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Simultaneous Determination of Thermal Conductivity and 
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The present work describes a transient method for determin- 
ing thermal properties of refractory materials. Specific to 
this technique are (1) the experimental measurement of heat 
flux on the heated surface and (2) a method of data analysis 
based on the numerical techniques of nonlinear least 
squares and finite difference. Several mathematical formu- 
lations are proposed to minimize computing time require- 
ments. Silica molding sand is used in two examples to 
illustrate the applicability of the technique to refractory ma- 
terials. Owing to the measurement of heat flux on the heated 
surface, both thermal conductivity k and volumetric specific 
heat C can be determined if their temperature dependencies 
are not considered. In the case when temperature-dependent 
thermal properties are considered, it is found that the inher- 
ent accuracy of the experiment does not allow the determi- 
nation of both temperature-variable k and C at the same 
time. It is shown that the present method has advantages in 
the ease and directness of the required experiment and in 
greater computational efficiency. Thermal properties are re- 
ported for a bonded silica and an unbonded silica sand. 
[Key words: thermal conductivity, refractories, modeling, 
specific heat, thermal properties.] 

I. Introduction 

N THE thermal analyses of metallurgical processes, thermal I properties of refractory materials are often required. Ex- 
amples include molding sand in static-mold metal castings, 
linings in metallurgical furnaces, and mold powder in the 
continuous casting of steel.’ As a result, a rapid method for 
the determination of thermal properties is useful. In the fol- 
lowing discussions, thermal properties refer to the quantities 
k ,  C, and a, where k is the thermal conductivity and C is the 
volumetric specific heat. The thermal diffusivity u is a 
derived quantity given by a = k/C. Refractory materials are 
generally characterized by (1) a low thermal conductivity 
compared to metals and (2) a noticeable variation of thermal 
properties with temperature due to the large temperature dif- 
ferentials usually involved. 

The present work is concerned with a comparison of mathe- 
matical techniques for computing thermal properties from a 
heating experiment. Only experiments involving a sample 
with a heated surface and a resulting temperature gradient 
(not calorimetric methods) are considered. From a mathemati- 
cal point of view, these methods can be classified according 
to (1) truly steady-state,’-’ (2) qua~i-steady-state,~-’ and 
(3) methods. 

(1) Truly Steady-State Methods 
These methods, suitable only for the measurement of k but 

not C, depend on the measurement of the heat flux q and the 

temperature drop AT through a sample of thickness Ax under 
steady-state conditions. For one-dimensional rectangular ge- 
ometries, the thermal conductivity is given by the ratio of the 
heat flux q to the temperature gradient AT/Ax. 

A steady-state method employing an absolute measurement 
of the magnitude of the heat flux has been published as an 
ASTM standard.’ In this method, refractory samples in the 
form of slabs are heated from above by an electrical heat 
source and cooled from below by a water-cooled heat sink. 
From the temperature rise of the cooling water through a cen- 
tral heat sink, the heat flux through a central sample can be 
calculated. On the other hand, the measurement of heat flux 
can also be carried out by comparative means3 using standard 
refractory samples of known thermal conductivity in series 
with the unknown sample. Refractory materials suitable for a 
standard in thermal conductivity include alumina, titanium 
carbide, and f~s te r i te .~  

(2) Quasi-Steady-State Methods 
In contrast to the truly steady-state methods, quasi-steady- 

state methods utilize nonsteady temperature measurements 
(changing with time), but the mathematical analysis is based 
on a quasi-steady-state solution to the transient heat equation 
at sufficiently long times, such that temperature varies lin- 
early with the logarithm of time6-’ or the time scale itself? 
Examples of the first type include the work of Roshan et ~ 1 . ~  
and Hartley et aZ.,7,s who applied the method of “thermal 
probe” to the measurement of thermal conductivity in mold- 
ing sands. 

(3) Transient Methods 
Transient methods derive their analyses from the transient 

solution of the Fourier equation of heat conduction. For these 
methods, one of the quantities k ,  C, or a may be determined 
from each experiment when temperature measurements alone 
are used. If the surface heat flux, as well as temperatures, are 
measured, two of the quantities k, C, or a may be determined 
in a single experiment. It should also be noted that only the 
volumetric specific heat C, but not the specific heat based on 
unit mass c, can be derived by a transient heating experiment. 
A separate gravimetric experiment to measure the density p is 
necessary in order to calculate the specific heat based on unit 
mass c = C/p from a knowledge of c. 

