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SUMMARY. We propose a scaled linear mixed model to assess the effects of exposure and other covariates 
on multiple continuous outcomes. The most general form of the model allows a different exposure effect for 
each outcome. An important special case is a model that represents the exposure effects using a common 
global measure that can be characterized in terms of effect sizes. Correlations among different outcomes 
within the same subject are accommodated using random effects. We develop two approaches to model 
fitting, including the maximum likelihood method and the working parameter method. A key feature of 
both methods is that they can be easily implemented by repeatedly calling software for fitting standard 
linear mixed models, e.g., SAS PROC MIXED. Compared to the maximum likelihood method, the working 
parameter method is easier to implement and yields fully efficient estimators of the parameters of interest. 
We illustrate the proposed methods by analyzing data from a study of the effects of occupational pesticide 
exposure on semen quality in a cohort of Chinese men. 
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1. Introduction 
The problem of analyzing multiple outcomes arises frequently 
in many fields of biomedical research. For example, in phase 
I1 clinical trials, multiple endpoints for treatment efficacy are 
often obtained (Pocock, Geller, and Tsiatis, 1987), and in ter- 
atology, multiple birth defects are often associated with prena- 
tal exposure to some agent (Sammel and Ryan, 1996). In such 
settings, one is often interested in studying whether various 
outcomes are affected by exposure to the same degree. This 
will often be the case, e.g., when different outcomes are essen- 
tially measuring the same underlying event (e.g., treatment 
efficacy or severity of birth defect) from different perspectives. 
If there is evidence that outcomes are similarly affected by ex- 
posure, then it will be of interest to test whether or not the 
effect differs from zero and to  estimate the effect. 

Several authors have discussed the problem of constructing 
a global test for common dose effects on multiple outcomes 
(O'Brien, 1984; Pocock et al., 1987). In general, one would 
expect such tests to have good power in settings where ex- 
posure tends to have a generalized effect on all the outcomes 
(Legler, Lefkopoulou, and Ryan, 1995) and to be more pow- 
erful than separate tests using individual outcomes. This is 
because the combined evidence of several outcomes for the 

exposure effect need not be as extreme as for a single out- 
come (Pocock et al., 1987). While theory for global testing 
is well studied, estimation of global effects has received less 
attention. In the binary data setting, general estimating equa- 
tion (GEE) methods have been used to estimate common dose 
effects (Lefkopoulou, Moore, and Ryan, 1989). 

Estimation of a common dose effect for continuous data 
is often complicated by the fact that outcomes are measured 
on different scales and a global measure of the exposure ef- 
fects on the original scales of the outcomes could be mis- 
leading. One approach is to use the two-stage factor analysis 
method. Specifically, one first applies factor analysis to mul- 
tiple outcome variables and calculates factor scores, then re- 
gresses them on covariates (Bartholomew, 1987). Sammel and 
Ryan (1996) considered a latent variable model, where multi- 
ple outcomes are modeled as functions of a latent variable and 
a simple regression model is used to relate the latent variable 
and the exposure variable. A drawback of this approach is its 
nonrobustness since the mean parameters depend heavily on 
the covariance parameters. To address this problem, Sammel, 
Lin, and Ryan (1999) proposed a multivariate linear mixed 
model, which maintains some of the features of the latent 
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variable model while disentangling the mean and covariance 
parameters. 

The example that motivates this paper involves a study of 
male reproductive health in China (Padungtod et al., 1999). 
In developing countries, farmers and pesticide factory workers 
are often exposed to organophosphate pesticides. Although 
the doses are not typically high enough to be life threaten- 
ing, many believe that long-term occupational exposure might 
cause adverse health effects, particularly related to reproduc- 
tive function. The objective of the Padungtod study was to 
investigate the effect of occupational organophosphate pesti- 
cide exposure on semen quality among Chinese workers. 

The study consisted of 43 Chinese male workers, among 
whom 20 were exposed and 23 were not exposed to pesti- 
cides. The 20 exposed workers were randomly chosen from a 
pesticide factory in Anqing City, China. The 23 unexposed 
workers had similar work practices to the exposed subjects 
and were randomly chosen from a nearby textile factory. The 
two groups of subjects were also comparable in terms of du- 
ration of employment and socioeconomic status. Semen sam- 
ples were collected for the study subjects and analyzed for 
sperm concentration, percentage of sperm with normal motil- 
ity movement, and percentage of sperm with normal morphe 
logical shape. The purpose of the study was to assess the effect 
of pesticide exposure on overall semen quality. Investigators 
were also interested in knowing whether all three semen mea- 
sures were affected to a similar degree or whether they varied 
in their sensitivity and responsiveness to exposure. Because 
the three outcomes were measured on very different scales, 
standard methods could not easily be applied to address these 
questions. 

