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SUMMARY. This research introduces methods for nonparametric testing of weighted integrated survival 
differences in the context of paired censored survival designs. The current work extends work done by 
Pepe and Fleming (1989, Bzometrics 45, 497-507), which considered similar test statistics directed toward 
independent treatment group comparisons. An asymptotic closed-form distribution of the proposed family 
of tests is presented, along with variance estimates constructed under null and alternative hypotheses using 
nonparametric maximum likelihood estimates of the closed-form quantities. The described method allows for 
additional information from individuals with no corresponding matched pair member to be incorporated into 
the test statistic in sampling scenarios where singletons are not prone to selection bias. Simulations presented 
over a range of potential dependence in the paired censored survival data demonstrate substantial power 
gains associated with taking into account the dependence structure. Consequences of ignoring the paired 
nature of the data include overly conservafive tests in terms of power and size. In fact, simulation results 
using tests for independent samples in the presence of positive correlation consistently undershot both size 
and power targets that would have been attained in the absence of correlation. This additional worrisome 
effect on operating characteristics highlights the need for accounting for dependence in this popular family 
of tests. 
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1. Introduction 
Paired censored survival data arise in a variety of clinical trial 
settings. For instance, one of the primary goals of the Early 
Treatment Diabetic Retinopathy Study (ETDRS, 1991a,b) 
was to determine the best time in the course of diabetic 
retinopathy to initiate laser photocoagulation surgery. This 
study enrolled 3711 patients with mild to severe nonprolifer- 
ative or early proliferative diabetic retinopathy in both eyes 
and randomized alternate eyes to early photocoagulation or 
deferral of photocoagulation until such time when high-risk 
proliferative retinopathy was detected. The major endpoint 
of interest was time to severe vision loss, where this loss was 
defined as visual acuity less than 51200 at two consecutive vis- 
its. Even after 9 years of follow-up, the study had a large pro- 
portion (94.5%) of censored outcomes among the 3711 pairs, 
making standard paired tests for uncensored data inappropri- 
ate. 

More complex censored survival data structures have arisen 
in dental research on sealants done at the University of Michi- 
gan School of Dentistry (Feigal et al., 2000). Dental scientists 
have long endorsed the use of sealants as a measure for pre- 
venting dental caries, especially in the occlusal or grinding 
surface of molars, where teeth are most susceptible. The great- 
est risk of sealant failure occurs in newly erupted teeth, where 
moisture threatens the sealant process. Hence, researchers in 

the area of improving sealant protection enroll patients with 
newly erupted paired molars in the lower jaw for randomiza- 
tion to opposing sealant application treatments and measure 
the time to sealant failure. Occasionally, only one of the target 
molars in a patient has erupted at the time they come into 
the study so that singleton molars are occasionally random- 
ized to treatment. Should the companion molar erupt during 
the course of the study, it could also potentially be entered 
into the protocol with a different entry time than its coun- 
terpart, resulting in differential censoring within a matched 
pair. 

Several authors, including Woolson and Lachenbruch 
(1980), Wei (1980), O’Brien and Fleming (1987), Dabrowska 
(1989, 1990), Jung (1999), and Huang (1999), have presented 
work in relation to nonparametric testing for survival differ- 
ences in paired censored survival data using a variety of sign- 
based or rank-based tests. Related rank-based tests have been 
developed by Holt and Prentice (1974) and Lee, Wei, and 
Amato (1992) in the context of paired proportional hazards 
models. Murray (2000) also studied paired weighted log-rank 
tests in the context of sequential monitoring of paired cen- 
sored survival data. Woolson and O’Gorman (1992) provide 
a useful summary of much of this literature. 

An alternative to rank-based methods, advocated by Pepe 
and Fleming (1989), looks at  differences between integrated 
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weighted survival curves. The resulting test statistic, which 
was developed in the context of independent samples, has 
been shown to have higher power to detect survival differences 
than rank-based methods when underlying hazards cross dur- 
ing the study period. When hazards are proportional in na- 
ture, the power of the Pepe-Fleming test, while not always 
as high as rank-based tests, is often comparable. Investiga- 
tors are particularly attracted to this test statistic when un- 
weighted survival curves are integrated across the study pe- 
riod due to a related interpretation of average years of life 
saved on study using the superior treatment. 

