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Summary. Colorectal cancer is the second leading cause of cancer related deaths in the United States, with more than
130,000 new cases of colorectal cancer diagnosed each year. Clinical studies have shown that genetic alterations lead to
different responses to the same treatment, despite the morphologic similarities of tumors. A molecular test prior to treatment
could help in determining an optimal treatment for a patient with regard to both toxicity and efficacy. This article introduces
a statistical method appropriate for predicting and comparing multiple endpoints given different treatment options and
molecular profiles of an individual. A latent variable-based multivariate regression model with structured variance covariance
matrix is considered here. The latent variables account for the correlated nature of multiple endpoints and accommodate the
fact that some clinical endpoints are categorical variables and others are censored variables. The mixture normal hierarchical
structure admits a natural variable selection rule. Inference was conducted using the posterior distribution sampling Markov
chain Monte Carlo method. We analyzed the finite-sample properties of the proposed method using simulation studies.
The application to the advanced colorectal cancer study revealed associations between multiple endpoints and particular
biomarkers, demonstrating the potential of individualizing treatment based on genetic profiles.
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1. Introduction
In most cancer clinical trials, some patients respond to
chemotherapy very well while others show no sign of response.
Likewise, some patients experience more toxicity than others
given the same treatment. Recent clinical studies have sug-
gested that patients who possess specific genetic alterations or
mutations may respond differently to the same treatment for
colorectal cancer (Milano and McLeod, 2000). However, tools
for individualizing chemotherapy treatment using genetic pro-
files are not yet fully developed (McLeod and Murray, 1999).

The objective of a randomized phase III trial (Goldberg
et al., 2004), initiated by the Mayo Clinic in 1997, was to
compare the effect of combinations of chemotherapy agents
in patients with advanced colorectal cancer. At that time,
two chemotherapy drugs had been approved by the Food and
Drug Administration for treatment of advanced colon cancer:
5-fluorouracil (5-FU) and irinotecan (CPT-11), while oxali-
platin (OXAL), a cisplatinum analogue with activity in col-
orectal cancer, was an investigational agent in the United
States and Canada. Two experimental combinations of regi-
mens, 5-FU+OXAL and OXAL+CPT-11, were compared to
the standard regimen, 5-FU+CPT-11, in the trial. We re-
fer to these regimens as arm F, arm G, and the control as
arm A, respectively. A total of 1705 patients were included

in the study, of which 513 (115 patients in arm A, 292 pa-
tients in arm F, and 106 patients in arm G) were genotyped
for 23 biomarkers. These biomarkers were selected based on
previous reports indicating that they were related to bioac-
tivity of the chemotherapies by direct or indirect mecha-
nisms. Descriptive summaries of the covariates are shown in
Table 1.

In this article, we develop a statistical model, given mul-
tiple treatment options and characteristics of an individual,
which predicts and compares toxicity and efficacy simulta-
neously. A direct comparison of treatments will compare the
probability that the predicted multiple endpoints for an indi-
vidual patient or a group of patients fall in a favorable region
of treatment outcomes (Δ). This process involves two tasks:
(1) building a predictive model with appropriate prognostic
and predictive factors and (2) for each treatment, predicting
the probability of being in region Δ. To be concrete, let y
be a k-dimensional vector of outcomes (y = (y1 , . . . , yk )), x
a vector of p predictors, and θ a vector of unknown parame-
ters given model M. The goal is to find Pr(y ∈ Δ | x, θ, M )
through the joint distribution p(y1 , . . . , yk |x, θ, M ).

Methods that involve Bayesian inference for variable se-
lection, motivated by the seminal work of George and

1030 C© 2009, The International Biometric Society



SSVS with Joint Modeling of Categorical and Survival Outcomes 1031

Table 1
Summary of the variables in the colorectal cancer study

Mean

Arm A Arm F Arm G
Variables Description (n = 115) (n = 292) (n = 106)

Outcomes Response 1: Yes, 0: No 33.9% 42.8% 33%
Toxicity 1: Grade > 3 12.2% 23.3% 20.8%
TTP Median TTP 188 308 249
status 0: censor, 1: event 84.3% 68.2% 79.2%

