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SUMMARY. We propose a scaled linear mixed model to assess the effects of exposure and other covariates
on multiple continuous outcomes. The most general form of the model allows a different exposure effect for
each outcome. An important special case is a model that represents the exposure effects using a common
global measure that can be characterized in terms of effect sizes. Correlations among different outcomes
within the same subject are accommodated using random effects. We develop two approaches to model
fitting, including the maximum likelihood method and the working parameter method. A key feature of
both methods is that they can be easily implemented by repeatedly calling software for fitting standard
linear mixed models, e.g., SAS PROC MIXED. Compared to the maximum likelihood method, the working
parameter method is easier to implement and yields fully efficient estimators of the parameters of interest.
We illustrate the proposed methods by analyzing data from a study of the effects of occupational pesticide
exposure on semen quality in a cohort of Chinese men.
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1. Introduction

The problem of analyzing multiple outcomes arises frequently
in many fields of biomedical research. For example, in phase
11 clinical trials, multiple endpoints for treatment efficacy are
often obtained (Pocock, Geller, and Tsiatis, 1987), and in ter-
atology, multiple birth defects are often associated with prena-
tal exposure to some agent (Sammel and Ryan, 1996). In such
settings, one is often interested in studying whether various
outcomes are affected by exposure to the same degree. This
will often be the case, e.g., when different outcomes are essen-
tially measuring the same underlying event (e.g., treatment
efficacy or severity of birth defect) from different perspectives.
If there is evidence that outcomes are similarly affected by ex-
posure, then it will be of interest to test whether or not the
effect differs from zero and to estimate the effect.

Several authors have discussed the problem of constructing
a global test for common dose effects on multiple outcomes
(O’Brien, 1984; Pocock et al.,, 1987). In general, one would
expect such tests to have good power in settings where ex-
posure tends to have a generalized effect on all the outcomes
(Legler, Lefkopoulou, and Ryan, 1995) and to be more pow-
erful than separate tests using individual outcomes. This is
because the combined evidence of several outcomes for the
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exposure effect need not be as extreme as for a single out-
come (Pocock et al., 1987). While theory for global testing
is well studied, estimation of global effects has received less
attention. In the binary data setting, general estimating equa-
tion (GEE) methods have been used to estimate common dose
effects (Lefkopoulou, Moore, and Ryan, 1989).

Estimation of a common dose effect for continuous data
is often complicated by the fact that outcomes are measured
on different scales and a global measure of the exposure ef-
fects on the original scales of the outcomes could be mis-
leading. One approach is to use the two-stage factor analysis
method. Specifically, one first applies factor analysis to mul-
tiple outcome variables and calculates factor scores, then re-
gresses them on covariates (Bartholomew, 1987). Sammel and
Ryan (1996) considered a latent variable model, where multi-
ple outcomes are modeled as functions of a latent variable and
a simple regression model is used to relate the latent variable
and the exposure variable. A drawback of this approach is its
nonrobustness since the mean parameters depend heavily on
the covariance parameters. To address this problem, Sammel,
Lin, and Ryan (1999) proposed a multivariate linear mixed
mode], which maintains some of the features of the latent

393



594

variable model while disentangling the mean and covariance
parameters.

The example that motivates this paper involves a study of
male reproductive health in China (Padungtod et al., 1999).
In developing countries, farmers and pesticide factory workers
are often exposed to organophosphate pesticides. Although
the doses are not typically high enough to be life threaten-
ing, many believe that long-term occupational exposure might
cause adverse health effects, particularly related to reproduc-
tive function. The objective of the Padungtod study was to
investigate the effect of occupational organophosphate pesti-
cide exposure on semen quality among Chinese workers.

The study consisted of 43 Chinese male workers, among
whom 20 were exposed and 23 were not exposed to pesti-
cides. The 20 exposed workers were randomly chosen from a
pesticide factory in Anging City, China. The 23 unexposed
workers had similar work practices to the exposed subjects
and were randomly chosen from a nearby textile factory. The
two groups of subjects were also comparable in terms of du-
ration of employment and socioeconomic status. Semen sam-
ples were collected for the study subjects and analyzed for
sperm concentration, percentage of sperm with normal motil-
ity movement, and percentage of sperm with normal morpho-
logical shape. The purpose of the study was to assess the effect
of pesticide exposure on overall semen quality. Investigators
were also interested in knowing whether all three semen mea-
sures were affected to a similar degree or whether they varied
in their sensitivity and responsiveness to exposure. Because
the three outcomes were measured on very different scales,
standard methods could not easily be applied to address these
questions.