This research presents a nonparametric method for detect- 
ing survival differences in paired censored survival data using 
differences in weighted integrated survival curves as in Pepe 
and Fleming (1989). The related family of tests presented here 
takes into account the dependence between estimated survival 
curves that tend to vary in tandem in the presence of posi- 
tively correlated data. The proposed family of test statistics 
will allow different and potentially dependent censoring dis- 
tributions for pair members under comparison and will allow 
for singleton pair members to contribute information to  the 
test statistic in the absence of a counterpart. In addition, this 
work will make available confidence intervals relating to the 
average improvement in survival time on study between treat- 
ment groups under comparison, an interpretable and useful 
measure in describing treatment benefit t o  nonstatisticians. 

In Section 2, notation relating to this data structure is pre- 
sented and the paired Pepe-Fleming statistic is introduced. 
Associated closed-form asymptotic variances for the family 
of tests, which may be estimated using nonparametric max- 
imum likelihood estimates of the closed-form quantities, are 
presented under null and alternative hypotheses. Simulation 
results in Section 3 verify type I error operating characteristics 
and provide evidence that power grows with the dependence 
between paired endpoints. In addition, some consequences of 
ignoring the paired nature of the data are highlighted in this 
section. An example relating to the ETDRS is located in Sec- 
tion 4. A discussion follows in Section 5. 

2. Paired Pepe-Fleming Statistics 
Consider survival endpoints Tikt and corresponding censoring 
times U i k , ,  indexed by treatment group i = 1,2 and individual 
ki = 1,. . . , ni. An arbitrary dependence is allowed between 
T 1 k l  and T2k2  and between U1kl and u 2 k 2  for kl  = k2 = k ,  
k = 1,. . . ,n ,  where n 5 min(n1,nz); i.e., the first n indi- 
viduals from each group are allowed, and even expected, to 
be correlated to their counterpart in the other group. Aside 
from this dependence, the random variables Tik, ,u&, , i = 1,2, 
ki = 1, . . . , ni, are assumed independent. If all study partic- 
ipants belong to a complete matched pair, as in the ETDRS 
study, then n1 = 722 = n. However, the more general case is 
permitted where the individuals indexed with ki > n remain 
unpaired, a circumstance that occasionally arises, as in the 
cited dental research application. Marginally, the various ran- 
dom variables, T l k l ,  T 2 k 2 ,  Ulk, , and U 2 k 2 ,  are assumed to be 
independent and identically distributed across the k = 1 . . . ni 
individuals. Different distributions are allowed for the failure 
and censoring random variables according to  treatment. Pair 
members where there is an absence of information on either 
the failure or the censoring time are assumed to be missing 
completely at  random (MCAR). 

Define the observable event times as Xzkl  = min(T,k, , U z k , )  
with corresponding censoring indicators A&, = I(T,kt < 
U,k,). Let S,(t) denote the survival function relating to T&,, 

k ,  = I , ,  . . , n,, in group i at time t and let S,(t)  denote 
its Kaplan-Meier estimate. Similarly, let X,(u) denote the 
hazard for failure in treatment group i. Because of the de- 
pendence allowed within the n complete pairs, we will also 
require joint and conditional hazards to be defined for the 
paired random variables as they appear in the asymptotic 
closed-form variances to be derived. Define the joint and con- 
ditional hazards X 1 2 ( t l , t 2 )  = limAtl,At2-+0P(tl < x 1 k  < 
t i  + Atl , t2  5 X 2 k  < t 2  + &, Alk = 1, A 2 k  = 1 1 X l k  2 
t l 1 X 2 k  >_ t2) / (At lAt2) ,  A112( t l  I t 2 )  = limAtl+OP(tl 5 
x ik  < t i  + Ati, A l k  = 1 I X l k  2 t l ,  x 2 k  2 tz)/Atl, and 
& / 1 ( t 2  I t l )  = limatz+oP(t2 5 X 2 k  < t 2  + &,A,,  = 1 I 
x 1 k  2 tl,X2k 2 h ) / A t z .  Let J ( t )  = 1 if { ~ : : = l ~ ( X l k l  2 
t ) } ( C : ~ = ,  I ( x 2 k z  2 t ) }  > 0 and J ( t )  = 0 otherwise. Assume 
a predictable weighting process, 6 ( t ) ,  such that 

U € P > t )  
SUP tG(u) - 4.)) 