DGV∗ AGE age 60.835 59.685 59.179
SEX 0: Female, 1: Male 61.7% 59.6% 53.8%

Marker M1 abcb1/ 12 75.7% 83.2% 79.2%
M2 abcb1/ 2677 73.9% 68.5% 72.6%
M3 abcb1/ 3435 80.9% 77.7% 84.9%
M4 abcc1/ 14008 94.8% 93.2% 93.4%
M5 abcc1/ 34215 35.7% 28.4% 34.9%
M6 abcc2/ 24 98.3% 94.5% 98.1%
M7 abcc2/ c1515y 13.9% 11.3% 7.5%
M8 abcc2/ v417i 39.1% 38.7% 39.6%
M9 cyp3a4 13% 14% 9.4%
M10 cyp3a5 16.5% 18.8% 15.1%
M11 dpyd/ 5 13.9% 18.8% 8.5%
M12 dpyd/ 6 5.2% 9.6% 9.4%
M13 dpyd/ 9a 42.6% 41.1% 41.5%
M14 ercc2/ k751q 88.7% 86.6% 80.2%
M15 gstm1/ 0 47.8% 49% 45.3%
M16 gstp1/ I105v 54.8% 57.9% 52.8%
M17 gstp/ 114 5.2% 16.4% 15.1%
M18 mthfr 20.9% 18.5% 26.4%
M19 tyms/ 1494del 56.5% 50.3% 53.8%
M20 tyms/ tser 73% 68.8% 67%
M21 ugt1a1/ 28 57.4% 50.3% 49.1%
M22 xrcc1/ 399 57.4% 54.5% 62.3%
M23 ABCG2Q141K 19.1% 24.7% 17%

DGV = demographic variables.
For binary variables, percentage of 1 was calculated.

McCulloch (1993), have been applied in many studies (e.g.,
Brown, Vannucci, and Fearn, 1998; Chen and Dey, 2003; Sha,
Tadesse, and Vannucci, 2006). Bayesian methods have the
potential to account for small samples and selection of de-
rived covariates, e.g., interaction terms, through a proper
specification of the priors. In this article, we propose a sta-
tistical method to individualize treatment in the Bayesian
framework.

Another challenge to conducting an appropriate analysis is
that Δ is a complicated multidimensional space. For exam-
ple, a patient with a confirmed tumor response may have a
longer survival. A multivariate analysis is a reasonable choice
when outcomes are not independent, as information is bor-
rowed from the potentially correlated outcomes for variable
selection. Furthermore, by estimating the posterior predic-
tive probability of multiple outcomes in region Δ, one can
provide a single score to compare treatments from multiple
perspectives which may be related, e.g., time to progression,
and overall survival. This is of critical importance, because an
informed therapeutic decision is often based on consideration
of multiple endpoints. When outcomes follow different type of

distributions the coefficients of the same regressor across the
different outcomes are not directly comparable. In the context
of a multivariate regression model, properly scaled coefficients
are needed. This can been done using latent variables; in ad-
dition, the variance–covariance matrix of such a multivariate
regression model is often structured, which dictates additional
care when specifying a prior. To address these issues, we pro-
pose a method called multivariate Bayesian selection of inter-
actions (MBSI). The MBSI method features joint modeling of
categorical and survival responses, a nonconjugate prior for
structured variance components, selection of interactions with
limited sample size, and a variable selection rule. Each issue
has been addressed separately in literature; nevertheless, the
particular combination has not been studied.

In Section 2, we describe the hierarchical structure of
our MBSI model, and we will show how the decision
rules for variable selection are derived. The performance of
the MBSI is studied through simulations in Section 3. In
Section 4, the method will be illustrated in an analysis of
the large phase III colorectal cancer study. Finally, a short
discussion is given in Section 5.
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2. Method
2.1 Multivariate Regression Model with Latent Variables
We consider the problem of modeling the relationship between
K multiple responses (including categorical and survival) and
p predictor variables with sample size n in a Bayesian frame-
work. In the motivating example, we are interested in K ≡
3 outcomes. Let y1 and y2 be the binary outcomes of toxi-
city and tumor response, y3 be the survival outcome, xi be
the p × 1 vector of predictors for the ith sample, and X =
(x1 , . . . , xn)T . We assume in this study that the columns of
X have been standardized by subtracting their column means
and dividing by their column standard deviations. Each re-
sponse is assumed to follow its own regression model; let β (k )

be a p × 1 vector that is a column of the regression coefficients
and αk a scalar that is an intercept corresponding to the kth
outcome, k = 1 , . . . , 3.

We relate the regressors with the binary responses y1 and
y2 through a probit link, which yields

Pr(yk = 1 |X , αk , β(k )) = Φ(αk + Xβ(k )),

where Φ is the normal cumulative distribution function and
k = 1, 2. We introduce a n × 1 vector of latent vari-
able zk (Albert and Chib, 1993). For each individual (i =
1 , . . . , n),

yik =

{
1 if zik > 0
0 if zik � 0

.

The latent variable has a linear model form: zk = αk +
Xβ (k ) + εk , where εk

iid∼ N (0, 1). For reasons of identifiability,
we set the scale parameter of the normal distribution to be 1.

With respect to the survival outcome y3, denote the cen-
soring indicator by a n × 1 vector c, where ci = 0 if yi3 is right
censored and ci = 1 otherwise (i = 1 , . . . , n). We introduce a
n × 1 vector of complete variable z 3, defined as

log(yi3)

{
= zi3 if ci = 1
< zi3 if ci = 0

.

