along the side surface toward the end caps. For simplicity, we
allow no radial growth on the side surface. This condition is
equivalent to the assumption that there is a threshold value of
mz that must be exceeded on the side surface before radial
growth occurs, and that the driving force available is insuffi-
cient to overcome this threshold.38 (In other words, we assume
that the side surface may accept adsorbed atoms, but the ad-
sorbed atoms are not permanently attached to the side surface.
Rather, they are constantly transported away by surface diffu-
sion.) Then, conservation of mass demands

dzMz

d2mz

dz2 = −J,z (29)

Here,Mz is the atomic mobility due to surface diffusion along
thez-axis,dz the thickness of surface diffusion layer on the side
surface, andJ,z the atomic flux from liquid arriving at the side
surface at the positionz.

We will not solveJ,z in the general case ofz-varying mz.
Instead, we will use the solution of steady-state diffusion to-
ward an infinitely long cylindrical sink of a constant surface
potential. This surface potential is taken asmz. The problem is
then reduced to a standard one in diffusion and has the follow-
ing solution:37

J,z =
M,~m

` − mz!

a ln SR

aD
(30)

Substituting Eq. (30) into Eq. (29), we obtain

d2~mz − m`!

dz2 =F M,

Mzdza lnSR

aDG~mz − m`! (31)

with the boundary condition ofmz 4 m* at z 4 ±L. Equation
(31) is the governing equation for diffusion on the side surface.

The solution of Eq. (32) that satisfies the boundary condition
is

mz − m`

m* − m`
=

cosh3
M,z

2

Mzdza ln SR

aD4
1/2

cosh3
M,L

2

Mzdza ln SR

aD4
1/2 (32)

Thus, the surface potential has now been determined within a
constantm* value. This constant is not an independent one: it
is related to the surface fluxJ* at the edge through Eqs. (22)
and (23). The surface fluxJ* can be obtained by either inte-
grating J, over the half length,z 4 0 to L, or by directly
evaluatingMz (dmz/dz) atz4 L. These two methods, of course,
give the same result. (Here, we need to include a factor

dz/dr to convert the surface flux on the side surface to that on
the end cap.)

J* = ~m` − m* !3
dzMzM,

dr
2a ln SR

aD4
1/2

× tanh3
M,L

2

Mzdza ln SR

aD4
1/2

(33)

RewritingJ* in terms of the axial velocity of the end caps (Eq.
(21)), we obtain

V|| = 2Sm` − m*

a D
× 3

dzMzM,

a ln SR

aD4
1/2

tanh3
M,L

2

Mzdza ln SR

aD4
1/2

(34)

Also rewritingm* in terms ofV||, using Eqs. (23) and (16), we
obtain

m* − m` = m° − m` +
a2V||

8Mrdr
(35)

Eliminating the termm` − m* from Eqs. (34) and (35) in favor
of V||, we obtain

V|| = Sm` − m°

a
D523

dzMzM,

a ln SR

aD4
1/2

tanh3
M,L

2

Mzdza ln SR

aD4
1/2

6
2 51 +

1

43
adzMzM,

dr
2Mr

2 ln SR

aD4
1/2

tanh3
M,L

2

Mzdza ln SR

aD4
1/2

6
−1

(36)
Thus, the axial growth velocityV|| is entirely determined by the
difference between the supersaturation in the far field (m`) and
the equilibrium chemical potential of a rod (m°). Only the
kinetics are dependent on geometry (a, L, andR) and mobilities
M,, Mz, andMr. Using Eq. (35) again, we obtain

m* = m° +
a2V||

8Mrdr

= m° + ~m` − m°!5
1

43
adzMzM,

dr
2Mr

2 ln SR

aD4
1/2

tanh3
M,L

2

Mzdza ln SR

aD4
1/2

6
2 51 +

1

43
adzMzM,

dr
2Mr

2 ln SR

aD4
1/2

tanh3
M,L

2

Mzdza ln SR

aD4
1/2

6
−1

(37)
Therefore, the chemical potential at the edge is also dependent
on the quantitym` − m° and the same sets of geometric and
mobility parameters. Lastly, from Eqs. (16) and (36), we obtain

S= xSm`

m°
− 1D5

1

43
adzMzM,

dr
2Mr

2 ln SR

aD4
1/2

tanh3
M,L

2

Mzdza ln SR

aD4
1/2

6
2 51 +

1

43
adzMzM,

dr
2Mr

2 ln SR

aD4
1/2

tanh3
M,L

2

Mzdza ln SR

aD4
1/2

6
−1

(38)

from which we can determine the shape of the end cap. The
solution of the steady-state problem is now complete.