approaches zero in probability for a nonstochastic function 
~ ( u )  and vanishes for values o f t  where J ( t )  = 0. Now define 
the paired Pepe-Fleming family of tests as 

7 = (-) 1’2 lm &(u) { S 1  (u) - S2(u)} du. 
nl +n2 

Further notation is required to describe the variance of 7. 
Hence, let Ai( t )  = Jt”w(u)Si(u)du with estimate Ai(t) = 
Jp G(u)Si(u)du. Define 7ri as the probability of belonging to 
treatment group i with ti = ni / (n l+  n2) and define 8 as the 
proportion of dependent observations in the two groups, with 
8 = 2n/(n1 + 722) .  Finally, define G l z ( t 1 , t z )  = P ( X l k  2 
t l ,X2k  2 t 2 ) {P(Xlk  2 t l ) P ( X 2 k  2 t 2 ) } - 1 { A 1 2 ( t l , t 2 )  - 
A112(tl  I t 2 )  X 2 ( t 2 )  4 2 l l ( t 2  I t l )Xl ( t l )  + X l ( t l ) X 2 ( t 2 ) } .  As n 
approaches infinity, 7 is asymptotically normal with variance 

as shown in the Appendix. The first term in this expression 
corresponds to the variance of the original Pepe and Flem- 
ing (1989) statistic with independent treatment groups and 
the second term corrects for the dependence in the Kaplan- 
Meier curves. If the Kaplan-Meier curves are independent, the 
trailing term vanishes in this expression. If the Kaplan-Meier 
curves tend to vary in tandem due to an underlying posi- 
tive correlation in the failure time random variables, then this 
trailing term causes the variance of the test statistic to shrink. 
Possible weighting choices include G ( t )  = J( t )P(u ,k ,  2 t )  
X i ) ( u 2 k z  2 t ) / { f t1$ (u lk l  2 t )  + f i 2 P ( u 2 k 2  2 t ) } ,  which is 
similar to the weighting recommended by Pepe and Fleming, 
or alternatively 6(t) = J ( t ) ,  which reflects an interpretation 
according to  years of life saved (YLS) on study. 

Terms in this asymptotic closed-form variance are easily 
estimated using either pooled estimates under the null hy- 
pothesis or unpooled estimates under the alternative hypoth- 
esis. To present these variance estimates, more notation is 
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required. Define n* = ( n l n z ) / n .  Let N,(t) = c;,Z=, I ( x , k ,  5 
t , &  = 1) count the number of individuals from group z 
who fail at time t and let Y,(t) = I(X,kz  2 t )  count the 
number of individuals from group z who are still at risk for 
failure at time t ,  z = 1,2. An unpooled estimate for X,(t)dt is 

t 2 )  count the number of complete correlated pairs still at risk 
for failure at times t i  and t 2  in treatment groups 1 and 2, re- 
spectively. Also, let dNlz( t1 ,  t 2 )  = limAt,,At,+o C;==, I( t1  < 
x1k < t l  + At1,t2 < x2k < t 2  + At2 ,A ik  = 1,&k = 1) 
count the number of individuals from complete pairs who 
failed at time t l  for treatment 1 and failed at time t 2  for treat- 
ment 2. An estimate for X12(tl,tz)dtldt2 is { x 2 ( t l ,  t 2 ) } - '  

x 1 k  < t l  + &l ,x2k  2 t 2 , A l k  = 1) count the number of 
complete correlated pairs who failed at time t l  for treatment 
1 and who are still at risk for failure at time t 2  for treatment 
2. And let dN211(t2 I t l )  = limAtz,o C k = l  I ( t 2  5 x 2 k  < 
t 2  + At2, x 1 k  2 t l ,  &k = 1) count the number of complete 
correlated pairs who failed at time t 2  for treatment 2 and 
who are still at risk for failure at time t l  for treatment 1. 
Hence, estimates for X112(tl  I t2)dtl and X211( t2  I t l )dt2 are 

{Y~z ( t l , t 2 ) } - 'dNl l2 ( t l  1 t 2 )  and {Y12(t1,tz)}-'dN2ll(t2 I 
t l ) ,  respectively. An unpooled estimate for P(x ,k  2 t )  is 
&(t) /n, .  Also P ( x ] k  2 t 1 , X z k  2 t 2 )  is estimated with 
Y12(tl,  ta) /n.  Incorporating the above estimates, an unpooled 
estimate for ~ 1 2 ( t l ,  t2)dtldtz is Glz ( t1 ,  t2)dtldtz = n * { ~ i ( t l )  