In this paper, we propose a scaled linear mixed model for
analyzing multiple continuous outcomes. In its most general
form, the model allows a different exposure effect for each out-
come. An important special case is a model that represents
the exposure effects using a common global measure that can
be characterized in terms of effect sizes. Correlations among
different outcomes within the same subject are accommodated
using random effects. Two methods are proposed for parame-
ter estimation. They include the maximum likelihood method
and the working parameter method. A key feature of both
methods is that they can easily be implemented by repeat-
edly calling software for fitting standard linear mixed mod-
els, such as SAS PROC MIXED. Compared to the maximum
likelihood method, the working parameter method is easier
to implement yet maintains full efficiency with respect to the
parameters of interest. We illustrate the proposed methods
with the analysis of the Chinese semen data.

2. The Scaled Linear Mixed Model

Suppose that, for the ith of n subjects, we observe M con-
tinuous outcomes y; = (v;1,. - ,yiM)T, as well as a vector of
covariates x; and an exposure variable w;. Our main interest
is to assess an overall exposure effect using the information
from the M outcomes. Since the M outcomes are often mea-
sured on different scales, we consider a scaled linear mixed
model

ij_ = x;r,ﬂj +wioj + Zz'iji + €44, (1)

7

where j = 1,..., M, o; is a scale parameter for the jth out-
come, (3;, ;) are regression coefficients, z;; is a design vec-
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tor, b; is a ¢ x 1 vector of random effects, and ¢;; are indepen-
dent random errors following N(0,1). The b; are distributed
as N(0,D(#)) and are used to model correlation among dif-
ferent outcomes of the same subject and 6 is a ¢ x 1 vector
of variance components to be estimated. We allow the design
vector z,; to be outcome specific so that different correlations
among different outcomes can be assumed, e.g., one could as-
sume a factor-analytic type correlation.

Model (1) is appealing in that it is simply a linear mixed
model for outcomes standardized by error standard devia-
tions. This most general formulation will yield results similar
to those obtained by fitting a separate model for each out-
come. Slight differences are to be expected, however, due to
the fact that the model allows outcomes to be correlated.
The real value of the formulation can be seen, however, by
considering restricted submodels. In particular, imposing the
restriction a3 = ag = -+ = ap; = a allows one to test for a
common exposure effect on the standardized (by error stan-
dard deviations) outcomes. From an applied perspective, the
parameter « can be thought of as the common effect size, an
attractive interpretation to practitioners. Another feature is
that the exposure effect can be detected with good statistical
power using a 1 d.f. global test statistic.

Let ¥ = diag(o?,...,0%), X; = {x} @ Lwl}, y =
(BIT, e ,,BE,QT)T, a = (al, - ,OtM)T, Zi = (21‘17 Cey
Zz'M)T, Yy = (ym, ey yéM)T, and €; = (62‘1, ey eiM)T, where
® denotes a direct product and I is an M x M identity matrix.
Model (1) can be succinctly written in a matrix form as

U2y = Xy + Ziby + €. 2
It follows that the marginal distribution of y; is N(\I'l/ 2X 7,
U2V, (0)81/2), where V;(8) = Z;D(6)Z] + I. The log-

likelihood function of (v,8,0%), where ¢? = (o%,...,
2 \T .
o) s s
T
M 1 1
Zl{ - —2fln27r ~3 In|¥| — §lani|
i=

_ % (\11_1/2yi - Xﬂ)TVi(O)_l (‘Pul/zyi - Xﬂ) }
3)

Since the scale parameter matrix ¥ enters into both the mar-
ginal mean and covariance of y,, standard linear mixed model
machinery cannot be used directly to fit the scaled linear
mixed model (1). A new estimation procedure is needed.

3. The Estimation Procedures

In this section, we develop two simple iterative algorithms
using the maximum likelihood method (Section 3.1) and the
working parameter method (Section 3.2) to fit the general
model in (1). We will show how these algorithms can be easily
implemented by repeatedly calling existing software, such as
SAS PROC MIXED, for fitting standard linear mixed models.
The latter feature makes the approach particularly attractive
to practitioners.

3.1 The Maximum Likelihood Method

Examination of equation (2) suggests that, if o2 were known,
one could easily calculate the maximum likelihood estimates
(MLEs) of v and 6 by fitting the linear mixced modecl
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yi =Xiv+ Z;b; + ¢, (4)

where y; = v/ %y, denotes the standardized (by error

standard deviations) y; and ¢; ~ N(0, I). Hence, the difficulty
in fitting the scaled hnear mixed model (2) mainly lies in
calculating the MLE of 0. These observatlons are supported
by deriving the score equations of (v,8, ¢ )