IV. Limiting Cases for Kinetic Control and
Shape Transition

We have already obtained two limiting solutions in Section
II(3) by settingm* as eitherm` or m°. This determination, in

October 1998 Morphology of Silicon Nitride Grown from a Liquid Phase 2681



turn, leads toSmax andV||
max or S 4 0 andV°

|| as the limiting
solution. These two limits are absolute ones, which respec-
tively correspond to the maximum deviation from the equilib-
rium shape and the equilibrium shape itself, and they are in-
dependent of the length of the cylinder, the kinetics of surface
diffusion on the side, and the atomic mobility in the liquid.
However, the latter factors are expected to lead to intermediate
solutions that are applicable in intermediate cases of kinetics
and aspect ratio. This expectation is explored below.

The limiting cases are examined by referring to the shape
parameter. To simplify the discussion, we introduce the fol-
lowing parameters:

a, =
M,L

a ln SR

aD
(39)

az =
Mzdz

L
(40)

ar =
Mrdr

a
(41)

These parameters have the physical meaning of ‘‘conduc-
tance,’’ because they are proportional to the mobility and the
cross section of each pathway and are inversely proportional to
the effective diffusion distance along the respective pathway.
In terms of these parameters, the shape parameterS (Eq. (38))
can be recast as

S= xSm`

m°
− 1D3

1

4Sa,az

ar
2 D1/2

tanhSa,

az
D1/2

1 +
1

4Sa,az

ar
2 D1/2

tanhSa,

az
D1/24 (42)

Three limiting cases can now be differentiated.

(1) Case (i):1⁄4(aøaz/ar
2)1/2 tanh (aø /az)1/2 >> 1

With S 4 x[(m` − m°) − 1], this reduces to the case of
m* 4 m` and V||

max. The kinetics are entirely controlled by
surface diffusion on the end cap and are independent of the
aspect ratio and kinetics elsewhere. The shape is at the maxi-
mum deviation from the equilibrium.

(2) Case (ii):1⁄4(aøaz/ar
2)1/2 tanh (aø /az)1/2 << 1 and

aø /az << 1
Under these conditions,S becomes

S=
1

4Sa,

ar
DxSm`

m°
− 1D (43)

It follows thatS<< 1. Thus, a quasi-equilibrium shape is main-
tained, which impliesm* ≈ m°. The axial growth rate can be
obtained from Eq. (36), which is reduced to

V|| = 2SL

aDM,~m
` − m°!

a ln SR

aD
(44)

That is, it is entirely controlled bya,.
Comparing Eq. (44) (quasi-equilibrium growth) with Eq.

(28) (equilibrium growth) (S 4 0 andm* 4 m°), we see that
the axial growth rate is similarly controlled byM, but is also
enhanced by an aspect ratio 2(L/a). This result can be easily
verified from the consideration of mass conservation. The total
rate of incoming material from the side is 2paLM, (m` − m°)/
[a ln (R/a)] by settingmz 4 m° in Eq. (30). The total growth
rate of material on the cap ispa2V||. Thus, V|| of Eq. (44)
results.

The present case applies when the liquid conductance is
much smaller than either surface conductance. This obser-
vation is evident from the above-discussed consideration

(a,/az << 1 anda,/ar << 1 by combining the two inequalities
of case (ii)). The side surface acts as a collector that enhances
the axial growth rate. The total growth rate, considering the
side contribution (Eq. (44)) and the end-cap contribution (Eq.
(28)), is

V||
total = 2SL

a
+ 1DM,~m

` − m°!

a ln SR

aD
(45)

(3) Case (iii): 1⁄4(aøaz/ar
2)1/2 tanh (aø /az)1/2 << 1 and

aø /az >> 1
The shape factorS becomes

S =
1

4Sa,az

ar
2 D1/2

xSm`

m°
− 1D (46)