In this paper, we propose a scaled linear mixed model for 
analyzing multiple continuous outcomes. In its most general 
form, the model allows a different exposure effect for each out- 
come. An important special case is a model that represents 
the exposure effects using a common global measure that can 
be characterized in terms of effect sizes. Correlations among 
different outcomes within the same subject are accommodated 
using random effects. Two methods are proposed for parame- 
ter estimation. They include the maximum likelihood method 
and the working parameter method. A key feature of both 
methods is that they can easily be implemented by repeat- 
edly calling software for fitting standard linear mixed mod- 
els, such as SAS PROC MIXED. Compared to the maximum 
likelihood method, the working parameter method is easier 
to implement yet maintains full efficiency with respect to the 
parameters of interest. We illustrate the proposed methods 
with the analysis of the Chinese semen data. 

2. T h e  Scaled Linear Mixed  Model 
Suppose that, for the zth of subjects, we observe A4 con- 
tinuous outcomes y, = ( y z l , .  . . , y2MlT, as well as a vector of 
covariates x, and an exposure variable wz. Our main interest 
is to assess an overall exposure effect using the information 
from the A4 outcomes. Since the M outcomes are often mea- 
sured on different scales, we consider a scaled linear mixed 
model 

where j = 1,. . . , M ,  oJ is a scale parameter for the j t h  out- 
come, (&, c y 3 )  are regression coefficients, z,] is a design vec- 

tor, b, is a q x 1 vector of random effects, and tij are indepen- 
dent random errors following N(0 , l ) .  The bi are distributed 
as N(O,D(B)) and are used to model correlation among dif- 
ferent outcomes of the same subject and 0 is a c x 1 vector 
of variance components t o  be estimated. We allow the design 
vector zij to be outcome specific so that different correlations 
among different outcomes can be assumed, e.g., one could as- 
sume a factor-analytic type correlation. 

Model (1) is appealing in that it is simply a linear mixed 
model for outcomes standardized by error standard devia- 
tions. This most general formulation will yield results similar 
to those obtained by fitting a separate model for each out- 
come. Slight differences are to be expected, however, due to 
the fact that the model allows outcomes to be correlated. 
The real value of the formulation can be seen, however, by 
considering restricted submodels. In particular, imposing the 
restriction a1 = a2 = . . .  = CXM = cy allows one to test for a 
common exposure effect on the standardized (by error stan- 
dard deviations) outcomes. From an applied perspective, the 
parameter CL can be thought of as the common effect size, an 
attractive interpretation to practitioners. Another feature is 
that the exposure effect can be detected with good statistical 
power using a 1 d.f. global test statistic. 

Let Q = diag(al , . .  . , u M ) ,  2 X, = {xi ‘I’ 8 I ,wiI},  y = 

(P:,...,P;,aT)T, Qi = (Ql>..’,QiM) , z, = ( Z i l ,  . . , ,  T 

T T z i ~ )  , yz = (y i l , .  . . , y i ~ )  , and E ;  = (ti], . . .  ti^)^, where 
C3 denotes a direct product and I is an M x M identity matrix. 
Model (1) can be succinctly written in a matrix form as 

(2) 
112 Q- yi = Xiy + Zibi + c,. 

It follows that the marginal distribution of yi is N(91/2X,y, 
Q1/2V,(f3)Q1/2), where V,(S) = ZiD(f3)ZT + I. The log- 
likelihood function of ( y , B , u 2 ) ,  where C T ~  (of, .  , . , 
OR)’, is 

= 

(3) 

Since the scale parameter matrix enters into both the mar- 
ginal mean and covariance of y i ,  standard linear mixed model 
machinery cannot be used directly to fit the scaled linear 
mixed model (1). A new estimation procedure is needed. 

3. The Est imat ion  Procedures 
In this section, we develop two simple iterative algorithms 
using the maximum likelihood method (Section 3.1) and the 
working parameter method (Section 3.2) to fit the general 
model in (1). We will show how these algorithms can be easily 
implemented by repeatedly calling existing software, such as 
SAS PROC MIXED, for fitting standard linear mixed models. 
The latter feature makes the approach particularly attractive 
to practitioners. 

3.1 The Maximum Lzkelihood Method 
Examination of equation ( 2 )  suggests that, if g 2  were known, 
one could easily calculate the maximum likelihood estimates 
(MLEs) of y and f3 by fitting the linear mixed model 
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y* 2 = x .  zy + Zibi + ti, (4) 

where y: = 9-lI2yi denotes the standardized (by error 
standard deviations) yi and ti N N(0, I). Hence, the difficulty 
in fitting the scaled linear mixed model (2) mainly lies in 
calculating the MLE of u2. These observations are supported 
by deriving the score equations of (7, 0, a2) .  