The complete variable has a normal distribution as z 3 ∼
N (α3 +Xβ (3), σ2). Note that when c = 0, the variable z 3 is
unobservable. Our approach is same as the data augmenta-
tion Gibbs sampling method used in Bayesian variable selec-
tion with log-normal accelerated failure time model in Sha
et al. (2006). This results in explicit full conditional distribu-
tions of β ≡

[
β(1), β(2), β(3)

]
and Z ≡ [z1, z2, z3], and leads to

a more efficient Markov chain Monte Carlo (MCMC) imple-
mentation. If a proportional hazards model is preferred, we
can specify a conditional hazard function h(y3 | z 3) = h0(y3)
exp (z 3), where z 3 ∼ N (α3 +Xβ (3), σ2). This setting changes
the relationship between y3 and z 3 to a stochastic one. With
h0(y3) = λ we obtain the exponential regression model; with
h0(y3) = ϕy

(ϕ−1)
3 , where ϕ > 0, we obtain the Weibull regres-

sion model. Consequently, the full conditional distributions
of β and Z are no longer in explicit forms. Thus, the MCMC
sampling efficiency decreases greatly for variable selection in
a trivariate regression setting.

Having introduced the latent variables (z 1, z 2) for binary
responses and the complete variable (z 3) for survival response,

we can rewrite the preceding model in a multivariate re-
gression form. Letting α = [α1, α2, α3]

T and ε = [ε1, ε2, ε3], we
have

Z = 1n αT + Xβ + ε and vec(εT ) ∼ N (0, In ⊗ Σ),

where Σ =

[
1 ρ1 ρ2σ
ρ1 1 ρ3σ
ρ2σ ρ3σ σ2

]
. (1)

Note that ⊗ denotes the Kronecker product, and vec (εT )
is the vector obtained by stacking the columns of εT on top
of each other. Let ρ = [ρ1, ρ2, ρ3] be the vector of correlation
coefficients resulting from the assumption that the three out-
comes are mutually correlated.

2.2 Bayesian Variable Selection
We introduce a p × 3 matrix of binary latent variables γ with
components γjk = 1 (j = 1 , . . . , p and k = 1, 2, 3) if the
j th regressor X (j ) is included in the kth model and γjk =
0 otherwise. We assume that the prior distribution of β is a
multivariate mixture normal that depends on γ. It takes the
form vec(βT ) |γ, σ ∼ N 3p (0,Σβ), where Σβ a block diagonal
matrix with blocks Σβ j =

⎡
⎢⎣

(
1−γj 1 +γj 1c

2
)
τ 2 0 0

0
(
1−γj 2 +γj 2c

2
)
τ 2 0

0 0
(
1−γj 3 +γj 3c

2
)
τ 2σ2

⎤
⎥⎦.

(2)

Here Σβ corresponds to an a priori independence assump-
tion for the coefficients. Note that for the survival outcome
in equation (2), the variance is adjusted by a quantity σ2.
Because the outcomes have different scales, the unadjusted β
will be incomparable across the multiple outcomes.

In this prior setting, the variable selection problem is for-
mulated in terms of making inferences regarding γ. A value
of c determines the magnitude of the difference between the
two mixture normal distributions. George and McCulloch
(1993) suggested that choosing c between 10 and 100 tends
to work well when implementing MCMC and that computa-
tional difficulties can be avoided whenever c � 100. In addi-
tion, τ shall be small enough so that βjk is close to zero when
γjk = 0.

We assume that all three intercepts are always included in
the model. Hence, selection of the intercepts is not performed.
We assume a simple diffuse multivariate normal prior for α
independent of γ:

α |σ ∼ N3(0,Σα ), where Σα =

⎡
⎣σ2

α 0 0
0 σ2

α 0
0 0 σ2σ2

α

⎤
⎦ .

Note that Σα is adjusted for the survival outcome in the same
manner as in equation (2).

In a Bayesian regression framework, a Wishart distribu-
tion is often used as a prior for the variance matrix Σ for
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convenience. However, in our case the Wishart distribution is
not a proper prior due to the constraint on the variance of
the binary outcomes y1 and y2. Therefore, we modeled Σ us-
ing the separation strategy of Barnard, McCulloch, and Meng
(2000).

The prior distributions for σ and ρ = [ρ1, ρ2, ρ3] in equation
(1) are specified separately. For σ, an inverse gamma prior is
used σ ∼ IG (ν/2, νλ/2). We assume that the correlations
ρ1, ρ2, ρ3 are a priori exchangeable. To ensure the positive
definiteness of Σ, we need a constraint

1 − ρ2
1 − ρ2

2 − ρ2
3 + 2ρ1ρ2ρ3 > 0. (3)

Hence, a joint uniform prior for ρ1, ρ2, ρ3 is specified as

p(ρ1, ρ2, ρ3) =
2
π2 I(1−ρ2

1−ρ2
2−ρ2

3+2ρ1ρ2ρ3> 0,ρ1,ρ2 ,ρ3∈(−1,1))

with informative marginal distribution

p(ρk ) =
2
π

√
1 − ρ2

k , ρk ∈ (−1, 1), k = 1, 2, 3.