By combining the two inequalities of case (iii), we obtain
1⁄4(a,az/ar

2)1/2 << 1. It follows that S << 1. Thus, a quasi-
equilibrium shape is again maintained, which impliesm* ≈ m°.
The axial growth rate is obtained from Eq. (36) in the appro-
priate limit:

V|| = 2Sa,

az
D1/2Sm` − m°

a D = 2F dzMzM,

a ln SR

aDG
1/2Sm` − m°

a D
(47)

It is controlled by the geometric mean of the conductance of the
liquid and the side surface but is independent of the length of
the cylinder. Thus, it is obviously an intermediate case between
cases (i) and (ii), despite the quasi-equilibrium shape being
similar to that of case (ii).

The reason for the length independence in this case can be
found from the conditiona,/az >> 1 of case (iii). Using the
definitions ofa, andaz, we find the condition to be equivalent
to

L .. FSMz

M,
Ddza ln SR

aDG1/2

≡ L* (48)

Thus, as the cylinder becomes longer than a certain lengthL*,
only side surface diffusion near the end cap within a distance
L* becomes relevant. Beyond that,mz ≈ m`, because of the
relatively high ratio ofa,/az. (Mathematically, this is mani-
fested by tanhx 4 1 whenx > > 1.) This is equivalent to stating
that the efficiency of the side surface acting as a collector
diminishes as the length increases when the liquid conductance
is high relative to the surface conductance. This situation must
be the case; otherwise, an infinitely long cylinder would have
collected an infinite mass to be poured into the end caps.

In summary, we can restate the above-discussed three cases
as follows. When the liquid conductance is the smallest, as
given by case (ii), the side surface acts as an efficient collector
and the axial velocity is enhanced by a factor of 2(L/a) over the
(liquid) diffusion-controlled solution of a spherical cap. The
shape of the end cap is almost an equilibrium one. As the liquid
conductance becomes larger than the side surface conductance,
as given by case (iii), the side surface acts as an inefficient
collector and the axial velocity is controlled by the geometric
mean of the atomic mobilities in the liquid and on the side
surface but is independent of the lengthL. The shape of the end
cap is still almost an equilibrium one; this condition is case
(iii). When the combination of liquid conductance and the side
surface conductance is high, compared to the end surface con-
ductance, as given by case (i), the side surface and the edge
have a potential that is equal to the supersaturation, i.e.,mz 4
m* 4 m`, and the shape reaches the maximum deviation from
equilibrium. The kinetics are entirely controlled by surface
diffusion on the end cap and are independent of the aspect ratio
and the kinetics elsewhere.

Generally, the last case (case (i)) can be satisfied if the
following condition is met:
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a,az

ar
2 .. 1 (49)

which is equivalent to

SM,Mz

Mr
2 DSadz

dr
2 D

ln SR

aD
.. 1 (50)

Then, this is the condition for the shape transition and highly
nonequilibrium growth. Conversely, when the inequality of Eq.
(50) is reversed, quasi-equilibrium shape and growth are
achieved, although two subcases can be further differentiated,
depending on whether or notL > L* (Eq. (48)).

The above-discussed three cases can also be illustrated by
the profile of chemical potential on the side surface; this profile
is schematically shown in Fig. 4. In case (i), the potential on the
side surface is the same asm`. In case (ii), the potential on the
side surface is very similar tom°, although the exact magnitude
is dependent onMz. The chemical potential in the intermediate
case (case (iii)) increases fromm° at the end tom` within a
distance on the order ofL*, which is dependent onMz.