Specifically, differentiation of the log-likelihood function (3) 
with respect to (y, 8, u2) shows that the maximum likelihood 
estimators (T, 8, u2) solve the score equations 

n c XTv;l(y,* - Xzy) = 0 ( 5 )  
i=l 

1 1 2 rT a,v,l(yg -Xzy) 

where A j  is a diagonal matrix with the j t h  diagonal element 
equal to one and the other diagonal elements equal t o  zero and 
yt in (5)-(7) contains the unknown parameters 0;. It can be 
easily seen that, for given u2, the score equations for y and 0 
in (5) and (6) coincide with those under model (4). Using the 
identity V;l(y,' -Xi?) = (yd -Xi+-Zibi) (Harville, 1977), 
where b i  is the best linear unbiased predictor (BLUP) of b, 
from fitting model (4), we can rewrite the score equation for 
u: in (7) as u; = u;(C1 Cy==, y:yij), where ~ i j  is the j t h  
component of the residual vector ri = y: - Xi+ - Zibi for 
the ith subject and can be easily calculated after fitting model 

These results suggest that the MLEs (+ ,8 , i2 )  can be 
calculated using the following iterative algorithm, which 
repeatedly calls existing software for fitting standard linear 
mixed models. This algorithm can be viewed as solving 
the score equations (5)-(7) using a Gauss-Seidel algorithm 
(Lange, 1999). 

(4). 

Set initial values for v2, e.g., a? = sample variance of 
Y i j  ' 
Calculate y:3 = yij  /uj . 
Estimate y and 0 by fitting the linear mixed model (4), 
with the variances of the error terms ~i constrained to  
be one, e.g., using SAS PROC MIXED with the PARM 
statement. 

where the residuals ri are by-products of step 3 from 
fitting model (4) and can be easily obtained from SAS 
PROC MIXED. 
Check for convergence. If Inp1 C:==, y;jrij - 11 is less 
than a prespecified convergence criterion, then stop; 
otherwise, go back to step 2. 

is of interest t o  study the properties of the MLEs 

Update u; using a;,,,, = o~,,,~(R.- 2 1 n  Ei=ly i j~ i j ) ,  * 

(T, 6,e2). Unlike the MLEs in standard linear mixed models, 
the MLEs of the regression coefficients y and the variance 
components (@,a2) in the scaled linear mixed model (2) are 
not asymptotically orthogonal. In other words, 

lim R. cov(i, 8) # o 
11-00 

and 

lim ncov(+,02) # 0. 

This can be shown by explicitly calculating the asymptotic 
covariance matrix of the MLE (T,e,a^z) (see Appendix 
A.l). An attractive feature is that cov(T) and cov(8) do 
not depend on u2 (Appendix A.3). However, cov(9) # 
(Cy=l XiV;'Xi)-', the usual covariance of the fixed effects 
from a standard mixed model, but involves an adjustment 
factor. This can be easily seen from equation (A.1). 

3.2 The Working Parameter Method 
A key property of the MLEs (+,8,a2) is that they are 
asymptotically most efficient. However, its implementation 
could be complicated. For example, when using the iterative 
procedure in Section 3.1, one needs to constrain the variances 
of ti. This may not be allowed in some software, such as 
the S-plus function LME. Another complication is that some 
programming is needed when we update u2. In this section, 
we propose a simpler iterative algorithm by introducing 
working parameters. We first describe the working parameter 
algorithm and then show that it yields consistent estimates 

The main idea of this approach is t o  fit model (4) without 
constraining the variances of the ei t o  be ones and then to 
properly update the scale parameters u2 using the estimated 
measurement error variances, which are used as working 
parameters. This algorithm is given as follows. 

n+Oo 

of (7, 0, u2) .  

Set initial values of u2, e.g., u2 3 = sample variance of 
Y i j .  
Calculate yt = y i j / u j .  
Fit the linear mixed model 

y: = Xiy + Zibi + ei, (8) 

where ei - N(O,diag(r)) and r = (71,. . . , r ~ ) ~ .  Note 
that no constraint is placed on r when we fit model (8). 
We refer t o  r as working parameters. This fitting gives 
estimators of (y,O, r ) .  
Update 032 using u;,~,, = uj,oidrj ( j  = 1 , .  . . ,111). 
Check for convergence. If 1.j - 11 is less than a 
prespecified convergence criterion for all j = 1 , .  . . , M ,  
then stop; otherwise, go back to step 2. 