Given the other two elements of ρ, say ρ2 and ρ3, ρ1

has a uniform conditional distribution ρ1 | ρ2, ρ3 ∼ U(L1,
U 1), where L1 = ρ2ρ3 −

√
(1 − ρ2

2)(1 − ρ2
3) and U1 = ρ2ρ3 +√

(1 − ρ2
2)(1 − ρ2

3). The lower and upper bounds L1 and U 1

are the roots of the inequality (3). The marginal densities of
ρ are symmetric and have more mass close to zero than the
tails, which is a plausible assumption because the correlations
are rarely very large in real applications.

2.3 Prior for γ

We first assume that the selection of regressors is a priori in-
dependent across the outcomes. Second, within each outcome,
we assume that the selection of a main effect is dependent on
the selection of all its interaction terms. Because interaction
terms represent deviation from an additive model, we adopt
the convention that a model containing an interaction term
should also contain the corresponding main effects (Neter
et al., 1996).

Define a p × 3 matrix of indicator variables ξ with compo-
nents ξj k = 0, (j = 1 , . . . , p, k = 1, 2, 3) if the corresponding
regressor is an interaction, and ξj k = 1 if a main effect. Let
Ωj k be the set of all the latent variables (γj ′k , j ′ 	= j) for the
interaction terms that are related to the jth main effect of kth
model. Following the above assumptions, the prior for γjk is
a Bernoulli distribution and takes the form

p(γjk = 1 |Ωj k , πj k ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if ξj k = 1 and
∑

γ j ′k ∈Ωj k

γj ′k > 0

πjk if ξj k = 1 and
∑

γ j ′k ∈Ωj k

γj ′k = 0

πjk if ξj k = 0

πjk ∼ beta(a, b).

To favor parsimonious models or when n < p, the parame-
ters (a, b) in the beta prior can be chosen to force πjk to be
small.

2.4 Decision Rules for Variable and Model Selection
It is commonly perceived that the optimal predictive model
is the model with highest joint posterior probability, but this

is not necessarily the case as discussed in Barbieri and Berger
(2004). Our simulation studies also showed that a method
based on marginal posterior probabilities was better than that
of the highest joint posterior probability method regarding
the prediction performance (Table 2 in Section 3.2 and Web
Figure 1).

The major differences between choosing a model (using
highest joint posterior probability) and choosing important
predictors (using marginal posterior probabilities) are the fol-
lowing: (1) The selection domain is p for predictors in con-
trast to 2p for models, assuming no restriction. For a fixed
number of MCMC iterations, it is desirable to search in a
small parameter domain space. Determining marginal prob-
abilities is computationally simpler than determining highest
joint probabilities (Barbieri and Berger, 2004). (2) The joint
prior probabilities are affected by the size of p; whereas the
marginal prior probabilities are invariant. (3) The “dilution ef-
fect” (George, 1999), caused by multicollinearity, reduces the
marginal posterior probabilities allocated to highly correlated
variables. This may lead to ruling out potential predictors. To
alleviate this problem, if a nearly perfect Pearson’s coefficient
of correlation (0.9 or greater) between any two variables is
observed, the one with smaller sample variance is suggested
to be removed when there is no scientific reason to suggest
removing the other. (4) When variable selection is performed,
a decision of selecting how many predictors is required. We
will briefly describe a false discovery rate (FDR)-based deci-
sion rule developed by Chen et al. (2008) at the end of this
section.

There are two types of errors in the variable selection prob-
lem: (1) selecting a variable that in truth is not a predictor
(false discovery); and (2) not selecting a variable that in truth
is a predictor (false negative). These two errors can be quan-
tified by two complementary Bayesian losses: posterior ex-
pected FDR (FDR) and posterior expected FNR (FNR). For
the sake of simplicity in this section only, we introduce no-
tation omitting subscript k for the kth outcome, because the
definition is the same for all three outcomes. Let dj denote
the decision of inclusion (dj = 1) or exclusion (dj = 0) of jth
predictor given data, D =

∑p

j=1 dj , and p the total number of
regressors in consideration. The FDR and FNR are

FDR =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Eγ |Data

⎛
⎝

∑
dj (1 − γj )

D

∣∣∣∣∣Data

⎞
⎠

=

∑
dj (1 − νj )

D
if D > 0

0 if D = 0

and

FNR =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Eγ |Data

⎛
⎝

∑
(1 − dj )γj

p − D

∣∣∣∣∣Data

⎞
⎠

=

∑
(1 − dj )νj

m − D
if D < p

0 if D = p,

(4)



1034 Biometrics, December 2009

where ν j = P (γj = 1 |Data) is the marginal posterior proba-
bility of unobserved truth (γj ) of jth predictor. It is estimated
by the proportion of times that γj = 1 through the MCMC
iterations. In other words, selection of a variable is based on
its frequency of occurrences in any model. This is similar to
the variable importance measures in the random forest ap-
proach, where a variable is considered important if it appears
in many trees. The posterior expected losses defined in equa-
tion (4) utilize the simple zero-one loss function. To minimize
a two-dimensional loss, one can minimize one dimension while
controlling the other.