(K( t ) } - ldNz ( t ) .  Let Yl2( t l , t 2 )  = ~ ~ = 1 I ( X l k  2 t l ,X2k  2 

dN12( t l , t2 ) .  Let dNl12(t l  I t 2 )  = limatl-o E ; = , f ( t l  5 

n 

Y2(t2)}-1Y12(t l ,  t z )  [{Y12(t l ,  t z )}- ldN12(t1,  t 2 )  - {Y12(t l ,  f2) 
Y2(t2)}-1dNl12(tl I t2)dN2(ta) - {Y l2 ( t l , t 2 )Y l ( t l ) ) -  x 
m 2 1 1  ( t 2  I t l ) d N I ( t l )  + {Yl(tl)Y2(t2)}-1d~l(tl)dN2(t2)1. 
Notice that G:lz( t l , t2)dt ldtz  uses all available data to esti- 
mate marginal hazards and probabilities, while joint and con- 
ditional quantities are estimated with complete pairs only. 

Hence, an unpooled variance estimate for cr2 that could 
be used in either hypothesis testing or confidence ipterval 
construction is &2 = c2 ii3-%[sf? nZ{x ( u ) ) - 2 { A 2 ( u ) } 2  

d ~ , ( u ) l  - 4 jo" Al(u)Az(v)G12(u,  v)dudv In relation to  
defining a pooled variance estimate, let 

A(t) = 7 i j ( U ) S ( U ) d U  r 
use the pooled Kaplan-Meier survival estimate in its inte- 
grand. Let Y ( t )  = Y l ( t )  + Y2(t) and N ( t )  = N i ( t )  + &(t)  
so that a pooled estimate of X,(t)dt is { Y ( t ) } - ' d N ( t ) .  Let 
&(t) be the Kaplan-Meier estimate of the censoring survival 
function for group z. A pooled estimate for P(&k 2 t )  is 
&,(t-)S(t-). In a hypothesis testing framework, one may es- 
timate v2 under the null hypothesis using the pooled estimate 

8 10" jr A(u)A(v)GlZ(u,  v)dvdu, where & 2 ( t 1 ,  t 2 )  dt1dt2 = 
52 = g= L ejra, [ Jq f i z  (u- ) s (u- ) Y (u) } - 1 {A( u)}2 dN (u)] - 

Y12(tl,  t 2 )  {nS(t;)S(t;)fi1 ( t ; ) l ; lz( t ; )}- l [{Y1z ( t l ,  t 2 ) ) - l  x 
dNl2( t l ,  t 2 )  - {Y12(tl,t2)~(t2)}-1dNl~2(tl I t 2 )  dN( t2)  - 
{Y i2 ( t l ,  t2)E-r(tl))-ldN2,1(t2 I t l ) d N ( t l ) + { F ( t l )  Y ( t 2 ) ) - l  x 
d N (  t 1 ) d N  ( t z ) ]  . 

3. Simulations 
In order to study finite sample properties of the test statistics, 
simulations were conducted for a variety of underlying corre- 
lation structures under null or alternative hypotheses using 

either n = 50 or n = 100 complete pairs of censored survival 
outcomes. In each simulation, bivariate log-normal failure dis- 
tributions with correlation on the log scale, p ~ ,  and bivariate 
log-normal censoring distributions with correlation on the log 
scale, pu, were used independently in generating the observed 
paired data. Increasing levels of p~ = pu = (0.0,0.3,0.6,0.9) 
were studied. In addition, finite sample properties for increas- 
ing p~ under common censoring times were studied by se- 
lecting pu = 1.  Log-scale means and variances for each of the 
two treatment group censoring times were 1 . 1  and 0.8, respec- 
tively. Under the hypothesis of no treatment difference, the 
paired failure times were generated with log-scale means and 
variances of 0.3 and 1.0, respectively. Under the alternative 
hypothesis, the paired log-scale means were taken to be 0.3 
and 0.6, with remaining bivariate log-normal parameters un- 
changed. Along with the complete-case analysis, simulations 
were run to  study the behavior of the test statistics when 25 
additional singleton pair members per treatment group were 
available. The singletons were simulated using bivariate log- 
normal distributions with similar marginal distributions for 
failure and censoring times as described above but with zero 
correlation. Roughly one third of all failure times were cen- 
sored. A type I error of 0.05 was employed in all simulations. 