In the present work, a technique which allows the measure- 
ment of surface heat flux in a transient heating experiment is 
developed. The accuracy of this technique is such that only 
temperature-averaged k and C can be determined simul- 
taneously from a single experiment, or if a temperature- 
dependent C available from the literature is used as a known 
quantity in the data analysis, it is found .possible to derive a 
temperature-dependent k in the form of a polynomial. 

R. Bradt-contributing editor 

Manuscript No. 198539. Received March 21,1989; approved April 2,1990. 
‘Deceased. 

11. Experimental Procedure 

Figure 1 shows the design of the present experiment. It con- 
sists of a central mold cavity in which molten metal serves as 
the heat source. Using silica sand as the molding material, two 
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THROUGH 
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Fig. 1. Schematic diagram of the experimental 
arrangement. 

heating experiments were performed with the silica sand pre- 
pared in a different condition with respect to binder content. 

In the first experiment, the molding material consisted of 
silica sandt with 4% western bentonite and 2% water by 
weight and was rammed around a cylindrical mold cavity 
8.26 cm in radius and 16.5 cm in height. Both the top and 
bottom portion of the mold cavity were thermally insulated 
with Kaowoo15 boards (an insulating ceramic fiber), which ex- 
tended laterally into the molding medium. The mold assembly 
with the ceramic fiber boards was dried in an oven at 350°C 
for more than 24 h before the experiment. A small opening 
was drilled through the Kaowool board located at the top of 
the mold in order to allow the entrance of liquid metal into 
the mold cavity during pouring. Straight pieces of type-k 
thermocouples, protected in small-diameter fused silica tub- 
ing with the junctions at the midheight, were inserted verti- 
cally in the mold at various radial distances (see Fig. 2). The 
transient temperatures recorded by these thermocouples were 
timsmitted to a digital data logging system during the prog- 
ress of the experiment. A metal with a relatively low melting 
point, commxcially pure aluminum with a melting point of 
6WC,  was chGsen as the cast metal which was poured with 
a high degree of siiperheat (pouring temperature 1200°C). 
Owing to the thorough iaixixe as a result of liquid convection 
within the highly superheated melt, the thermal gradient in 
the melt was sufficiently small to aiiow the calculation of heat 
flux into the mold by measuring the cooihg rate of the bulk 
liquid. The entire collection of temperature data, for thermo- 
couples placed in the molding sand and moltell metal, was 
recorded digitally on cassette tape and then transferred i~ a 
mainframe computer for analysis. 

In order to illustrate the effect of binder content on the 
thermal conductivity of a granulated material, the second ex- 

‘AFS-85 mesh Wedron silica sand, Wedron Silica Co., Wedron, IL. 
qhermal Ceramics, Augusta, GA. 

I MOLDING SAND 

1.9cm 2.8cm 
MOLTEN 
METAL 

periment utilized unbonded silica sandq as the molding 
medium. The use of unbonded silica sand has practical appli- 
cations in the vacuum molding and the lost foam processes of 
casting metals. Two major modifications were adopted with 
respect to the first experiment. First, a cylindrical can made 
of thin sheet steel was inserted into the central mold cavity 
to provide the necessary structural support against the un- 
bonded sand. Second, since the measurement of heat flux was 
not planned in the second experiment, thermocouples were 
not needed in the mold cavity and the thermal properties of 
the cast metal need not be known. Consequently, a remelted 
brass was used as the cast metal. The dimensions of the ap- 
paratus were comparable to those of the first experiment. As 
a heat source, the use of brass provides an approximate ther- 
mal arrest during solidification at a sufficiently high tempera- 
ture, approximates a step increase in temperature after 
pouring, and hence represents a favorable heating condition 
for the transient determination of thermal properties.” In 
comparison, the use of an electric heat source is not suitable 
for the intended numerical method of analysis, because 
(1) the weaker heat flux of an imbedded electric heat source, 
compared to molten metals, results in a much longer heating 
time and deeper thermal penetration into the mold for an 
appreciable increase in surface temperature, so that the as- 
sumption of one-dimensional heat flow is no longer valid, and 
(2) the transient sensitivity  coefficient^,'^ which represent a 
measure of the degree of accuracy attainable during the com- 
putation of thermal properties from temperature responses, 
are much diminished if the heating at the boundary is im- 
parted by a constant heat flux (such as that arising from the 
passage of a steady electric current), as compared to the case 
of a step increase in the surface temperature approximated by 
the use of molten metal as a heat source. 