Accounting for the relationship between main effects and
interactions, the FDR and FNR will be calculated sep-
arately within the set of main effects (s1) and the set
of interactions terms (s2). Hence, given αL for main ef-
fects and αH for interactions, we have min

{
FNRs1 , FNRs2 |

FDRs1 � αL , FDRs2 � αH

}
. The total FDR(s1 ,s2) is con-

trolled at max(αL , αH ) (see Lemma 1 in Chen et al.
[2008]).

As the decision in s1 is affected by the decision of their
higher-order terms in s2, we start with minimizing the FNRs2

followed by minimizing the FNRs1 . After the decisions are
made for all the terms in s2, a subset (denoted as s′1) of the
lower-order terms in s1 is forced to be included in the model
due to the constraint. Hence, those terms are not involved in
the decision to minimize the FNRs1 . Decisions will be made
for the remaining terms in the complement of s′1 (denoted
as s′1). The following algorithm illustrates the steps to reach
these decisions. First, if t is a threshold such that the deci-
sion dj = I(ν j � t), j ∈ s2 satisfies FDRs2 � αH , the opti-
mal threshold t∗H ≡ min{t : FDRs2 � αH } minimizes FNRs2 .
Hence, the decisions for the terms in s2 is dj = I(ν j � t∗H ),
j ∈ s2. Second, within s1, we identify a subset s′1 so that its
related higher-order term is selected in step 1. Set dj = 1, j ∈
s′1. We force these terms to be selected. Third, for the terms
in s′1 (complement of s′1), we find an optimal threshold t∗L such
that the decision dj = I(νj � t∗L ), j ∈ s′1 minimizes FNRs1 in
the same fashion as in step 1.

The choice of αL and αH is different from the conventional
significance level for the family-wise error rate. While a high
level of (αL , αH ) results in more falsely selected regressors,
it would not necessarily cause a worse prediction to the out-
come but may lead to a less parsimonious model. Therefore,
αL and αH can be set according to one’s degree of toler-
ance in the number of the false predictors. In the case of n
< p, however, the prior dominates the posterior distribution.
Hence, any variable selection method based on the marginal
posterior distributions must take the prior assumptions into
account. We consider the average posterior to prior probabil-
ity ratio as the strength of evidence from the data. Similar to
Jeffreys’ interpretation of Bayes factor (Jeffreys, 1961), we use
a ratio larger than 3 (e.g., αH = 1 − 3 × mean of beta hyper-
prior) as moderate-to-strong evidence. Because the marginal
posterior probabilities for main effects are inflated due to the
constrained prior structure, a small value of αL should be used
to reduce the false discovery among main effects. Yet, αL does
not affect the decision of main effects whose interactions are
selected.

2.5 Prediction
Let Ml (l = 1 , . . . , L) be a model among L models obtained
by varying αL and αH , and θ l = {α, β, ρ, σ} be the vector
of parameters for model Ml . To predict the probability that
ynew, given treatment and patient characteristics data (xnew),
belongs to a predefined desirable outcome region Δ, we use the
posterior predictive probability Pr(ynew ∈ Δ |Data, xnew) =∑L

l=1 Pr(ynew ∈ Δ |Ml, Data, xnew)Pr(Ml |Data). The condi-
tional posterior probability Pr(ynew ∈ Δ |Ml , Data, xnew)
in the summation is given by Pr(ynew ∈ Δ |Ml, Data, xnew) =∫

Pr(ynew ∈ Δ |θl , xnew)p(θl |Ml, Data)dθl .
Analytically evaluating the summation and integral is dif-

ficult due to the large model space. An immediate Monte
Carlo estimate can be calculated as follows. We obtain draws
of the parameters θ

(1)
l , . . . , θ

(T l )
l from model Ml . For each set

of parameters θ
(t)
l , t = 1 , . . . , Tl , we calculate the Pr(ynew ∈

Δ | θ(t)
l , xnew) from the multivariate regression model in

equation (1). The estimated probability of a new obser-
vation ynew belongs to set Δ is Pr(ynew ∈ Δ |Data, xnew) ≈
1
L

∑L

l=1
1

T l

∑T l

t=1 Pr(ynew ∈ Δ |θ(t)
l , xnew). Note that if one

model is preferred over Bayesian model averaging, L can be
set to 1.

To decide which treatment is best for a given pa-
tient with covariates xnew, we computed posterior pre-
dictive probabilities of superiority for the three treat-
ments (A, F, and G). For each posterior sample of the
model parameters θ

(t)
A , t = 1 , . . . , T , compute I

(t)
A =

{Pr(ynew | θA , xnew) > Pr(ynew | θF , xnew) and Pr(ynew | θA ,
xnew) > Pr(ynew | θG , xnew)}, and analogously compute I

(t)
F

and I
(t)
G . Averaging these indicators over the T posterior

samples would yield relative probabilities for superiority pA =
1
T

∑T

t=1 I
(t)
A (and likewise, pF and pG).