Size and power results are displayed in Table 1 for unpaired 
and paired Pepe-Fleming tests using 8( t )  = J( t )P(ulk ,  2 
t ) f i ( u , k ,  2 t ) / { f? l f i (u lk l  2 t )  -t 7?2.i)(u2k2 2 t ) }  and pooled 
variance estimates. Observed type I errors for the paired tests 
using n = 100 are at desirable levels. Using n = 50, type I er- 
rors also look attractive except for the complete-case analysis 
at the highest level of correlation studied, p~ = 0.9, where 
the type I error seems to  be slightly underestimated. Type 
I errors for n = 50 and p~ = 0.9 improved in the analy- 
sis that included 25 additional singletons. Results for type I 
error were similar using YLS weighting. Both pooled and un- 
pooled variance estimates performed well in simulation. How- 
ever, pooled variance estimates tended to slightly outperform 
unpooled variance estimates in terms of maintaining type I 
error, especially in the smaller sample sizes studied. Hence, 
pooled variance estimates will be recommended for hypothe- 
sis testing scenarios for purposes of constructing pvalues and 
unpooled variance estimates will be recommended for con- 
structing confidence intervals under the alternative hypothe- 
sis. 

Regardless of whether pooled or unpooled estimates are 
employed and regardless of the weighting strategy used, the 
test sizes of the unadjusted original tests become increasingly 
conservative as the correlation in the censored survival end- 
points grows and the dependence is not accounted for in the 
analysis. This is likely caused by the increased tendency of the 
Kaplan-Meier curves to vary in tandem for higher values of 
positive correlation. Without taking this into account, the test 
statistic has a very difficult time rejecting the null hypothe- 
sis. Figure 1 displays representative correlated Kaplan-Meier 
survival estimates under study for n = 100, where, in each 
panel of the figure, underlying marginal distributions of the 
curves under study are identical. 

This lessened ability to reject the null hypothesis is also 
featured in power results under the alternative hypothesis in 
Table 1, where, for instance, power has a tendency to decrease 
with rising levels of correlation in the complete-case analyses. 
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Table 1 
Size and power results across different underlying correlation structuresa 

Size Power 

n p~ pu Additional singletons PF Paired PF PF Paired PF 

100 

50 

0.0 

0.3 

0.6 

0.9 

0.0 

0.3 

0.6 

0.9 

0.0 
0.0 
1 .o 
1 .o 
0.3 
0.3 
1 .o 
1.0 
0.6 
0.6 
1 .o 
1 .o 
0.9 
0.9 
1.0 
1.0 
0.0 
0.0 
1.0 
1.0 
0.3 
0.3 
1.0 
1.0 
0.6 
0.6 
1.0 
1.0 
0.9 
0.9 
1.0 
1 .o 

0 
25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 
0 

25 

0.052 
0.041 
0.043 
0.047 
0.027 
0.021 
0.024 
0.023 
0.011 
0.018 
0.006 
0.014 
0.000 
0.000 
0.000 
0.000 
0.037 
0.038 
0.043 
0.038 
0.025 
0.034 
0.021 
0.036 
0.006 
0.009 
0.009 
0.015 
0.000 
0.000 
0.000 
0.006 

0.048 
0.044 
0.045 
0.047 
0.044 
0.041 
0.049 
0.042 
0.050 
0.053 
0.041 
0.042 
0.048 
0.046 
0.048 
0.039 
0.041 
0.039 
0.047 
0.041 
0.048 
0.047 
0.049 
0.051 
0.057 
0.051 
0.058 
0.047 
0.033 
0.051 
0.034 
0.045 

0.4418 
0.5230 
0.4416 
0.5236 
0.4384 
0.5420 
0.4358 
0.5356 
0.4266 
0.5384 
0.4204 
0.5372 
0.3800 
0.5492 
0.3638 
0.5418 
0.2510 
0.3546 
0.2528 
0.3476 
0.2242 
0.3408 
0.2148 
0.3358 
0.1672 
0.3244 
0.1688 
0.3174 
0.0832 
0.2940 
0.0738 
0.2860 