Specifically, dlfferentlatlon of the log-likelihood function (3)
with respect to (~y, 8, ) shows that the maximum likelihood
estimators (%, 6, o2) solve the score equations

n

S XTIV - X =0 (5)
i=1
= 1 ~10V;
;{ 2tr<vi aok)
1 Tx,—10V; 1y
30 =X TV VI 6 - X =0 ()
- 1 1
- Tavit ) b=
Zl{ 27 ¥ 52 v xm} 0, (7)

where A; is a diagonal matrix with the jth diagonal element
equal to one and the other diagonal elements equal to zero and
v} in (5)—(7) contains the unknown parameters 0J2~. It can be

easily seen that, for given o2, the score equations for y and @
in (5) and (6) coincide with those under model (4). Using the
identity V. Yy —Xi3) = (yf —Xid—Z; b;) (Harville, 1977),
where b; is the best linear unbiased predictor (BLUP) of b,
from fitting model (4), we can rewrite the score equation for
032- in (7) as 032- = crjz-(n_1 Y1 ¥:;7i;), where ri; is the jth
component of the residual vector r; = y; — X;4 — Zif)i for
the sth subject and can be easily calculated after fitting model
(4).

These results suggest that the MLEs ('Ay,é,a?) can be
calculated using the following iterative algorithm, which
repeatedly calls existing software for fitting standard linear
mixed models. This algorithm can be viewed as solving
the score equations (5)—(7) using a Gauss—Seidel algorithm
(Lange, 1999).

(1) Set initial values for o°, e.g., 012- = sample variance of
Yij-

(2) Calculate y;; = ys5/0;.

(3) Estimate v and 9 by fitting the linear mixed model! (4),
with the variances of the error terms ¢; constrained to
be one, e.g., using SAS PROC MIXED with the PARM
statement.

(4) Update 032‘ using 0]2 new C732',01(1(’"’—1 2’?:1 y;(jrij)’
where the residuals r; are by-products of step 3 from
fitting model (4) and can be easily obtained from SAS
PROC MIXED.

(5) Check for convergence. If jn~! £, yi;mij — 1] is less
than a prespecified convergence criterion, then stop;
otherwise, go back to step 2.

It is of interest to study the properties of the MLEs
(4,8,5%). Unlike the MLEs in standard linear mixed models,
the MLEs of the regression coefficients v and the variance
components (8, 0?) in the scaled linear mixed model (2) are
not asymptotically orthogonal. In other words,
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lim ncov(4,6) # 0

n—oo

and
lim ncov(%,02) # 0.
n—00

This can be shown by explicitly calculating the asymptotic
covariance matrix of the MLE (4,4, z;2) (see Appendix
A.1). An attractive feature is that cov(§) and cov(d) do
not depend on o? (Appendix A.3). However, cov(¥§) #
(21 XV 1X;) ™1, the usual covariance of the fixed effects
from a standard mlxed model, but involves an adjustment
factor. This can be easily seen from equation (A.1).

3.2 The Working Parameter Method

A key property of the MLEs (%,8,02) is that they are
asymptotically most efficient. However, its implementation
could be complicated. For example, when using the iterative
procedure in Section 3.1, one needs to constrain the variances
of ¢;. This may not be allowed in some software, such as
the S-plus function LME. Anocther complication is that some
programming is needed when we update o, In this section,
we propose a simpler iterative algorithm by introducing
working parameters. We first describe the working parameter
algorithm and then show that it yields consistent estimates
of (v,8,0?).

The main idea of this approach is to fit model (4) without
constraining the variances of the €¢; to be ones and then to
properly update the scale parameters o2 using the estimated
measurement error variances, which are used as working
parameters. This algorithm is given as follows.

(1) Set initial values of 02, e.g., JJQ- = sample variance of
Yij-
(2) Calculate y;; = y;;/0;.
(3) Fit the linear mixed model
yi = Xy + Zib; + e, (8)
where e; ~ N(0,diag(7)) and 7 = (71, ... , 7)Y Note

that no constraint is placed on 7 when we fit model (8).
We refer to 7 as working parameters. This fitting gives
estlmators of (v,8,7).

(4) Update o7 using o7 0., = 07 2oami G=1,...,M).

(5) Check for convergence. If |r; — 1} is less than a
prespecified convergence criterion for all j =1,..., M,
then stop; otherwise, go back to step 2.