3. Simulation Studies
3.1 Designs
To investigate the performance of the variable selection, the
prediction of multiple non-Gaussian outcomes, and the effect
of sample size on our proposed method, we performed a series
of simulation studies. For each sample size (n = 30 or 200),
we set the number of potential predictors p ≡ 55, which con-
sisted of 10 main effects and 45 pairwise interaction terms.
We assume that all of the 10 main effects are independent
and from a N (0, 1) distribution.

Three responses were simulated: two binary outcomes (with
probit link) and one survival outcome (with a lognormal link).
Among the 55 potential predictors, the true predictors and
their coefficients were set as 0.3 + X 1 + X 2 + X 3 + X 4 + X 1

X 2 + X 1X 4 for the first binary outcome, −0.3 + X 2 + X 3 +
X 4 + X 5 + X 2X 3 + X 4X 5 for the second binary outcome,
and 0.3X 3 + 0.3X 4 + 0.3X 5 − 0.2X 3X 4 + 0.2X 4X 5 for the
survival outcome. We drew a n × 3 matrix of latent variables
Z from the trivariate normal density (1) given these true pre-
dictors. The parameters in the variance–covariance matrix of
Z in equation (1) were set as ρ1 = 0.1, ρ2 = 0.3, ρ3 = 0.7, and
σ = 0.3. For each ith simulated observation (i = 1 , . . . , n),
if zik > 0, k = 1, 2, we set yik = 1 and yik = 0 otherwise.
This setting generated y1 = 1 approximately 50% and y2 = 1
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Table 2
True and estimated Pr(y test ∈ Δ) and 90% CPI coverage

Highest joint posterior∗ FDR
∗∗

n = 200 n = 30 n = 200 n = 30

ID True Est.(SE) Cvg. Est.(SE) Cvg. Est.(SE) Cvg. Est.(SE) Cvg.

1 0.056 0.074 (0.026) 0.85 0.137 (0.096) 0.71 0.055 (0.023) 0.88 0.079 (0.088) 0.80
2 0.311 0.284 (0.063) 0.86 0.229 (0.134) 0.76 0.278 (0.074) 0.82 0.227 (0.200) 0.67
3 0.524 0.499 (0.122) 0.86 0.402 (0.213) 0.73 0.514 (0.139) 0.82 0.481 (0.302) 0.70
4 0.757 0.744 (0.031) 0.89 0.491 (0.140) 0.48 0.754 (0.028) 0.94 0.606 (0.212) 0.77
5 0.933 0.905 (0.039) 0.90 0.645 (0.170) 0.42 0.919 (0.033) 0.95 0.819 (0.145) 0.81

∗Select model with the highest joint posterior probability.
∗∗Select variables satisfying the FDR criteria.

approximately 40%. For the survival outcome y3, we assume
log-normal distribution and noninformative censoring. Ran-
dom deviates were generated independently from the Unif (0,
4.5) distribution. If y3 = exp(z 3) was larger than the corre-
sponding uniform deviate, then that patient was censored at
the time of that uniform deviate. This yielded approximately
30% censoring, which matches the percentage of censoring in
the colorectal cancer data. We generated 100 replications for
each sample size (n = 30 and 200).

For all the simulated data sets, we applied the MBSI
method with c = 10 and τ = 0.05. For the hyperparame-
ters in the beta prior, the mode was set to 3/p and the mean
was 20% larger than the mode. The length of the MCMC
chain was set to be 20,000, from which the first 5000 itera-
tions were discarded. The significance levels (αL , αH ) were
set to (0.1, 0.2) and (0.3, 0.8), respectively, for the sample
sizes 200 and 30. When there was a sufficiently large sample
size (n > p), the posterior distribution was not sensitive to
the prior assumptions. The setting (αL = 0.1, αH = 0.2) led
to at most 20% falsely discovered predictors. However, when
the sample size was small (n < p), the marginal posterior
distribution was flattened and sensitive to the prior assump-
tions. We assumed that on average the prior probability to be
a true predictor is 0.065 (the mean chosen for the beta prior).
The setting αL = 0.3 and αH = 0.8 when n = 30 resulted
in an average posterior probability of at least 0.2 among the
selected regressors. The average posterior to prior probability
ratio for the selected regressors was about 3.