111. Mathematical Analysis 

The present work has adopted the technique of nonlinear 
least squares and the method of finite difference for the analy- 
sis of experimental data. Given some initial estimate of the 
thermal properties k and C, the finite-difference method cal- 
culates the temperatures in the refractory mold as a function 
of position and time. For generality, these thermal properties 
may be regarded as temperature dependent. By a systematic 
variation of k and C, the method of nonlinear least squares 
proceeds to minimize the function 

N 
F(k,C) = C ( T ,  - 0,)’ 

n = l  

which represents a quantitative measure of the degree of 
agreement between the calculated and experimentally meas- 
ured temperature. Here T, is the calculated temperature and 
0, the measured temperature of the nth measurement. The 
sl;!xript n is iiicremented with time among the thermo- 
couples ab 2ic 2ib;‘tal data logging system selected the thermo- 
couples in the sand niold in a cyclic manner. The quantity N 
denotes the total nun,ber of thermocouple readings in the 
entire experiment. 

A number of mathematb4 techniques exist for minimizing 
Eq. (1). In the original work of Beck,” a basic technique, in- 
volving a local Taylor series expc.-wion and the variation of 
one independent variable ( k  or C) at a time, was adopted. 
Kubo et al.19 used a minimizing tedmique as proposed by 
Powell.’’ The present work has attempted two alternative 
methods: (1) the basic technique (see App-ndix A) and (2) the 
use of an existing FORTRAN subroutinc ZXSSQ from the 
IMSL library” available for the authors’ access on a com- 
puter.tt In the latter scheme, the evaluation 01 the function F 

Fig. 2. 
first experiment. 

Positions of the thermocouples in the sand mold for the ’Wedron 420 Grade silica sand. 
ttAmdahl 470/V8, Amdahl Computer, Sunnyvale, CA. 



2318 Journal of the American Ceramic Society - Ho and Pehlke Vol. 73, No. 8 

itself is accomplished by a finite-difference model coded as a 
subroutine which is passed as an actual parameter to the 
calling subroutine ZXSSQ. This finite-difference model al- 
lows the use of an unevenly spaced grid placed in such a way 
that (1) each thermocouple position is precisely matched with 
a nodal position and (2) a finer grid spacing is employed near 
the heated surface where the temperature change is more 
rapid in order to improve accuracy. A mathematical descrip- 
tion of the finite-difference model is included in Appendix B. 

In addition to measurements of temperatures in the mold- 
ing sand, the present work also attempted to measure the heat 
flux from the molten metal into the surface of the mold. A 
measurement of heat flux is necessary because, as shown by 
Beck,'3 it is impossible to determine both k and C in one 
experiment if temperature data alone are used, as k and C 
would then become linearly dependent during the mathemati- 
cal process of nonlinear least squares. The measurement of 
heat flux on the heated surface removes this linear depend- 
ency. In the present experiments, the heating conditions pro- 
vide an approximately one-dimensional heat flow along the 
outward radial direction. Furthermore, in the first experi- 
ment, the temperature in the bulk of the highly superheated 
aluminum was essentially uniform. It follows that the radial 
heat flux into the surface of the mold could be calculated 
from the rate of change of temperature of the metal. In the 
actual numerical computations, the measured temperature T 
in the liquid metal was smoothed by a cubic spline/least 
squares procedure first, before the differentiation process was 
carried out on the spline curves in order to obtain the cooling 
rate dT/dt. The thermophysical properties of liquid aluminum 
were taken from Ref. 22. The ap roximate mean values of 
2340 kg m-3 and 1086 J . kg-' * K- were used for the density 
and specific heat of liquid aluminum, respectively. 