Compared to the MLE iterative algorithm discussed in
Section 3.1, the above algorithm is simpler and requires less
programming. We now investigate the properties of these
estimators. This can be done by studying the estimating
equations for (7,6, 7) that are implicitly being solved by the

above procedure at convergence, i.e., when 7; = 1 (j =
1,..., M),
n
S XIViHyi X =0 (9)
i=1
n
1 ~-10V;
Z{ 2% (Vi 66k>
i=1
1 10V, ,—
50 = Xe) TV GV =X } =0 (10)



596

i{ - %tr (Vi'ay)

=1
1, . - _
5 =X VAV v = Xem) = 0.(1)

Note that the above equations are derived by letting 7 equal
one in the standard score equations under the linear mixed
model (8) with 7 as free parameters (Harville, 1977). The
estimating equations for v and ¢ in (9) and (10) are identical
to those used to derive the MLEs (equations (5) and (6)).
However, the estimating equation of ¢ in (11) is different
from its MLE counterpart in (7). Although our working
parameter method does not yield the MLEs of (v, 6, 02), it can
be easily shown that equation (11) is an unbiased estimating
equation for o° nnder model (1). Straightforward application
of the standard estimating equation theory (Foutz, 1977) then
shows that this algorithm yields consistent and asymptotically
normal estimators of (7,0, 0?).
Specifically, denote the set of the estimating equations (9)

(11) by U = (U UT,U )T and their solution by £ =

(ﬁT,éT,JzT) . Then we have ¢ is asymptotically normal-
ly distributed with mean equal to the true value of £ =
(vt 6%, 02T)T and a sandwich covariance matrix [E(—-0U/
AeET) " Leov(U)[E(—UT/8¢)] 1. A detailed expression of
this covariance matrix is given in Appendix A.2. Like the
MLEs (%, 6, 52), 5 and (8,02) are not asymptotically ortho-
gonal, ie., limp_ooncovld,(d,062)] # 0 and cov(§) #
[P XiVi_IXi]_l. However, cov(y) and cov(f) do not
depend on o2 (Appendix A.3).

3.3 Study of the Asymptotic Relative Efficiency

Although the estimator £ = (,0,02) yielded by the
working parameter (WP) approach discussed in Section 3.2 is
consistent, it is not the MLE and therefore may be inefficient.
Hence, it is of interest to study the loss of information and
its asymptotic relative efficiency (ARE) with respect to the
MLE ¢ = (¥,0, Pt 2).

Following Bhapkar (1991), we define the informa-
tion matrix of the working parameter estimator £ as I =
E(—0UT /6¢)cov L (U)E(—8U /6¢™). The results in Appen-
dices A.1 and A.2 show that the information matrix Z of the
MLE £ and the information matrix  of € are

Iin 0 I3
I=| 0 1o 1oz
I5 I3y Iss
and
~ Tin 0 Iy
I=1|0 I Ip|, (12)
Ily Isy I3

where the expressions of Zj;, and T35 are given in Appendices
A.1 and A.2. A comparison of Z and T shows that the loss of
information of the working parameter estimator £ lies only in
estimation of o7 ,le, T — T is zero except for the last block
diagonal element, which equals Z33 — Zs3 and is a positive
definite matrix. Since Z;3 and Zp3 do not equal zero, the
estimators of ¥ and 8 are not asymptotically orthogonal to
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the estimators of ¢2. This means the loss of information in
estimating ¢ could affect the AREs of the WP estimators
(%, 0) with respect to the MLEs (¥, 6), ie., (¥,0) may not be
fully efficient relative to the MLEs (%, 6). 3

Rather than studying the global ARE of £ with respect
to é, we are more interested in studying the AREs of each
of the three parameter estimators (v, 6, 02) separately, which
are defined as (Serfling, 1980, Section 4.1.2)

ARE(7,7) = [lim ‘Cov(ﬁ)']l/d
’ n-—00 ICOV(ﬁ)' ’

(13)

where 7 equals «, 8 or 02; d is the dimension of n and equals
p, ¢, M for v, 8, o2, respectively; an(} p is the dimension of .
The covariances cov(¥), cov(8), cov(c?) can be obtained using
the partitioned inverse information matrix Z in Appendix
A.1, while cov(7),cov(), cov(ch) can be obtained using the
partitioned sandwich covariance matrix in Appendix A.2.
Their forms are given in Appendix A.3. Using the results in
Appendices A.1 and A.2, we can show that AREs in (13) have
the following attractive property.

PROPOSITION 1: ARE(,4), ARE(8, §), and ARE(02, 02)

are independent of o2
Proof. See Appendix A.3.

It is difficult to study the loss of efficiency of the WP
estimators (¥, 8, o2) relative to their MLE counterparts under
the general model (1). We specialize to the scaled random
intercept model with a common dose effect,

T
Yij /05 = %X; B+ wio + by + €5,

where b, ~ N(0,6) and ¢;; are independent N(0,1).
Straightforward, though tedious, calculations show that,
under this scaled random intercept model, the key parameters
of interest under the working parameter method (&,6) are
fully efficient compared to their MLE counterparts for any
x; and a bmary exposure variable w;, but the remaining
parameters (5 ,0 ) under the working parameter method may
not be fully efficient.