3.2 Prediction Evaluation
We evaluated prediction using the posterior predictive distri-
butions as follows. Let ytest and xtest be the simulated out-
comes and covariates independent from the training set. We
defined Δ as requiring both binary outcomes be equal to 1
and the survival outcome be larger or equal to 12 months. Let
Pr(ytest ∈ Δ) (calculated under model (1)) be the true proba-
bility. For each replication, we obtained the posterior predic-
tive distribution p(ytest ∈ Δ | xtest , θ l ). If the Pr(ytest ∈ Δ) is
within 90% of central posterior interval (CPI), we set cover-
age = 1. The average coverage across all the 100 replications
gives the estimate for the 90% coverage for that test case. Five
test cases that were scattered in the space of design points
were simulated to demonstrate the performance of proposed
method.

The true probability Pr(ytest ∈ Δ), the estimated mean and
standard error of posterior predictive probability, and the 90%
CPI are shown in Table 2. Two model selection approaches are
compared in the table. One selects a model with the highest
joint posterior probability, while the other selects a model that
satisfies the FDR criteria. Graphical illustration of the com-
parison between the two modeling approaches can be found
in Web Figure 1.

When the sample size equals 200, there was no signifi-
cant difference between the two model selection methods in
terms of estimated mean and coverage. When the sample
size dropped to n = 30, the prediction uncertainty increased
greatly. Test cases 4 and 5 were underestimated using the joint
posterior model selection method. The cause of this biased
estimation was likely due to the exclusion of the important
predictors. The joint posterior probabilities were dominated
by the prior distribution, which favors parsimonious models.
The predictions for cases 4 and 5 were slightly improved when
using the FDR criteria.

4. Colorectal Cancer Study
4.1 Preliminary Analysis
Now we return to the colorectal study described in the Intro-
duction. We dichotomized the 23 biomarkers to mutant (0) or
wild type (1). The endpoints observed for each patient in this
trial were an indication of toxicities, tumor response, and time
to tumor progression (TTP). Several types of toxicities were
monitored, e.g., nausea, dehydration, neutropenia, vomiting,
diarrhea, febrile neutropenia, and paresthesia. We chose the
maximum grade among all types of toxicities and set a bi-
nary outcome toxicity (TOX) to 1 if the maximum grade was
4 or 5, which represents life threatening or fatal toxicity on
a 5 point scale (National Cancer Institute Common Toxic-
ity Criteria Version 2), and 0 otherwise. If a patient had at
least two consecutive complete or partial tumor regressions,
the binary outcome tumor response (RSP) was set to 1 and
0 otherwise. The third outcome was the TTP, which was a
censored continuous variable. The total number of regressors
is 325: 25 main effects (23 biomarkers plus AGE and SEX)
plus 300 two-way interactions.

Preliminary investigation of the multiple endpoints (RSP,
TOX, and TTP) indicated that they were not independent of
each other, as there were positive correlations between RSP
and TTP across all the treatment groups. Patients who had a
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Figure 1. Marginal posterior distributions of the regressors by treatment arms in the colorectal cancer study for the sensitivity
analysis of beta priors.

confirmed tumor response consistently had a longer progres-
sion time relative to those who had no confirmed tumor re-
sponse. To check the log-normal assumption for the survival
model, we fit a parametric log-normal model to the failure
times with no predictors using the survreg function in R.
Based on the fit, we plotted the residuals (See Web Figure 2).
In all three arms, log-normality appeared to be a tenable
assumption.

4.2 Model Building
We applied the proposed MBSI method on each treatment
arm and chose c = 10 and τ = 0.05 for the mixture normal
prior. This implied that if a coefficient was less than about
2τ = 0.1, we were comfortable excluding that regressor from
the model. For the hyperparameters in the beta prior, the
mode was set to 0.2 and mean was 0.25, which is 25% larger
than the mode.

The estimated marginal posterior distributions of the re-
gressors by treatment arms are shown in Figure 1a. The first
25 regressors are main effects and the rest are interaction
terms. All the main effects show very high marginal posterior
probabilities. The reason is that the marginal probability of
a main effect consists of two sources: one is from itself, the
other is from its interactions. The more interaction terms,
the more the marginal probabilities for the main effects will
be inflated. When n > p, there is more separation between
signal and noise. See Web Figure 3 for the marginal poste-
rior probabilities in our simulation study. However, when n
< p, the beta hyperprior plays an important role. When the
anticipated proportion of true predictors (the mean of beta
hyperprior) was set to be 0.25, the marginal posterior prob-
abilities for interactions were influenced by this prior accord-

ingly (Figure 1a). To analyze the sensitivity to the choice
of beta prior, we used another set of hyperparameters with
mode equal to 0.1 and mean 0.05. This setting kept the ba-
sic shape of beta distribution unchanged, but the distribution
is flatter and skewed more toward smaller values, suggesting
that a priori there were fewer true predictors and we would
be more uncertain about the number of the true predictors.
The estimated marginal posterior probabilities of the inter-
action terms (Figure 1b) indicated that the posterior proba-
bilities are sensitive to the prior, which is not a surprise as
n < p in each treatment group. However, for those interac-
tion terms whose estimated posterior probabilities of being
selected are above average, the ordering from the highest to
the lowest probabilities is very similar from either settings
of beta prior. There is much uncertainty about most regres-
sors, yet the strong signals from several of the interactions are
worthy of further investigation.