P 

IV. Results 

(1) A First Experiment on Bonded Silica Sand 
Figure 3 shows the measured temperatures from two 

thermocouples located in the molten metal as a function of 
time. Except during an initial period of approximately 3 min, 
the temperatures measured by these two thermocouples re- 
main indistinguishable from each other in the graph. This re- 
sult therefore verifies the assumption that the temperature 
gradient in the molten metal is negligible. Consequently, the 
time-dependent heat flux into the mold may be evaluated from 

the cooling rate of the molten metal. Two analyses were car- 
ried out on the experimental data: 

Analysis I (temperature-independent k and C) -In this 
analysis, the heat flux calculated from the cooling rate of the 
liquid metal is used as a Neumann boundary condition on the 
heated surface of the mold, and the temperature as recorded 
by thermocouple 6 (see Fig. 2) is used as a Dirichlet boundary 
condition on the unheated circumference. The corresponding 
relationship between the variable n in Eq. (1) and the thermo- 
couple designation is shown in Table I. Starting with an initial 
estimate of k = 1.0 W - K-' and C = 2.0 MJ . m-3 + k-', 
the process of nonlinear least squares converges after 12 itera- 
tions (with a total of 36 evaluations of the finite-difference 
calculation), giving, to three significant figures, the values of 
k and C shown in Table 11. In addition, an rms value repre- 
senting the deviation between calculated temperatures and 
the experimental data, defined by the expression 

l N  1/2 [z n=l 2 (T, - ad2] (2) 

was evaluated during the finite-difference computation as an 
indication of the agreement between calculation and experi- 
ment. In the present case, the rms value after convergence is 
found to be 22.1 K. A graphical representation of the agree- 
ment between the calculated and measured temperatures at 
various thermocouples is shown in Fig. 4. 

Analysis I1 (temperature-dependent k )  -The above analysis 
shows how temperature-independent k and C could be derived 
from the present experiment. However, an attempt to extend 
analysis I to the simultaneous determination of temperature- 
dependent k and C does not meet with success for the follow- 
ing reasons: (a) The measured surface heat flux has only a 
limited accuracy because of neglecting longitudinal heat loss 
into the insulating fiber material. Owing to the relatively high 
insulating properties of silica sand, its thermal conductivity is 
not sufficiently large, compared to that of the insulating fiber 
material, for the assumption of one-dimensional radial heat 
flow to be highly accurate. (b) Temperature-independent den- 
sity and specific heat are used for liquid aluminum. (c) As 
discussed earlier, heating conditions of a transient experi- 
ment have a strong influence on the accuracy of the thermal 
properties to be determined. The ideal heating condition has 
not been precisely achieved in the present experiment. 

Although the present experiment does not permit a simul- 
taneous determination of two temperature-variable properties 
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Fig. 3. Measured temperatures in liquid alu- 
minum as a function of time in the first experi- 
ment. Refer to Fig. 1 for the locations of the 
thermocouples. 

Table I. Thermocouple Increment Index n for 
Analyses I and I1 of the First Experiment 

n (Ea. (1)) Thermocoude desienation 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 

Analysis I' 
3 
4 
5 
3 
4 
5 

Analysis IIt 
4 
5 
4 
5 

'The heat flux measured by the cooling rate of the molten metal is used as 

tTemperatures measured by TC3 are used as a Dirichlet boundary condi- 
a Neumann boundary condition on the heated surface. 

tion on the heated surface. 
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Table 11. Results of Analyses I and I1 on the Thermal Properties for the First 
Experiment: Dried Silica Sand (AFS-85 Mesh Wedron) with 4% Binder 
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Analysis I 
Thermal conductivity 
Volumetric sDecific heat 

0.667 W . m-' . K-' 
1.60 MJ . m-3. K-' 

rms deviatioi between calculated and measured temperatures 

Thermal conductivity 

22.1 K 
Analysis I1 

400 K 
700 K 

1000 K 

0.731 W.  m-'. K-' 
0.549 W . m-' . K-' 
0.581 W.  m-'. K-' 
3.1 K rms deviation between calculated and measured temperatures 

k = 1.306 - 1.91fx 10-3T + 1.187 x 10-6TZ 
where T is in kelvins 

Second-degree inter olating polynomial: 

k and C,  it is found possible to determine one temperature- 
dependent property if the other property is treated as a 
known quantity in the numerical analysis. Furthermore, in 
order to avoid the inaccuracy introduced by the use of an 
inaccurate surface heat flux, the present analysis is carried 
out using thermocouple 3 as a Dirichlet boundary condition 
in place of the heat flux boundary condition. Consideration 
of the heat transfer mechanisms shows that the specific heat 
of a molding sand, when compared to the thermal conductiv- 
ity, is much less dependent of the packing, grain size, binder 
content, etc. Consequently, the present analysis utilizes as a 
known quantityz3 the volumetric specific heat of silica sand in 
the form 