To numerically study the loss of efficiency of estimation
of the remaining parameters (3, 02) under the working
parameter method, we consider the simple model

yzj/aj :ﬁoj+wia+bi+qj, (14)

where w; is a binary exposure variable taking the value zero
for half of the n subjects and one for the other. Using the
results in Appendices A.1 and A.2, we can easily derive closed-
form expressions of ARE(3, 8) and ARE(02, 02) as functions
of (v,0).

We provide in Table 1 numerical values of these AREs for
a wide variety of configurations of (8, ,#). Note that we
do not need to specify the values of o since Proposition 1
shows that the AREs do not depend on o. To mimic the
Chinese semen data, we assumed three outcomes (M = 3).
Our results suggest that the efficiency of 3 and o2 depends on
the parameter configurations and loss of efficiency is observed
when (8, a) and @ are large. In the interest of space, we only

‘teport cases with positive values of 8 and a in Table 1. Similar

results are obtained when 8 and « are negative. The table
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Table 1
Asymptotic relative efficiency (ARE) of the WP estimates
(8,02) with respect to the MLEs (3, 52) under model (14)

ARE
6 8 a 8 o?

0.25 (0,1,2) 0 0.99 0.98
0.25 (0,1,2) 1 0.96 0.91
0.25 (0,1,2) 5 0.53 0.39
0.25 (3,4,5) 0 0.99 0.98
0.25 (3,4,5) 1 0.92 0.91
0.25 (3,4,5) 5 0.43 0.39
1.00 (0,1,2) 0 0.97 0.88
1.00 (0,1,2) 1 0.93 0.83
1.00 (0,1,2) 5 0.54 0.34
1.00 (3,4,5) 0 0.89 0.88
1.00 (3,4,5) 1 0.85 0.83
1.00 (3,4,5) 5 0.44 0.40
5.00 (0,1,2) 0 0.89 0.52
5.00 (0,1,2) 1 0.81 0.51
5.00 (0,1,2) 5 0.51 0.34
5.00 (3,4,5) 0 0.61 0.52
5.00 (3,4,5) 1 0.59 0.51
5.00 (3,4,5) 5 0.40 0.34

does not include any results for the exposure effect a or
variance components 6 since estimates of these parameters
are fully efficient under the working parameter method. In
settings like ours where primary interest lies in estimating
the exposure effect «, our results suggest that the simple
working parameter approach provides an effective and
efficient alternative to MLE estimation.

4. Application to the Chinese Semen Data

We fit scaled linear mixed models to the Chinese semen
data introduced in Section 1 using the MLE method and
the working parameter method discussed in Sections 3.1 and
3.2. The three outcome variables used to measure semen
quality include sperm concentration (CONCEN), percentage
of sperm with normal motility (MOTIL), and percentage of
sperm with normal morphology (MORPH). Our main interest
was to study the effect of occupational organophosphate
pesticide exposure on overall semen quality with the aim
of comstructing a global measure of the exposure effect and
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developing a global test. The exposure variable (EXP) was an
indicator of whether a worker was employed at the pesticide
factory. The covariates of interest were age (AGE) and sexual
abstinence period (ABSTIN).

We first examined the data using descriptive statistics.
Examination of the distributions of the three outcome
variables showed that the distribution of CONCEN was
somewhat skewed, while the other two variables appeared
to be approximately normally distributed. Hence, we took
a log transformation of CONCEN to make the normality
assumption more plausible, calling the resulting variable
LNCONCEN. Table 2 gives the exposure-specific mean and
standard deviation of each outcome. One can easily see that
the scales of the three outcomes differ substantially and hence
the crude exposure effects represented by the mean differences
vary dramatically among the three outcomes. To explore
whether standardization could lead to a similar degree of
the exposure effects on the three outcomes, we standardized
each outcome by its sample standard deviation calculated by
pooling the data over the two exposure groups, calling the
resulting variables S LNCONCEN, S_MOTIL, S.MORPH.
Their means and the standard deviations are also given
in Table 2. These results suggest that a common exposure
effect on the scaled outcomes may well be plausible. This
observation is further supported by the boxplots of the
standardized outcomes, presented in Figure 1. Note that we
have not adjusted for the possible confounding effects of AGE
and ABSTIN.