2 

Compared to  the MLE iterative algorithm discussed in 
Section 3.1, the above algorithm is simpler and requires less 
programming. We now investigate the properties of these 
estimators. This can be done by studying the estimating 
equations for (y,O, r )  that are implicitly being solved by the 
above procedure at convergence, i.e., when rj = 1 ( j  = 
1 , .  ' ' , w,  

n 

i=l 
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2= 1 

Note that the above equations are derived by letting 7 equal 
one in the standard score equations under the linear mixed 
model (8) with 7 as free parameters (Harville, 1977). The 
estimating equations for y and 8 in (9) and (10) are identical 
to those used to derive the MLEs (equations ( 5 )  and (6)). 
However, the estimating equation of u2 in (11) is different 
from its MLE counterpart in (7). Although our working 
parameter method does not yield the MLEs of (y,8, u2) ,  it can 
be easily shown that equation (11) is an unbiased estimating 
equation for u2 under model (1). Straightforward application 
of the standard estimating equation theory (Foutz, 1977) then 
shows that this algorithm yields consistent and asymptotically 
normal estimators of (y, 8, u2). 

Specifically, denote the set of the estimating equations (9)- 
(11) by U = ( U ~ , U ~ , U ~ 2 ) T  and their solution by f = 

(TT,8T,u-2T)'r. Then we have f is asymptotically normal- 
ly distributed with mean equal to the true value of ( = 
(yT, OT, u2T)T and a sandwich covariance matrix [E(-aU/ 
a(T)]-l~ov(U)[E(-XJT/d()]-'. A detailed expression of 
this covariance matrix is given in Appendix A.2. Like the 
MLEs (+,6,a2), ? and (8 , i2)  are not asymptotically ortho- 
gonal, i.e., limniconcov[~,(8,u2)] # 0 and cov(7) # 
[Cy=l X,V;'Xi]-'. However, cov(+) and cov(8) do not 
depend on u2 (Appendix A.3). 

3.3 S tudy  of the Asympto t ic  Relative EfJiciency 
Although the estimator ,$ = ( q , 6 , i 2 )  yielded by the 
working parameter (WP) approach discussed in Section 3.2 is 
consistent, it is not the MLE and therefore may be inefficient. 
Hence, it is of interest to study the loss of information and 
its asymptotic relative efficiency (ARE) with respect to the 

Following Bhapkar (1991), we define the informa- 
tion matrix of the working parameter estimator ( as 2 = 
E( -dUT/d[)cov-l (U)E( -aU/a[T). The results in Appen- 
dices A . l  and A.2 show that the information matrix Z of the 
MLE [ and the information matrix ? of f are 

- -  

MLE i = (+, e, 3). 

and 

111 0 213 

(12) 

where the expressions of ZJ-k and 2 3 3  are given in Appendices 
A.l and A.2. A comparison of Z and ? shows that the loss of 
information of the working parameter estimator ,$ lies only in 
estimation of u2, i.e., Z - 2 is zero except for the last block 
diagonal element, which equals 133 - 233 and is a positive 
definite matrix. Since 113 and 2 2 3  do not equal zero, the 
estimators of y and 8 are not asymptotically orthogonal to 

the estimators of u2. This means the loss of information in 
estimating u2 could affect the AREs of the WP estimators 
(?, 8) with respect to the MLEs (+, 6 ) ,  i.e., (+,8) may not be 
fully efficient relative to the MLEs (+, 8). 

with respect 
to i, we are more interested in studying the AREs of each 
of the three parameter estimators (y,8,  u2)  separately, which 
are defined as (Serfling, 1980, Section 4.1.2) 

Rather than studying the global ARE of 

where 77 equals y, 8 or u2;  d is the dimension of and equals 
p ,  c,  A 4  for 7 ,  8, u2, respectively; and p is the dimension of y. 
The covariances cov(+), cov(8), cov(.^2) can be obtained using 
the partitioned inverse inform9tion matrix Z in Appendix 
A.l ,  while cov(~),cov(8),cov(u2) can be obtained using the 
partitioned sandwich covariance matrix in Appendix A.2. 
Their forms are given in Appendix A.3. Using the results in 
Appendices A.l and A.2, we can show that AREs in (13) have 
the following attractive property. 

PROPOSITION 1: ARE(?,?), ARE(8,8), and ARE(i2 ,a2)  
are independent of u2. 

Proof. See Appendix A.3. 

It is difficult Lo study the loss of efficiency of the W P  
estimators (T, 8, u2) relative to their MLE counterparts under 
the general model (1). We specialize to the scaled random 
intercept model with a common dose effect, 

T yzj /uJ  = xi P + W ~ C Y  + bi + t i j  , 
where bi - N(0,O) and tij are independent N ( 0 , l ) .  
Straightforward, though tedious, calculations show that, 
under this scaled random intercept model, the key parameters 
of interest under the working parameter method (&,8) are 
fully efficient compared to their MLE counterparts for any 
xi and a binary exposure variable w i ,  but the remaining 
parameters (p, 82)  under the working parameter method may 
not be fully efficient. 