C = 1.590 X lo6 + 4.038 X 102T - 4.896 X 10'O/T2 (3) 

where C = pc is in units of J . m-3. K-' and T is in kelvins. In 
this equation, a term involving the reciprocal expression 1/T2 
is used instead of a T 2  term in accordance with the usual 
practice of describing the variation of specific heat with 
temperature. Using this functional relationship for the volu- 
metric specific heat, the analysis proceeds to determine a 
temperature-dependent thermal conductivity in the form 

k = a0 = a lT  + azT2 (4) 
where the temperature is expressed in kelvins. For numerical 
efficiencies, it is found that instead of minimizing F in Eq. (1) 
with respect to the coefficients ao, . . . , a 2  in Eq. (4), a more 

rapid convergence can be achieved in the process of nonlin- 
ear least squares by minimizing F with respect to three ther- 
mal conductivities kl, . . . , k3 at three reference temperatures 
T I , .  . . , T3. The coefficients in Eq. (4) can then be determined 
by solving a system of linear equations when these conductivi- 
ties and temperatures are substituted into Eq. (4). This treat- 
ment can be extended to the use of higher-order polynominal 
or other functional relationships for k in a straightforward 
manner. In the case of a discontinuity in k with temperature 
due to phase transformation, special treatments such as the 
use of piecewise polynomials can be used. 

Using an initial estimate of k l  = kZ = k3 = 0.7 W . m-' . 
K-', the process of nonlinear least squares converges after 5 
iterations (a total of 20 evaluations of the finite-difference 
calculation) for the variables kl ,  . . . , k 3  to agree within three 
significant figures between successive iterations. The calcu- 
lated and measured temperatures at thermocouples 4 and 5, 
having an overall rms deviation of 3.15 K, are graphically dis- 
played in Fig. 5. The coefficients of the resulting second- 
degree polynomial for thermal conductivity are presented in 
Table 11, and the variation of thermal conductivity with tem- 
perature is graphically displayed in Fig. 6. The resulting poly- 
nomial fork is applicable up to a certain limit in temperature, 
which may be roughly taken as the maximum temperature 
attained in the Dirichlet boundary condition of the heated 
end (i.e., thermocouple 3 in the present analysis). Included in 
the same graph are discrete data points from Atterton4 using 
a steady-state technique, and Hartley and Patterson* using a 
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Fig. 4. Calculated and measured temperatures 
for analysis I of the first experiment-a heat flux 
boundary condition at the metal-mold interface 
and a Dirichlet boundary condition at thermo- 
couple 6. 
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Fig. 5. Calculated and measured temperatures 
for analysis I1 of the first experiment-tempera- 
tures measured at thermocouples 3 and 6 are used 
as Dirichlet boundary conditions. 
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Fig. 6. Computed temperature variation of thermal con- 
ductivity for the first experiment-a dried silica sand (AFS- 
85 mesh Wedron) with 4% binder.jncluded in  the same 
graph are the results from Atterton, and Hartley and Pat- 
terson! 

quasi-steady-state technique. Beyond approximately 500"C, the 
increase in thermal conductivity with a further increase in 
temperature can be ascribed to the onset of the importance of 
intergranular radiation at higher temperatures. In view of the 
possible differences in grain size distribution and degree of 
packing, etc., as well as the systematic errors introduced by 
each particular method, the agreement should be regarded 
as satisfactory. 

A comparison of the constant thermal conductivity k 
derived under analysis I (Table 11) and the temperature- 
dependent k (Fig. 6) shows that the former value lies between 
the maximum and minimum values of k displayed in Fig. 6. 
This result therefore shows that analysis I produces an ac- 
ceptable value for the thermal conductivity in an average 
sense. The error introduced by the use of constant thermal 
properties in the former case results in a deviation in tempera- 
ture which is greater for analysis I (Fig. 4) compared to 
analysis I1 (Fig. 5). 