0.4370 
0.5150 
0.4352 
0.5214 
0.5396 
0.6164 
0.5484 
0.6810 
0.7080 
0.7282 
0.7308 
0.7398 
0.9734 
0.9102 
0.9780 
0.9190 
0.2414 
0.3482 
0.2448 
0.3448 
0.2998 
0.3968 
0.2998 
0.4012 
0.4142 
0.4730 
0.4282 
0.4826 
0.7866 
0.6344 
0.8132 
0.6388 

~~ 

a n, number of complete failure-time pairs generated from the bivariate log-normal distribution; p ~ ,  
correlation between failure times on the log scale; and pu,  correlation between bivariate log-normal 
censoring times on the log scale so that pu  = 1 gives common censoring times. In the additional 
singletons column, the complete pair analysis is denoted by 0; otherwise, the results are for the analysis 
with 25 singletons added per treatment group. The Pepe-Fleming test for independent treatment groups 
rejection rate is listed under PF, and the proposed test, which adjusts for the paired structure, is denoted 
as paired PF. One thousand and 5000 Monte Carlo simulations were used for size and power, respectively. 

This phenomenon was repeated regardless of the weighting 
method chosen or the variance estimation method employed. 
However, using the proposed paired tests, which take into 
account the overall dependence structure in the data, signif- 
icant increases in power were observed for increasing values 
of correlation in the failure times. Similar increases in simu- 
lated power were observed for each combination of weighting 
strategy and variance estimation procedure for the proposed 
paired test statistics. 

With regard to the inclusion of singletons in an appro- 
priate paired analysis, power was found to increase over the 
complete-case analysis for p~ = 0.0,0.3, and 0.6, with gains 
tapering off as the level of correlation increased. For the high- 
est level of correlation explored, p~ = 0.9, power did not 
improve but instead declined with the inclusion of the addi- 
tional singletons. When deciding to use singletons in an analy- 

sis, there appears to be a trade-off between gaining additional 
sample size and gaining additional variability in the compar- 
ison of marginal Kaplan-Meier estimates. For extremely high 
levels of correlation, the use of additional singletons does not 
seem warranted with this statistic. 

4. Application to Early Treatment Diabetic 

As an illustrative example, the ETDRS comparison of time 
to severe vision loss, described in the Introduction, is again 
considered. Approximately 12 million Americans are affected 
by diabetes, the leading cause of blindness in working-age 
Americans, accounting for 12% of the new cases of blindness 
each year (Patz and Smith, 1991). In order to evaluate the 
best timing for laser photocoagulation surgery, 3711 patients 
had one eye randomized to receive early photocoagulation and 

Retinopathy Study 
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Figure 1. Survival curves constructed under the alternative 
hypothesis for increasing values of correlation (n = 100). The 
same random seed was used in generating each of the curves. 
The true underlying marginal distributions of the curves are 
identical in each panel, yet the more correlated curves appear 
closer together. 

o,o 

the other eye received the photocoagulation surgery upon de- 
tection of high-risk retinopathy. Time to severe vision loss is 
positively correlated within an individual. Estimated proba- 
bilities of retaining acceptable vision by treatment are dis- 
played in Figure 2. In addition to the paired censored data 
structure, the survival curves reveal an interval censored as- 
pect to this data, a feature we will ignore for the purposes of 
this example. 

At the time this study was originally published, methods for 
correctly handling paired censored times to severe vision loss 
were not available to the investigators; hence, they used stan- 
dard methods for independent samples in designing and ana- 
lyzing the ETDRS results while indicating that their analyses 
were likely to  be conservative due to  the underlying paired 
data structure. 