To numerically study the loss of efficiency of estimation 
of the remaining parameters (0,~') under the working 
parameter method, we consider the simple model 

y 2 j / ~ j  = Poj + W ~ Q  + bi + t2jr (14) 

where q is a binary exposure variable taking the value zero 
for half of the n subjects and one for the other. Using the 
results in Appendices A.l and A.2, we can easily derive closed- 
form expressions of ARE@, ,@ and ARE(i2,  i2) as functions 

We provide in Table 1 numerical values of these AREs for 
a wide variety of configurations of (P,a,O) .  Note that we 
do not need to specify the values of u since Proposition 1 
shows that the AREs do not depend on u. To mimic the 
Chinese semen data, we assumed three outcomes (A4 = 3). 
Our results suggest that the efficiency of and i2 depends on 
the parameter configurations and loss of efficiency is observed 
when (P, a )  and 8 are large. In the interest of space, we only 
'report cases with positive values of p and cy in Table 1. Similar 
results are obtained when p and a are negative. The tablc 

of (738). 
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"able 1 
Asymptotic relative eficiency (ARE)  of the WP estimates 
(6, i2) with respect to the MLEs  (8, $') under model (14) 

ARE 

o P a P U2 

0.25 (0,L 2) 1 0.96 0.91 

0.25 (3,4,5) 0 0.99 0.98 
0.25 (3,4,5) 1 0.92 0.91 

0.25 (01 172) 0 0.99 0.98 

0.25 (0,1,2) 5 0.53 0.39 

0.25 (3,475) 5 0.43 0.39 
1.00 (0,1,2) 0 0.97 0.88 
1.00 (0 ,L  2 )  1 0.93 0.83 
1.00 (0,1,2) 5 0.54 0.34 

1.00 (3,4,5) 1 0.85 0.83 
1 .OO (3>4,5) 5 0.44 0.40 
5.00 (0,L 2) 0 0.89 0.52 
5.00 (0 ,L  2 )  1 0.81 0.51 
5.00 (0,L 2) 5 0.51 0.34 
5.00 (3,4,5) 0 0.61 0.52 
5.00 (3,4,5) 1 0.59 0.51 
5.00 (3,4,5) 5 0.40 0.34 

1.00 (3,415) 0 0.89 0.88 

does not include any results for the exposure effect a or 
variance components 6 since estimates of these parameters 
are fully efficient under the working parameter method. In 
settings like ours where primary interest lies in estimating 
the exposure effect a,  our results suggest that the simple 
working parameter approach provides an effective and 
efficient alternative to MLE estimation. 

4. Application to the Chinese Semen Data 
We fit scaled linear mixed models to the Chinese semen 
data introduced in Section 1 using the MLE method and 
the working parameter method discussed in Sections 3.1 and 
3.2. The three outcome variables used to measure semen 
quality include sperm concentration (CONCEN), percentage 
of sperm with normal motility (MOTIL), and percentage of 
sperm with normal morphology (MORPH). Our main interest 
was to study the effect of occupational organophosphate 
pesticide exposure on overall semen quality with the aim 
of constructing a global measure of the exposure effect and 

developing a global test. The exposure variable (EXP) was an 
indicator of whether a worker was employed at the pesticide 
factory. The covariates of interest were age (AGE) and sexual 
abstinence period (ABSTIN). 

We first examined the data using descriptive statistics. 
Examination of the distributions of the three outcome 
variables showed that the distribution of CONCEN was 
somewhat skewed, while the other two variables appeared 
to be approximately normally distributed. Hence, we took 
a log transformation of CONCEN to make the normality 
assumption more plausible, calling the resulting variable 
LNCONCEN. Table 2 gives the exposure-specific mean and 
standard deviation of each outcome. One can easily see that 
the scales of the three outcomes differ substantially and hence 
the crude exposure effects represented by the mean differences 
vary dramatically among the three outcomes. To explore 
whether standardization could lead to a similar degree of 
the exposure effects on the three outcomes, we standardized 
each outcome by its sample standard deviation calculated by 
pooling the data over the two exposure groups, calling the 
resulting variables S-LNCONCEN, S-MOTIL, S-MORPH. 
Their means and the standard deviations are also given 
in Table 2. These results suggest that a common exposure 
effect on the scaled outcomes may well be plausible. This 
observation is further supported by the boxplots of the 
standardized outcomes, presented in Figure 1. Note that we 
have not adjusted for the possible confounding effects of AGE 
and ABSTIN. 