Two slightly different versions of the described computer 
program were written to account for the Neumann (heat flux) 
boundary condition on the heated surface in analysis I and 
the Dirichlet (temperature specified) boundary condition in 
analysis 11. The actual computations required 5.8 min for 
analysis I on our computer,++ and 3 min for analysis 11. 

(2) A Second Experiment on Unbonded Silica Sand 
Figure 7 shows the computed temperature dependence of 

thermal conductivity for an unbonded silica sand, using 

I I- 

- 6  260 400 600 SO0 1000 

TEMPERATURE ('C) 

Fig. 7. Computed temperature variation of thermal 
conductivity for the second ex eriment-an un-  
bonded silica sand (Wedron 420 8rade). 

analysis 11 of the previous experiment. The corresponding 
polynomial for k is given by 

(5) 
Compared to Fig. 6, which shows the temperature-dependent 
k in the case of a bonded sand (4% binder), it can be seen that 
the conductivity for unbonded sand is much lower than that 
of bonded sand at lower temperatures. This behavior can be 
explained on the basis that at lower temperatures, thermal 
conduction along the sand grain is the main mode of heat 
transfer and the lack of binder in an unbonded sand results in 
a higher heat transfer resistance at the interface between 
sand grains. At higher temperatures, on the other hand, ther- 
mal radiation in the void spaces between sand grains, as well 
as along the interior of the sand grains, becomes more impor- 
tant and these modes of heat transfer are quite independent 
of the presence of a binder. However, since silica sands of 
different grain sizes have been used for the two experiments, 
a direct comparison of the absolute magnitude of thermal 
conductivity at higher temperatures cannot be made. 

k = 0.6928 - 4.236 X 10-4T + 5.267 x 10-'T2 

Y Conclusions 

A straightforward experimental technique for the measure- 
ment of heat flux into a heated surface has been developed. 
The accuracy of the heat flux measurement is such that 
temperature-independent (but not temperature-variable) ther- 
mal conductivity and specific heat can be determined simul- 
taneously in a single experiment. 

A mathematical method for computing the thermal proper- 
ties of refractory materials in a single transient heating experi- 
ment, using the techniques of nonlinear least squares and 
finite-difference techniques, is described. The approach is 
demonstrated using measurement of a boundary heat flux 
(Neumann condition) to determine temperature-independent 
k and C,  and using a defined higher temperature boundary 
(Dirichlet condition) to determine a temperature-dependent 
k.  Advantages over other techniques are noted. 

The thermal conductivities of a bonded and an unbonded 
silica sand have been determined as a function of tempera- 
ture over the temperature range from 25" to 660°C and from 
25" to 9WC,  respectively. Average values for k and C of a 
bonded sand over the temperature range from 25" to 660°C 
are also reported. 

APPENDIX A 

The present treatment shows how the basic technique 
for minimizing a sum of squares can be used to derive a 
temperature-dependent thermal conductivity k from a tran- 
sient heating experiment. Although more elaborate tech- 
niques exist, a discussion of the basic technique nevertheless 
provides some insight into the nature of the minimization 
process. For convenience, let the temperature variation of k 
be represented by 

k = an + a l T  + a2T' 64-1) 
Other functional relationships between k and T could be 
used, but a function which is linear with respect to the un- 
known coefficients (denoted by an, . . . , a above) is more con- 
venient because it avoids the necessity of solving a nonlinear 
system of equations during a determination of unknown coef- 
ficients from known values of k and T. 

The nonlinear least-squares method seeks to minimize the 
function 

N 
F(k) = z(Tn - 0,)' 

n=l  

by adjusting the parameters a o , .  . . , a ,  in Eq. (A-1). In 
Eq. (A-2), 0, represents the nth measured temperature 
recorded by a multichannel scanning device as illustrated in 
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Table 11, and T, represents the calculated temperature using 
finite difference at the location and time designated by n.  For 
computational efficiencies, it is more desirable to minimize F 
with respect to three thermal conductivities k l ,  . . . , k 3  at 
three reference temperatures Tl ,  . . . , T3. The corresponding 
values of a o , .  . . , a 2  can then be determined by solving 
Eq. (A-1). Conditions for minimizing the function F in 
Eq. (A-2) are given by 

the expression (illustrated for the case i = 1) 

where E 6 1. The iteration process starts by some initial guess 
of k : .  . . k:. By evaluating the inner products and solving 
Eq. (A-7), the thermal conductivities in the next iteration are 
obtained by 

k: = k!  + Ak,! (A-10) 

where the superscript refers to the iteration stage. The itera- 
tion process can be repeated until some convergence criteria 
such as 

aF 
aki 
- = 0 (i = 1,...,3) 