In the following, 95% confidence intervals for the inte- 
grated weighted survival difference, A s  = Jr w(u){S1(u) 
-S2(u)}du = {(ni + n 2 ) / n 1 7 L 2 } 1 / 2 1 ,  are based on unpooled 
variance estimates, and standardized test statistics, A s  
+-[{(nl+~t2)nln2}~/~5],  use pooled variance estimates. Treat- 
ment 1 refers to eyes randomized to immediate photocoagu- 
lation, with n = nl = n 2  = 3711. Using the Pepe-Fleming 
recommended weight as described in Section 2, the standard- 
ized test statistic comparing early to delayed photocoagula- 
tion was observed to be 3.75 ( p  = 1.77 x As = 18.40; 
95% CI for A s  = 8.81,27.98), where the study period spanned 
9 years. Using the YLS weighting, the observed standardized 
test statistic was 4.64 ( p  = 3.48 x A, = 50.44; 95% CI 
for A s  = 29.22,71.66). The paired log-rank test, using pooled 
variance formulas as in Murray (ZOOO), also detects significant 
differences in cumulative hazard functions favoring the early 
photocoagulation group ( p  = 1.07 x lop6). Note that, using 
the YLS weights, As may be interpreted as the estimated 
average difference in days of extended vision on the imrne- 
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diate photocoagulation therapy during the first 9 years on 
study, after which time both weighting functions became zero. 
For comparison, an analysis treating the eyes as independent 
results in larger pvalues and wider confidence intervals. Re- 
sults for the unpaired test using Pepe-Fleming-styled weights 
were 2.99 ( p  = 1.39 x lop3; = 18.40; 95% CI for A s  = 
6.34,30.45) and using YLS weights were 3.79 ( p  = 1.51 x lop4; 
A, = 50.44; 95% C1 for A s  = 24.38,76.51). At the time the 
ETDRS study results were published, emphasis was placed 
on improving early detection of diabetic retinopathy so that 
photocoagulation therapy could be initiated right away. Using 
new paired censored survival analysis tools, future studies de- 
signed similarly to  the ETDRS can use fewer patient resources 
in achieving a particular desired power. 

5. Discussion 
This research extends the methods of Pepe and Fleming (1989) 
to the paired censored survival setting. Closed-form asymp- 
totic variances of the adjusted test statistics are presented 
aIong with pooled and unpooled variance estimates. The 
methods presented are able to accommodate the gamut of 
uninformative paired correlated censoring structures ranging 
from common censoring times to independent censoring mech- 
anisms. Also, single unpaired individuals may contribute to 
the marginal estimation of survival curves within the test 
statistic. Simulations in this research show that one may take 
advantage of the paired structure of censored survival data 
and often benefit from additional singleton structured data in 
an analysis, especially if the correlation in underlying survival 
times is mild to moderate. In cases where correlation in un- 
derlying survival times is extremely high, simulations indicate 
that a complete-case analysis using the proposed methods is 
preferable to incorporating singletons in the paired analysis. 
In addition, simulation results in Section 3 underscore the 
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disadvantages of ignoring pair matching in an analysis. Not 
only is type I error adversely conservative, but power in the 
presence of positively correlated paired data results in less 
power using traditional methods for independent samples than 
would be expected if the samples were truly independent. 

Within each treatment group, individual independent and 
identically distributed observations contribute equally to the 
estimation of Kaplan-Meier survival curves whether these ob- 
servations have a corresponding pair member or not. While 
gains in efficiency are afforded by accounting for correlation 
in the estimated curves through the variance of the statistic 
in this marginal analysis, further gains in efficiency may be 
obtained by taking additional advantage of the information 
in the paired event times in estimating the survival curves 
used in the paired Pepe-Fleming statistics. Results from Man- 
atunga and Oakes (1999), in a slightly different context of 
bivariate observations where treatment does not necessarily 
differ within pairs, lend support to estimation and testing 
approaches that place higher value on more informative com- 
plete pairs, especially in the presence of high correlation. This 
intuition is further bolstered by simulation results in Section 
3, which indicate that, for extremely high values of underlying 
correlation, the power of the complete pair analysis surpasses 
the power of the analysis that incorporates additional single- 
ton values. Additional work in this area is needed in order to 
fully tap the statistical information in this data structure. 