V. Discussion

(1) Shape Evolution
The analysis of the previous section suggests three cases of

interest for the growth of well-separated crystals: quasi-
equilibrium with liquid control, quasi-equilibrium with mixed
control, and nonequilibrium with surface control. For growth
conditions in a liquid that contains a small amount of solid, we
believe the second and the third cases will be very easy to
realize. The condition of quasi-equilibrium with mixed control
is given by Eq. (48), which is equivalent to an aspect ratio
L/a >> [(MzM,)(dz/a) ln (R/a)]1/2. Typically, dz is on the order
of a unit-cell dimension anda is on the order of 1mm, sodz <<
a. Because we expectMz to be smaller thanM, and ln (R/a) is
of the order of unity, the right-hand side of the above-
mentioned inequality is probably <1 and the condition is
readily satisfied. Therefore, we can state that the growth of
well-isolated Si3N4 crystals is at least partially controlled by
surface diffusion, even in the quasi-equilibrium case. The con-

dition of nonequilibrium growth is given by Eq. (50). Because
we expect liquid diffusion to be at least as fast as surface
diffusion, (M,Mz)1/2 is probably on the same order asMr.
Meanwhile,a >> dz ≈ dr, and again ln (R/a) ≈ 1, so Eq. (48)
should also be readily satisfied. This observation means the
growth of isolated Si3N4 crystals is probably controlled by
surface diffusion on the end cap, and the shape is simply de-
termined by the ratio of supersaturation tom° through Eq. (24).

The above prediction suggests that, essentially from the very
beginning, the nonequilibrium form has manifested itself.
However, the shape parameterS, which is equal to [(m`/m°) −
1]x, is dependent on size. When a critical nucleus forms, the
size of the critical nucleus,a*, is given by the relationa* 4
g⊥V/m`.39 Thus,m`/m° 4 1 andS4 0. As the crystal grows
larger,m° (which is equal tog⊥V/a) decreases, so that the value
of S increases. In reality, the supersaturation probably also
decreases after nucleation begins. However, to provide the
driving force for growth, it is clear thatm`/m° must be >1, and
it probably continues to increase for at least some time during
the growth stage. Eventually, as the concentration of excess
atoms is depleted, the source of supersaturation changes to that
provided by the dissolution of the smaller crystals. This super-
saturation continues to feed the large crystals in what is known
as the Oswald ripening process.40 During this process, the ratio
m`/m° is determined bym°(a1)/m°(a2) 4 a2/a1, wherea1 anda2
are the radii of the (smaller) dissolving crystal and the (larger)
growing crystal, respectively.

In summary, we suggest that the shapes observed in the
growth of isolated grains represent a spectrum of shape evo-
lution controlled bym`/m°. This is illustrated schematically in
Fig. 5 by the evolution ofm`, m°, m`/m°, and S during the
stages of nucleation, growth, and coarsening. We suggest that,
after nucleation, althoughm` andm° both decrease monotoni-
cally, their ratio increases as the radius of the crystal increases.
As the growth stage passes and the coarsening stage begins, the
value of m`/m° becomes the ratio of the crystal size and is
determined by the size dispersity of the crystal population.
Therefore, highly nonequilibrium shapes can be observed in
two cases: (i) in the growth stage when the crystals are large,
and (ii) in the coarsening stage when the polydispersity is large.
This prediction is consistent with the experimental observa-
tions.25 For example, large shape distortions of Si3N4 have
been observed in three liquid systems ((Si,Al,Mg)(O,N),
(Si,Al,Y)(O,N), and (Si,Al,Mg,Y)(O,N)) when the crystals are

Fig. 4. Schematic distribution of the chemical potential on the side surface of a cylindrical rod of a length 2L (see inset). In case (i), liquid diffusion
is very fast and the chemical potential on the side surface is the same as supersaturation. In case (ii), liquid diffusion is very slow and the chemical
potential is approximatelym° but is slightly higher, following a parabolic curve centered atZ 4 0. Case (iii) shows an intermediate case, with the
chemical potential increasing fromm° to m` within a distanceL* from either end.

October 1998 Morphology of Silicon Nitride Grown from a Liquid Phase 2683



large. Furthermore, among the three systems, the polydisper-
sity is the largest in the (Si,Al,Mg,Y)(O,N) system, where the
most-severe shape distortion is observed. Lastly, in the
(Si,Al,Y)(O,N) system, the crystals are smaller but more nu-
merous, and the polydispersity is also the smallest. As expected
from our analysis, the shape distortion is relatively modest in
the (Si,Al,Y)(O,N) system.