This minimization condition can be solved numerically as fol- 
lows. Let k l ,  . . . , k 3  be a sequence of iterated values of 
the thermal conductivities at iteration stage m where m = 
1,2,3,. . . , etc. At stage rn, the corrections to these thermal 
conductivities are found using a Taylor series expansion 

121 < 0.001 (i = 1, ..., 3) (A-11) 

is reached. 
In the initial stage of the present work, this algorithm has 

been coded as part of a main computer program (i.e., not a 
subroutine) and the numerical result was found to be identical 
to that produced by the IMSLZ1 subroutine ZXSSQ. Since it is 
more convenient to make changes to a computer program 
when the nonlinear least-squares algorithm is coded sepa- 
rately in the form of a subroutine, subsequent developments, 
including all results presented in this work, have been com- 
puted by the use of the ZXSSQ subroutine. 

APPENDIX B 
Consider the experimental arrangement as shown in Fig. 1. 

Since the flow of heat is approximately one-dimensional 
along the outward radial direction, the transient equation of 
heat conduction is given by 

where 

n = 1, ..., N 
Aki = ki - k," 

i = 1, ..., 3 

Substitution of Eq. (A-4) into Eq. (A-3) gives 

(A-5) 
where r is the radial distance and t is the time. In this equa- 
tion, the thermal conductivity k occurs inside one of the dif- 
ferential operators. Special treatment in the finite-difference 
formulation is therefore required if the quantity k varies with 
temperature. The present treatment starts by expanding the 
left-hand side of Eq. (B-1) in the form 

(i = 1, ..., 3) 

In order to simplify notations, the inner product defined by 
N 

(44 = CAflB, 
,=I 

will be used. Equation (A-5) becomes, in matrix form 

[ ( a ~  -- a T )  ( a T  -- a T )  ( a T  _ _ -  aT )1 
akl 'akl  dkl'dk2 akl'ak3 r A ,  m, 

In order to maintain linearity in the final system of equations 
in the finite-difference method, a linearization technique is 
applied to expression (B-2), giving ") 

ak 1 

") 
' akz 

aT 
(ilk, k*$ + + (!!!!)*($)*I" 

ar (B-3) ") 
' ak z  where the superscript * denotes quantities which are evalu- 

ated at the old finite-difference time level. The linearity of 
the resulting system of equations can be illustrated by apply- 
ing this equation to a general interior node i with neighboring 
nodes i - 1 and i + 1 evenly spaced with spacing Ar from 
the center node i. Using a Crank-Nicolson time stepping 
scheme, the derivative may be written as -= - [  a2T 1 T,+l - 2Ti + T,-l 

ar2 2 (W2 

L 

(-4-7) 

where the matrix on the left-hand side is symmetric because 
of the commutative property of inner products. Since the par- 
tial derivatives occurring in the inner products cannot be 
evaluated analytically, each element of the vector 

(B-4a) 

(B-4b) 

( B - ~ c )  

1 - = - [  ar 2 2Ar + 2 Ar 
aT 1 r+1 - Ti-1 TT+1 - TZ1 

aT T, - TT - 
at At is evaluated using the finite-difference method according to 
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When these derivatives are substituted into expression (B-3), 
the linearity can readily be observed (i.e., unknown tempera- 
tures Ti - 1, Ti, and Ti + at the new time level occur as a first 
power only). In a similar manner, finite-difference equations 
for nodes situated at the boundaries can be derived. In the 
case of a node with neighboring nodes unevenly spaced from 
it, the finite-difference equation utilizes three neighboring 
nodes. Mathematical derivations of the basic finite-difference 
equation are described in Ref. 24. The resulting system of 
linear equations is solved by a banded matrix subroutine 
LEQTlB from the IMSL library.21 
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