We began our formal statistical analysis by fitting a scaled
linear mixed model with different exposure effects for each
outcome. For the jth outcome measured on the ith subject
(i=1,...,43), the model can be written as

Yij/o; = Boj + B1;AGE; + B2; ABSTIN; + o; EXP; + b; + €55,
(15)

where y;; (j = 1,2,3) denotes LNCONCEN, MOTIL,
MORPH, respectively, EXP; = 1 if a worker was exposed
to pesticides and zero otherwise, the random intercept b; ~
N(0, ), and €;; are independent N(0,1). For simplicity, we
assume in model (15) a simple random intercept model, which
assumes equal correlation among the three outcomes. To
examine this assumption, we calculated the sample correlation
matrix. The sample correlations among the three outcomes

Table 2
Exposure-specific summary statistics for the three semen measures

Unexposed (n = 23)

Exposed (n = 20)

Mean SD Mean SD Mean difference
CONCEN 74.51 43.64 42.92 22.49 —31.59
LNCONCEN 4.14 0.60 3.58 0.66 ~0.56
MOTIL 57.22 13.69 47.25 15.47 —9.97
MORPH 61.39 8.93 57.22 8.67 —4.17
S_LNCONCEN 6.07 0.87 5.25 0.97 —0.82
S_MOTIL 3.77 0.90 3.10 1.01 —-0.67
S_MORPH 6.87 0.99 6.37 0.97 —0.50

S_LNCONCEN = LNCONCEN/pooled sample SD; S MOTIL = MOTIL/pooled sample
SD; S MORPH = MORPH/pooled sample SD.
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Figure 1. Boxplots of the three standardized semen mea-
sures (S_.LNCONCEN, S.MOTIL, S MORPH) stratified by
exposure status, where a log transformation was taken for
CONCEN and the sample standard deviation was used to
standardize each measure.

(LNCONCEN, MOTIL, MORPH) are 0.18, 0.23, 0.40. This
seems to indicate the same correlation between LNCONCEN
and the other two variables, but the correlation between
MOTIL and MORPH might be different. To examine this,
we added another random effect shared only by the last two
variables MOTIL and MORPH to (15) as
yij /o = Boj + B1;AGE; + B2 ABSTIN;
+ o EXP; + b; + Z,5b; + €35, (16)

where Z;; = (O,I,I)T and b; ~ N(0,6) and is independent
of b;. This model captures the above observed correlation
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structure. A likelihood ratio test was performed to test for
Hy: 6 = 0 and gave a p-value 0.12. Note that the null hy-
pothesis is on the boundary of the parameter space and the
likelihood ratio test follows a 50:50 mixture of x3 and X2 (Self
and Liang, 1987). This suggests that the equal-correlation as-
sumption under (15} is plausible.

The MLEs of the individual exposure effects a; are —~0.97
(SE = 0.37), —0.92 (S8E = 0.37), and —0.67 (SE = 0.36).
We next fit a common exposure effect model by imposing the
restriction a1 = ap = a3 = . Comparing the heterogeneous
to the homogeneous exposure effect model yielded a likelihood
ratio test statistic 0.54 (d.f. = 2, p-value = 0.76), suggesting
quite strongly that a common exposure effect assumption is
adequate.

Table 3 presents the estimates and the standard errors from
fitting the common dose effect model using the ML method
and the WP method. Both methods estimate the regression
coefficient « as —0.85 (SE = 0.25), which measures the global
exposure effect on the scaled outcomes and can be interpreted
in terms of effect size. This result shows that subjects exposed
to pesticides have significantly lower semen quality compared
to those who are not exposed (p-value = 0.001). Specifically,
the mean of each of the three semen quality measures of the
exposure group is 0.85 error standard deviations less than that
of the unexposed group. The exposure effects on the original
scales of the semen outcomes LNCONCEN, MOTIL, MORPH
can be estimated using ao; and are —0.47,-10.18, —6.17 us-
ing the ML method and —-0.48, —10.04, —6.14 using the WP
method. The coefficients of age and sexual abstinence period
are not statistically significant and indicate these two vari-
ables do not have a significant impact on semen quality, at
least for our data set.

A comparison of the MLEs and the WP method estimates
in Table 2 suggests that the simple WP method yields virtu-
ally identical estimates of the regression coefficients  and
and the variance component 8. Their standard errors are also

Table 3
The MLEs and the estimates using the working parameter
method (WPM) from application to the Chinese semen data