We began our formal statistical analysis by fitting a scaled 
linear mixed model with different exposure effects for each 
outcome. For the j t h  outcome measured on the i th subject 
(i = 1,. . . ,43), the model can be written as 

where yi j  ( j  = 1,2,3) denotes LNCONCEN, MOTIL, 
MORPH, respectively, EXPi = 1 if a worker was exposed 
to  pesticides and zero otherwise, the random intercept bi - 
N(O,6), and ~ i j  are independent N(0,l) .  For simplicity, we 
assume in model (15) a simple random intercept model, which 
assumes equal correlation among the three outcomes. To 
examine this assumption, we calculated the sample correlation 
matrix. The sample correlations among the three outcomes 

Table 2 
Exposure-specific summary statistics for the three semen measures 

Unexposed (n = 23) 
Mean SD Mean SD Mean difference 

Exposed (n  = 20) 

CONCEN 74.51 43.64 42.92 22.49 -31.59 
LNCONCEN 4.14 0.60 3.58 0.66 -0.56 
MOTIL 57.22 13.69 47.25 15.47 -9.97 
MORPH 61.39 8.93 57.22 8.67 -4.17 
S-LNCONCEN 6.07 0.87 5.25 0.97 -0.82 
S-MOTIL 3.77 0.90 3.10 1.01 -0.67 
S-MORPH 6.87 0.99 6.37 0.97 -0.50 

S-LNCONCEN = LNCONCEN/pooled sample SD; S-MOTIL = MOTIL/pooled sample 
SD; S-MORPH = MORPH/pooled sample SD. 
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Figure 1. Boxplots of the three standardized semen mea- 
sures (S-LNCONCEN, S-MOTIL, S-MORPH) stratified by 
exposure status, where a log transformation was taken for 
CONCEN and the sample standard deviation was used to 
standardize each measure. 

(LNCONCEN, MOTIL, MORPH) are 0.18, 0.23, 0.40. This 
seems to indicate the same correlation between LNCONCEN 
and the other two variables, but the correlation between 
MOTIL and MORPH might be different. To examine this, 
we added another random effect shared only by the last two 
variables MOTIL and MORPH to (15) as 

+ ajEXPi + bi + Z:bi + ~ i j ,  (16) 

where Z i j  = (0,1, l)T and bi N N(O,J) and is independent 
of bi. This model captures the above observed correlation 

structure. A likelihood ratio test was performed to test for 
Ho: 6 = 0 and gave a pvalue 0.12. Note that the null hy- 
pothesis is on the boundary of the parameter space and the 
likelihood ratio test follows a 50:50 mixture of & and x; (Self 
and Liang, 1987). This suggests that the equal-correlation as- 
sumption under (15) is plausible. 

The MLEs of the individual exposure effects aj are -0.97 
(SE = 0.37), -0.92 (SE = 0.37), and -0.67 (SE = 0.36). 
We next fit a common exposure effect model by imposing the 
restriction a1 = a2 = a 3  = a. Comparing the heterogeneous 
to the homogeneous exposure effect model yielded a likelihood 
ratio test statistic 0.54 (d.f. = 2, pvalue = 0.76), suggesting 
quite strongly that a common exposure effect assumption is 
adequate. 

Table 3 presents the estimates and the standard errors from 
fitting the common dose effect model using the ML method 
and the WP method. Both methods estimate the regression 
coefficient a as -0.85 (SE = 0.25), which measures the global 
exposure effect on the scaled outcomes and can be interpreted 
in terms of effect size. This result shows that subjects exposed 
to pesticides have significantly lower semen quality compared 
to those who are not exposed (pvalue = 0.001). Specifically, 
the mean of each of the three semen quality measures of the 
exposure group is 0.85 error standard deviations less than that 
of the unexposed group. The exposure effects on the original 
scales of the semen outcomes LNCONCEN, MOTIL, MORPH 
can be estimated using auj and are -0.47, -10.18, -6.17 us- 
ing the ML method and -0.48, -10.04, -6.14 using the WP 
method. The coefficients of age and sexual abstinence period 
are not statistically significant and indicate these two vari- 
ables do not have a significant impact on semen quality, at 
least for our data set. 

A comparison of the MLEs and the WP method estimates 
in Table 2 suggests that the simple WP method yields virtu- 
ally identical estimates of the regression coefficients and a 
and the variance component 0. Their standard errors are also 