(2) Radial Growth
As we mentioned in the introduction, direct influx from the

liquid to the end cap will have a tendency to smooth out the
shape distortion to restore the equilibrium shape. Surface dif-
fusion would have the same effect if the influx were not to
originate only from the edge. However, if the influx does origi-
nate from the edge, then a shape distortion with a convex edge
and a concave center must be maintained to distribute the mat-
ter from the edge to the center. Because an isolated crystal with
an atomically flat surface readily receives liquid flux from the
side but is unable to accommodate the influx atoms perma-
nently onto the surface structure on the side, this influx is
directed to the edge and then the end cap, where the surface
structure is atomically rough and more accommodating. As the
aspect ratio becomes large, this becomes the dominant mecha-
nism for axial growth and is responsible for the nonequilibrium
shape distortion of the end caps.

The importance of the above-mentioned mechanism dimin-
ishes if the side surface can accommodate the atomic influx,
i.e., if it grows radially. For an isolated crystal growing in a
liquid environment, our analysis in Sections II–IV can be
readily modified to account for radial growth. We assume that
the radial growth has a velocityV⊥ that is not dependent on the
axial coordinatez. Then, Eq. (29) is modified to become

~dzMz!
d2mz

dz2 = 1J, + V⊥ (51)

BecauseV⊥ is independent ofz, V⊥ can be absorbed into the
flux term J, by regarding it as an effective potential, using Eq.
(30). Specifically, by substituting Eq. (30) into Eq. (51) and
changing the variable, we obtain a modified form of Eq. (31) in
which m` is replaced bym̃` (the effective supersaturation).
This supersaturation is defined as follows:

m̃` = m` 1 SaV⊥

M,
D ln SR

aD (52)

With the definition ofm̃`, we then find that all the solutions of
mz, m*, S, andV|| in Sections II–IV are recovered if we simply
substitutem̃` for m`, because the only effect of radial growth
is to take away a portion of the liquid influx, which is equiva-
lent to a decrease of the supersaturation. Since the conditions
for the kinetic and shape transitions (given in Section IV) are
all independent of the driving force, the radial growth has no
effect on the transitions. In this sense, we have found justifi-
cation to ‘‘decouple’’ the radial growth problem from the shape
transition problem. However, we recognize that the radial
growth does reducem*, S, andV||, becausem̃` is smaller than
m`, according to Eq. (52).

The above-mentioned effect is important if the ‘‘effective
kinetic’’ potential ((aV⊥/M,) ln (R/a)) is large, in comparison
to m` − m°. This result is not expected to be the case for the
growth of isolated Si3N4 crystals. For example, using Eq. (26),
we find that the ratio of the quantitym` − m° to the kinetic
potential is given by

m` − m°

m` − m̃`
=
S a

dr
DSM,

Mr
DSV||

V⊥
D

ln SR

aD
(53)

This ratio is probably quite large, given the typical anisotropy
in the growth rate (V||/V⊥ ≈ 10 in most experiments18,21–25) and
the fact thata/dr > 100,M, > Mr (in most cases), and ln (R/a)
≈ 1. Therefore, the omission of the radial growth in the analysis
of Sections II–IV is not a serious problem and all our conclu-
sions, especially those regarding nonequilibrium growth,
should remain valid, even if radial growth is allowed.

The assumption that radial growth is independent ofz is
tantamount to the assumption of interface control. Under in-
terface control, the velocity is dependent on the potential but is
independent of diffusivity in the liquid or along the surface.
However, the functional form of the velocity dependence on
the surface potential is not knowna priori. Therefore, we will
not attempt to obtain a solution forV⊥ in the case of nonequi-
librium growth, considering the lack of importance of radial
growth, as reasoned previously.

(3) Silicon Nitride Ceramics
The other situation in which the surface diffusion mecha-

nism and the nonequilibrium shape may become unimportant is
when the liquid transport to the side surface is blocked. With-
out the large influx from the side surface, only direct liquid
diffusion to the end cap is significant and the shape distortion
disappears. This phenomenon will occur, to an increasing de-
gree, when the solid fraction increases. In a typical silicon
nitride ceramic that contains 90% solid grains, the crystals are
often stacked so that their side surfaces are in close contact
with neighboring crystals, separated by a thin liquid
film,14,41,42and only the ends are exposed to the liquid pockets.
Such a geometry makes it difficult to obtain a substantial influx
to the edge. Therefore, Si3N4 crystals in high-volume-fraction-
solids ceramics are not likely to develop nonequilibrium
shapes, except perhaps in the early stages of growth. For such
ceramics, several studies have reported a cubic growth law for
the length (i.e.,L3 4 L3

°
+ k||t,18,21,22and a higher exponent

for the width (e.g.,a5 4 a5

°
+ k⊥t22). (Here,L

°
anda

°
respec-

tively refer to the length and radius at the reference time, and
t is the time elapsed since the reference time. The rate con-
stants, of an appropriate unit, are represented by the variables
k.) In the following, we will assume an equilibrium shape and
show that these growth laws can be rationalized.