MLE WPM
Estimate SE Naive SE Estimate SE Naive SE
Intercept Bo1 7.40 1.03 0.64 7.26 1.04 0.64
Bo2 5.58 0.88 0.64 5.66 0.90 0.64
Bos 8.26 1.11 0.64 8.30 1.14 0.64
Age B11 —0.01 0.02 0.02 -0.01 0.02 0.02
B2 —0.02 0.02 0.02 —0.02 0.02 0.02
B1s 0.02 0.02 0.02 0.02 0.02 0.02
Abstinence B21 0.03 0.03 0.03 0.02 0.03 0.03
B22 —0.05 0.03 0.03 —0.06 0.03 0.03
Bo3 —0.05 0.03 0.03 —-0.05 0.03 0.03
Exposure o —0.85 0.25 0.24 —0.85 0.25 0.24
0 0.27 0.16 0.13 0.28 0.16 0.14
o? 0.31 0.07 0.32 0.07
o5 143.92 32.27 139.43 32.18
03 52.74 11.83 52.13 12.03
Log likelihood —362.93 —362.96
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almost identical. This result is consistent with our theoreti-
cal finding in Section 3.3 and suggests that the WP method
estimates of the regression coefficients and the variance com-
ponents are highly efficient compared to their MLE counter-
parts. The estimates of the scale parameters o2 using the
two methods are slightly different. The standard errors of the
o2 estimates using the WP method are slightly larger than
those of the MLEs. This result is consistent with our theoret-
ical finding. The log likelihood of the estimates using the WP
method is slightly lower than that of the MLEs (Table 3).

Although one can estimate the model parameters under
the two methods by repeatedly calling software, such as SAS
PROC MIXED, for fitting linear mixed models, additional
programming is needed to compute the correct standard er-
rors. (SAS macros for implementing these two methods and
calculating the standard errors are available from the authors
on request.) It is hence of interest to study the behavior of the
naive standard errors output from SAS at convergence. The
naive covariance matrices of the MLEs of (y, #) are calculated
as 1'1—11 and 12—21, while the naive covariance matrices of the
working parameter estimates of (,0) are calculated as the
(p+ ¢) x (p+ ¢) upper block diagonal matrix of B~!, where
Il_ll, 12_21, and B are defined in Appendices A.1 and A.2. We
present in Table 3 these naive standard error estimates for
the Chinese semen data. It is interesting to note that these
naive standard errors perform reasonably well except for the
intercepts.

5. Discussion

We have proposed a scaled linear mixed model for multiple
continuous outcomes. In its most general form, the model al-
lows for a different exposure effect on each outcome. By com-
paring this model to one that specifies a common exposure
effect, we can test for heterogeneity of the exposure effects.
The common dose effects model provides an appealing global
measure of the exposure effects that can be characterized in
terms of effect sizes. In both cases, correlations among dif-
ferent outcomes measured on the same subject are accommo-
dated using random effects. Our model is especially powerful
for detecting and estimating the exposure effect when all out-
comes affect the exposure to a similar degree.

Sometimes different outcomes are affected by the exposure
to different degrees. One way to model this is to use our het-
erogeneous exposure effect model to report individual expo-
sure effect estimates and use the Bonferroni adjustment. How-
ever, it has been found that the Bonferroni adjustment is of-
ten too conservative in analyzing multiple outcomes (Saviltz
and Olshan, 1995). Alternatively, one can adopt other models,
such as latent variable models (Sammel and Ryan, 1996). Our
general model (1) allows specifying flexible correlation struc-
tures. In order to specify an appropriate correlation structure,
it would be helpful to first examine the sample correlation ma-
trix of the outcomes.

We scale the outcomes using the unknown error standard
deviations 032-. There are also other scaling methods. One ap-
proach is to fit standard linear mixed models assuming dif-
ferent exposure effects and then to standardize the estimated
regression coefficients. In contrast to our method, this ad hoc
method does not provide a global measure of the exposure
effects and the interpretation of the resulting standardized
coefficients is not clear. It is also less powerful for detecting

599

the global exposure effect than our method. An alternative
approach is to standardize each outcome by its sample stan-
dard deviation before fitting a linear mixed model with a com-
mon exposure effect. A major drawback of this approach is
that the sample standard deviation estimates are inappropri-
ate since subjects are from heterogeneous populations (e.g.,
exposed and unexposed groups). They have different covari-
ate values (e.g, different exposure status) and have different
mean values.

We have proposed fitting this model using either the max-
imum likelihood method or the working parameter method.
Both methods can be easily implemented by repeatediy call-
ing software, such as SAS PROC MIXED, for fitting stan-
dard linear mixed models. Compared to the ML method, the
working parameter method is easier to implement. Qur results
show that the estimators of the key regression coefficients and
the variance components yielded by the working parameter
method are highly efficient compared to their MLE counter-
parts. The estimators of the scale parameters using the work-
ing parameter method can be less efficient compared to the
MLEs. Hence, if one is also interested in the scale parameters,
it would be a better strategy to use the MLEs.
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RESUME