The weight recommended by Pepe and Fleming (1989) 
deemphasizes areas under the survival curve where censor- 
ing is heavy and hence can be particularly effective in de- 
tecting early treatment differences when censoring is heavy 
in the tails. Use of the YLS weight in the test statistic is 
often an attractive choice for detecting differences later in 
the study period and gives an attractive interpretation that 
should appeal to nonstatistically minded collaborators. Be- 
cause the proposed methods adapt an already popular fam- 
ily of test statistics, the process of transition to these more 
efficient tests in the paired censored survival setting should 
be straightforward once software is available. In addition, re- 
sults from this research apply to the quality-adjusted survival 
setting, as discussed by Glasziou et al. (1998), when non- 
stochastic weights are chosen to reflect quality of life while on 
treatment. Hence. these methods also extend quality-adjusted 
survival analysis to the paired censored survival setting. 
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RESUMB 
Cette recherche introduit des mkthodes non paramktriques 
pour tester la diffkrence entre des courbes de survie pondkrkes 
dans le cas de planification concernant l’ktude de survie ap- 
pariees avec censures. Ce travail est une extension de celui 
qui a 6t6 rBalis6 par Pepe et Fleming (1989) qui ont utilis6 
des statistiques de test analogues dans le but de comparer 
des groupes de traitements indkpendants. Une distribution de 
forme asymptotiquement fermke est presentee pour la famille 
des tests propos6s. On donne Bgalement des estimateurs de 
la variance, construits sous les hypotheses nulle et alterna- 
tive, k partir des estimateurs non paramktriques du maximum 

de vraisemblance des quantitks de forme fermke. La methode 
dCcrite permet de prendre en compte, dans la statistique de 
test, l’information additionnelle relative B des sujets n’ayant 
pas de membre associk B leur paise dans l’appariement. Ceci se 
fait, grbce k des scenarios d’kchantillonnage oh les singletons 
ne sont pas particulihrement soumis B des biais de sdection. 
Des simulations effectukes pour divers types de dependance 
potentielle entre les donnkes de survie censurees et apparibes, 
montrent l’existence de gain substantiel, quand on prend en 
compte dans l’analyse la structure de dependance sur les ob- 
servations. Ignorer la nature appariee des donnees conduit B 
des tests par trop conservateurs en terme de puissance et de 
taille. En effet, les rksultats des simulations mettant en Ceuvre 
des tests considerant les Bchantillons comme independants, 
alors qu’il existe une correlation positive, atteignent des ob- 
jectifs de taille et de puissance notablement en dessous de ceux 
que l’on aurait pu obtenir en l’absence de correlation. Ces ef- 
fets supplkmentaires mettent bien en lumihre la necessite de 
prendre en compte la dkpendance des observations dans cette 
famille de tests si populaire. 
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APPENDIX 

Define the martingale Mi( t )  = Ni( t )  - ,$, Ai(u)K(u)du with 
respect to the filtration containing all available censoring and 
survival data for the endpoint corresponding to group i prior 
to time t ,  i = 1,2. Because the filtrations for M l ( t )  and M2(t) 
are dependent and nonnested, covariances relating to these 
martingales will be directly derived rather than conditioning 
first on a common filtration as is done in standard martingale 
theory. Toward this end, it is useful to note that M i ( t )  = 
N i ( t )  - j’i X i ( u ) ~ ( u ) d u  can be rewritten as C& { I (X ik ,  5 
t ,  Aik, = 1)-Ji Xi(u)I(Xiki 2 u)du} = Ct:=l M i s ( t ) ,  which 
is a sum of independent and identically distributed quantities. 
Let &(t) be the Nelson-Aalen hazard estimate at time t and 
let A i ( t )  be the cumulative hazard for failure by time t. For 
the moment, focus on the term (n*)l12 J;{K(u)}- ldMi(u) ,  
which is equal to (n*)l12{$(t)  - h i ( t ) }  for values o f t  where 
J ( t )  > 0. After an application of the martingale central limit 
theorem (or Lenglart’s inequality) similar to that used in the 
appendix of Murray and Cole (ZOOO), this term has the same 
limiting distribution as 

Since dependent terms between Zi ( t1 )  and 2 2 ( t 2 )  involve 
only terms with k1 = k2 = k 5 n, the multivariate central 
limit theorem identifies the covariance of Zl( t1)  and 

which, after some calculation, becomes 

l1 l2 G12(u1 v)dvdu. (1) 

The above result, which pertains to covariances between 
dependent Nelson-Aalen hazard estimates in this general set- 
ting, may be further utilized in understanding the asymptotic 
behavior for dependent Kaplan-Meier estimates. A result de- 
rived by Breslow and Crowley (1974) shows that 

Hence, for values tl and t 2 ,  where min{Yl(tl),Y2(t2)} > 0, 
the delta method in combination with (1) gives 

cov [@{Sl(t l )  - - S l ( t l ) } , f i { S 2 ( t 2 )  -S2 ( t2 ) ) ]  

r t i  rt2 

1 x lrn a(.) {S1(u) - S2(u)} du 

2 ”M 
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