Table 3 
The  MLEs and the estimates using the working parameter 

method (WPM) from application to the Chinese semen data 

MLE WPM 

Estimate SE Naive SE Estimate SE Naive SE 

Intercept Po1 
Po2 

Age 01 1 
P12 

Abstinence P2 1 
P22 

Exposure ff 

PO3 

PI3 

P23 

0 

7.40 
5.58 
8.26 

-0.01 
-0.02 

0.02 
0.03 

-0.05 
-0.05 
-0.85 

0.27 
0.31 

143.92 
52.74 

1.03 
0.88 
1.11 
0.02 
0.02 
0.02 
0.03 
0.03 
0.03 
0.25 
0.16 
0.07 

32.27 
11.83 

-362.93 

0.64 
0.64 
0.64 
0.02 
0.02 
0.02 
0.03 
0.03 
0.03 
0.24 
0.13 

7.26 
5.66 
8.30 

-0.01 
-0.02 

0.02 
0.02 

-0.06 
-0.05 
-0.85 

0.28 
0.32 

139.43 
52.13 

1.04 
0.90 
1.14 
0.02 
0.02 
0.02 
0.03 
0.03 
0.03 
0.25 
0.16 
0.07 

32.18 
12.03 

-362.96 

0.64 
0.64 
0.64 
0.02 
0.02 
0.02 
0.03 
0.03 
0.03 
0.24 
0.14 
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almost identical. This result is consistent with our theoreti- 
cal finding in Section 3.3 and suggests that the W P  method 
estimates of the regression coefficients and the variance com- 
ponents are highly efficient compared to their MLE counter- 
parts. The estimates of the scale parameters a’ using the 
two methods are slightly different. The standard errors of the 
c2 estimates using the W P  method are slightly larger than 
those of the MLEs. This result is consistent with our theoret- 
ical finding. The log likelihood of the estimates using the WP 
method is slightly lower than that of the MLEs (Table 3). 

Although one can estimate the model parameters under 
the two methods by repeatedly calling software, such as SAS 
PROC MIXED, for fitting linear mixed models, additional 
programming is needed to compute the correct standard er- 
rors. (SAS macros for implementing these two methods and 
calculating the standard errors are available from the authors 
on request.) It is hence of interest to study the behavior of the 
naive standard errors output from SAS at convergence. The 
naive covariance matrices of the MLEs of ( ~ ~ 0 )  are calculated 
as TG1 and 2G1, while the naive covariance matrices of the 
working parameter estimates of (7,O) are calculated as the 
( p  + c) x ( p  + c)  upper block diagonal matrix of B-l, where 
TG’, ZG1, and B are defined in Appendices A.l and A.2. We 
present in Table 3 these naive standard error estimates for 
the Chinese semen data. It is interesting to note that these 
naive standard errors perform reasonably well except for the 
intercepts. 

5. Discussion 
We have proposed a scaled linear mixed model for multiple 
continuous outcomes. In its most general form, the model al- 
lows for a different exposure effect on each outcome. By com- 
paring this model to one that specifies a common exposure 
effect, we can test for heterogeneity of the exposure effects. 
The common dose effects model provides an appealing global 
measure of the exposure effects that can be characterized in 
terms of effect sizes. In both cases, correlations among dif- 
ferent outcomes measured on the same subject are accommc- 
dated using random effects. Our model is especially powerful 
for detecting and estimating the exposure effect when all out- 
comes affect the exposure to a similar degree. 

Sometimes different outcomes are affected by the exposure 
to different degrees. One way to model this is to use our het- 
erogeneous exposure effect model to report individual expo- 
sure effect estimates and use the Bonferroni adjustment. How- 
ever, it has been found that the Bonferroni adjustment is of- 
ten too conservative in analyzing multiple outcomes (Saviltz 
and Olshan, 1995). Alternatively, one can adopt other models, 
such as latent variable models (Sammel and Ryan, 1996). Our 
general model (1) allows specifying flexible correlation struc- 
tures. In order to specify an appropriate correlation structure, 
it  would be helpful t o  first examine the sample correlation ma- 
trix of the outcomes. 

We scale the outcomes using the unknown error standard 
deviations a;. There are also other scaling methods. One ap- 
proach is to fit standard linear mixed models assuming dif- 
ferent exposure effects and then to standardize the estimated 
regression coefficients. In contrast to our method, this ad hoc 
method does not provide a global measure of the exposure 
effects and the interpretation of the resulting standardized 
coefficients is not clear. It is also less powerful for detecting 

the global exposure effect than our method. An alternative 
approach is to standardize each outcome by its sample stan- 
dard deviation before fitting a linear mixed model with a com- 
mon exposure effect. A major drawback of this approach is 
that the sample standard deviation estimates are inappropri- 
ate since subjects are from heterogeneous populations (e.g., 
exposed and unexposed groups). They have different covari- 
ate values (e.g, different exposure status) and have different 
mean values. 