Nous proposons un modele linéaire mixte standardisé pour
évaluer les effets de Pexposition et des autres covariables sur
des réponses multiples continues. La forme la plus générale du
modele permet un facteur d’exposition différent pour chaque
réponse. Un cas particulier important est un modéle qui repré-
sente les effets de 'exposition en utilisant une mesure com-
mune globale qui peut étre caractérisée en terme d’effet taille.
Les corrélations entre les différentes réponses pour un meéme
sujet sont prises en compte par des effets aléatoires. Nous
développons deux approches pour 'ajustement du modele,
incluant la méthode du maximum de vraisemblance et la mé-
thode du paramétre de travail. Une propriété clé des deux
méthodes est qu’elles peuvent étre facilement implémentées en
appelant de fagon répétée un logiciel pour ajuster un modele
linéaire & effets mixtes standard, par exemple SAS PROC
MIXED. Comparé & la méthode du maximum de vraisem-
blance, la méthode du parametre de travail est plus facile a
implémenter et aboutit & des estimateurs complétement effi-
cients des parameétres d’intérét. Nous illustrons les méthodes
proposées en analysant les données d’une étude des effets de
Pexposition professionnelle aux pesticides sur la qualité du
sperme dans une cohorte d’hommes chinois.
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APPENDIX

A.1. Asymptotic Covariance Matrix of

the MLE (%, 9, 42)
Differentiating the score equations (5)-(7) with respect to
(7,8, 02) and taking expectations of the resulting expressions
gives the information matrix Z given in equation (12), for
k,k'=1,...,cand 4,7 =1,..., M, as follows:

(%
Tu =) X VX,

i=1
S|

Tisl,dl = ) 55X Vi A Xiy
i=1 " J

1 10V, .10V,
=3 e (V7 G )

Biometrics, June 2000

n

Tsslia| = [ q0li =51+ )
J i=1

—1
40202 [tr(A]—Vi Ay Vi)
J7g’

+ WTX?AjvglAj,xﬁ].

Here 8]j = j'] equals one if j = j’ and zero otherwise. The

asymptotic covariance matrix of the MLE (%, 6, 0:2) is 771,
Note that 713, j] denotes the jth row of Zi3.

A.2. Asymptotic Covariance Matrix of the WP
Estimators (7,0, 67%)

Let € = (77,6T,02")T, A = E(-8U/8¢T), and B = cov(U).
Some calculations give

I3

Tos

I 0
A= [ 0 Zoo
0 Ajx

and

T 0 0
B= { 0 T A;fg} ,
0 Agjy

where, for k=1,...,cand 5,5 =1,..., M,

n
. 1 10V, —
IAIEDY §tr(vi ' a6, Vi IAJ')

i=1
n

. 1 ~
Assls i = Z 552 (Aviiay)

i=1 7
"1

Baslj,j'] = Z 5t (Vitavitay).
i=1

Then the asymptotic covariance matrix of (7,86, cr~2) is
A7'B(A™Y)T. The information matrix of (%,8,02) can be
defined as (Bhapkar, 1991) Z = ATB7!A. Some tedious cal-
culations show 7 is given in (12), with

I3s = To3Ton Tos + (Ass — To3T55 AL)
x (Bas — As2T5y A3o) "' (Aaz — AsaToy Tog).

A.3. Proof of Proposition 1

Examination of the information matrix 7 in Appendix A.1
suggests that we can write 7 as

*
Ill

I= vz

AP
iz, vl

where I7] = diag(Z11,T22) and I3,,7T5,, T4, are defined ac-
cordingly. Note that (I{;,Z]5,25;,755) in our formulation
only depend on (v,0) but are free of o2. It follows that the
covariance matrix of (¥,6) is

S . I e dm 1 1—1
cov(,0) = [T — Tip ¥ (¥ 50 )" )
—1
* —1 %
= [Ifl — I3 121] ) (A1)

which is free of 2. The covariance matrix of &2 is
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-1
cov(6?) = [\1/“112*2\1/‘1 - \11“11;111‘{11;2\1/‘1]

=¥ [152 ‘12*111(1_11?2} v. (A.2)

Using the results in Appendix A.2, we can write the matrices

A and B as
A_ Al AR][T o
T A3 Ak lo v
and
B}, Bj
B-[ph okl
[le B,

where the partition of A and B is similar to that of 7 and
(A7;,B;) (1,5 = 1,2) are free of o2. The covariance matrix

13
Ci2 I 0
Coo 0 v

of (%,8,02) hence can be written as

1 -ntT I O Ci1
AT'B(ATY _[0 \p] [Cm
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_ 1 G Cp¥
YCq YC0U |’
where
Cii Ciz| _ (AL
Co;

—1 "
Al B11
Cos ASI

A3 B3,
Y T
[ a
Aj A3
It follows that cov(ﬁl,é) = Cii, which is free of a?, and
cov(o2) = ¥Cq¥. Combining these results with those in
equations {A.1) and (A.2) and using equation (13), we have

ARE(4,4), ARE(4,6), and ARE(02,02) are independent of
2
o

372}
B3,