For equilibrium shape, the chemical potential ism° every-
where on the crystal surface. For axial growth, we refer to Eq.
(28), which is the standard form of diffusive growth of a
spherical particle.37 Assuminga ~ L for the moment (or at least

Fig. 5. Schematic evolution of supersaturation (m`) and the shape
factor (S) during the nucleation, growth, and coarsening stages of
Si3N4 in a melt. Also shown are equilibrium chemical potentials of the
crystal (m°) and the ratio ofm` to m°.
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the aspect ratio is a slow-varying function of the size) and the
growth is an Oswald ripening process driven by size differen-
tials, we find the problem reduced to that of particle coarsen-
ing.39 The standard mean field theory then predicts a cubic
growth law,39,43,44which is consistent with the experimental
observation of length growth. For the radial growth, we assume
it is interface controlled and is dependent on the potential only.
Therefore, we can let

V⊥ =
da

dt
= k⊥ ~m` − m°!n (54)

wherek⊥ is a rate constant andn is a fitting parameter. Using
m° 4 g⊥V/a andm` 4 g⊥V/a1 (wherea1 is the radii of the
dissolving crystals), we find that the above-mentioned kinetics
yield, in the mean field theory, the observed radial growth law
if n 4 4. Such a largen value means that the growth rate is
very slow at low surface potentials and increases more rapidly
at large surface potentials. This observation is consistent with
the common notion of interface control.38,45

From this discussion, it seems plausible that, in silicon ni-
tride ceramics that contain a small amount of liquid, the growth
at the ends of the crystal is diffusion controlled but the growth
of the side is interface controlled. As the amount of the liquid
increases, however, the side surface becomes more exposed to
the liquid; therefore, more diffusional fluxes can be funneled
through the side surfaces to the ends, which causes the growth
rate of the ends to increase with the amount of liquid. Such an
observation has been made in the literature (for example, see
Leeet al.19), although it was used as evidence against diffusion
control by arguing that the diffusion distance increases as the
amount of liquid increases.19 As we have shown here, such an
argument may not be justified, considering the new growth
mechanism that has been discovered in this work.

VI. Conclusions

(1) A new growth mechanism for Si3N4 crystals in a liquid
environment has been observed. The mechanism allows atom
diffusion via the liquid to the side surface, and it further de-
mands that the majority of these atoms be transported to the
end caps, to feed axial growth. For large-radius crystals, the
redistribution of atoms on the end caps requires a long relax-
ation time. As a result, a nonequilibrium shape develops there.

(2) A shape parameter has been determined that can be
used to describe the shape of the end caps. This parameter is
strongly dependent on size, reflecting the requirement of shape
relaxation by surface diffusion. It is also dependent on the ratio
of the chemical potential at a far distance from the cylinder to
the equilibrium surface chemical potential (m`/m°). Large dis-
tortion is predicted to occur during the growth stage, if the
crystal size is large, and during the Oswald ripening stage, if
the size polydispersity is large.

(3) For an isolated Si3N4 crystal growing in a liquid envi-
ronment, neither direct liquid diffusion to the end cap nor the
radial growth should be a significant factor that enters the
nonequilibrium shape consideration of the end caps.

(4) For a silicon nitride ceramic with a small volume frac-
tion of liquid, the diffusion flux to the side surface is blocked
and the above-mentioned mechanism ceases to operate. Shape
distortion should not occur, and the equilibrium shape should
be obtained. The axial growth in the later stage is via Oswald
ripening that is controlled by liquid diffusion. The radial
growth is interface controlled and is dependent only on the
surface chemical potential.
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