We have proposed fitting this model using either the max- 
imum likelihood method or the working parameter method. 
Both methods can be easily implemented by repeatedly call- 
ing software, such as SAS PROC MIXED, for fitting stan- 
dard linear mixed models. Compared to the ML method, the 
working parameter method is easier to implement. Our results 
show that the estimators of the key regression coefficients and 
the variance components yielded by the working parameter 
method are highly efficient compared to their MLE counter- 
parts. The estimators of the scale parameters using the work- 
ing parameter method can be less efficient compared to the 
MLEs. Hence, if one is also interested in the scale parameters, 
it would be a better strategy to use the MLEs. 
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RESUME 
Nous proposons un modkle linkaire mixte standardis6 pour 
kvaluer les effets de l’exposition et des autres covariables sur 
des rkponses multiples continues. La forme la plus g6nkrale du 
modkle permet un facteur d’exposition diffkrent pour chaque 
r6ponse. Un cas particulier important est un modkle qui reprk- 
sente les effets de l’exposition en utilisant une mesure com- 
mune globale qui peut Etre caractkriske en terme d’effet taille. 
Les corr6lations entre les diffkrentes rkponses pour un mEme 
sujet sont prises en compte par des effets alkatoires. Nous 
dkveloppons deux approches pour l’ajustement du modkle, 
incluant la mkthode du maximum de vraisemblance et la m6- 
thode du paramktre de travail. Une propriktk cl6 des deux 
m6thodes est qu’elles peuvent Etre facilement implCment6es en 
appelant de faCon rkpktke un logiciel pour ajuster un modkle 
linkaire B effets mixtes standard, par exemple SAS PROC 
MIXED. Compare B la mkthode du maximum de vraisem- 
blance, la mkthode du paramktre de travail est plus facile 8. 
implkmenter et aboutit B des estimateurs complktement effi- 
cients des parametres d’intkrgt. Nous illustrons les mkthodes 
propos6es en analysant les donnkes d’une ktude des effets de 
l’exposition professionnelle aux pesticides sur la qualit6 du 
sperme dans une cohorte d’hommes chinois. 
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APPENDIX 

A.l.  Asymptotic Covariance Matrix of 

Differentiating the score equations (5)-(7) with respect to 
(y,0,02) and taking expectations of the resulting expressions 
gives the information matrix Z given in equation (12), for 
k ,  k' = 1,. . . , c and j , j '  = 1 , .  . . , M ,  as follows: 

the MLE ( T , 0 , u 2 )  

n 

i=l 
n 

2 1 3 [ . , j ]  = c -x:v;lnjXiy 1 
2ff; i=l 

+ rT~:l'a,~;1~,l~,7]. 

Here b [ j  = j'] equals one if j = j '  and zero otherwise. The 
asymptotic covariance matrix of the MLE (+, 6,  â 2) is 2 - l .  
Note that Z13[.,j] denotes the j t h  row of 2 1 3 .  

A.2. Asymptotic Covariance Matrix of the WP 
Estimators (q, 6, G2) 

T TDZT T Let E = (y ,6 , 
Some calculations give 

) , A = E(-aU/a[T), and B = cov(U). 

111 0 113 

A = [ 1 2 2  2 2 3  ] 
A32 A33 

and 

111 0 0 

0 A32 B33 

where, for k = 1,. . . , c and j ,  j '  = 1 , .  . . , M ,  

n 

Then the asymptotic covariance matrix of (r,e",i2) is 
A-lB(A-l)T. The information matrix of (+,e",g-Z) can be 
defined as (Bhapkar, 1991) f = ATB-lA. Some tedious cal- 
culations show f is given in ( la) ,  with 

T -1 T -1 T 
?33 = 123122 2 2 3  + (A33 - 223122  A32) 

x (B33 - A32122 -1 A32) 'r -1 (A33 - A321&'223). 

A.3. Proof of Proposition 1 

Examination of the information matrix 1 in Appendix A . l  
suggests that we can write 2 as 

where I T l  = diag(Z11,122) and 1;2,Z,*1,Z,*2 are defined ac- 
cordingly. Note that (Z,", , Z?,, Z,*., , 2z2) in our formulation 
only depend on (7,O) but are free of n2. It follows that the 
covariance matrix of (?, 8) is 

cov(ljl, e) = - 1T2P-1(P-11z29-1)-1P-11~~] - 1 

which is free of 0'. The covariance matrix of 8' is 
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cov(6-2) = [Y-lZ&9-1 - 9-1Z;J;1-1Z:29-1 

-1 
= 9 p2 - x;1z;1-'T~2] @. (-4.2) 

Using the results in Appendix A.2, we can write the matrices 
A and B as 

and 

where the partition of A and B is similar to that of Z and 
(A:J,B:33_) ( i , j  = 1,2) are free of u2.  The covariance matrix 
of (5,8, a2)  hence can be written as 

It follows that cov(?,8) = C11, which is free of c2, and 
cov(u2) = PC229. Combining these results with those in 
equations (A.l) and (A.2) and using equation (13), we have 
ARE(+,+), ARE(8, d), and ARE(ue2, u2) are independent of 

2 u .  