To select the important predictors, we set the FDR thresh-
old αL = 0.001 and αH = 0.3 for the main effects and inter-
actions, respectively. The reason to set a low αL in this case
is to avoid selecting too many main effects, whose marginal
probabilities might be inflated by the large number of interac-
tion terms. The variable selection result was not sensitive to
the choice of αH in a range from 0.2 to 0.5. Table 3 shows the
estimated coefficients for the selected predictors. The trace
plots for the parameters in the model were provided as sup-
plementary material Web Figures 4–6.

Note that the estimated coefficients were not significantly
different from 0 for some main effects. For example, in arm
F the estimated mean and standard error (SE) of the coeffi-
cient were 0.07(0.12) for marker 11 and 0.14(0.14) for marker
23. However, their interaction had estimated mean and SE
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Table 3
Est.(SD) of coefficients for the selected predictors

Arm A (n = 115) Arm F (n = 292) Arm G (n = 106)

Var RSP TOX TTP RSP TOX TTP RSP TOX TTP

Int. −0.55 (0.17) −1.60 (0.37) 4.95 (0.16) 0.11 (0.15) −0.37 (0.11) 5.85 (0.16) −0.33 (0.17) −1.51 (0.53) 5.41 (0.15)
†Age 0.13 (0.09) −0.21 (0.10) 0.24 (0.14)
Sex −0.12 (0.16) −0.59 (0.15) −0.22 (0.23) −0.49 (0.31)
M1 0.02 (0.30)
M2 0.51 (0.37)
M3 0.15 (0.14) 0.44 (0.38)
M5 0.60 (0.23) 0.56 (0.21) −0.98 (0.26)
M7 −0.38 (0.30) 0.05 (0.46) −0.46 (0.33)
M8 −0.37 (0.24) 0.59 (0.23)
M10 0.35 (0.27) −0.40 (0.20) −0.94 (0.49)
M11 0.07 (0.12)
M12 0.10 (0.28)
M13 0.15 (0.23) −0.05 (0.11)
M14 0.73 (0.34)
M16 −0.35 (0.13)
M17 0.14 (0.55) −0.58 (0.40)
M19 −0.16 (0.13) −0.5 (0.15)
M21 0.21 (0.25) −0.10 (0.21)
M23 0.22 (0.23) 0.14 (0.14) −0.04 (0.31) −0.09 (0.39)
Age ∗M19 0.49 (0.13)
Age ∗M23 −0.69 (0.23)
Sex ∗M5 0.83 (0.32)
M3 ∗M8 −0.88 (0.23)
M5 ∗M13 −0.90 (0.30)
M8 ∗M13 0.33 (0.20)
M11 ∗M23 −0.65 (0.28)
M16 ∗M19 0.52 (0.17)

†Variable age was scaled.
The cell is blank if the variable was not selected for an outcome.

of −0.65(0.28), which was significantly different from zero.
This demonstrates that even though main effects were not
significant, their significant joint effect was detected by the
MBSI method.

In other examples (i.e., marker 10 and marker 12 in arm F),
the coefficients of main effects were not significantly different
from zero, and no interactions were selected. This may have
one of the three possible explanations. First, fitting all the
important variables that are selected due to their high
marginal probabilities into a single multiple regression model
does not guarantee that all of the coefficients are still signif-
icant. The multicollinearity among some important variables
may lead to the nonsignificant coefficients. Second, the thresh-
old for FDR procedure could be too low, leading to a high
FDR. In our analysis, the threshold for the main effects was
set very close to zero, which rules out this possibility. Third,
the estimated high marginal probability of a main effect could
be due to the falsely selected interactions during the MCMC
procedure. A possible remedy for this problem is to apply
the MBSI method on the main effects only and review the
marginal probabilities of the main effects in question.

The estimated variance components are presented in Web
Table 1. A positive correlation between RSP and TTP (ρ2)
was found in all the study arms. Across all three arms, arm F
resulted in the largest model size (Table 3), which is defined
as the total number of distinctive regressors in a multivari-
ate model allowing different regressors for different outcomes.

The model size will tend to increase with the size of sample,
because the prediction variance will usually be reduced with
increased sample size (Miller, 2002).

4.3 Comparing Treatments
To compare the three treatment regimens, we defined a fa-
vorable region (Δ) of treatment outcomes as a union of Δ1

(RSP = 0 or 1, TOX = 0, and TTP > 365) and Δ2 (RSP =
1, TOX = 0 or 1, and TTP > 730). The definition of Δ can
be very flexible and can change from study to study. A favor-
able treatment outcome often represents a trade-off between
efficacy and toxicity: if a cancer treatment has high efficacy,
sometimes patients are willing to accept more toxicity.

In this study, 18 variables, including AGE, were selected. If
we select the design points of the continuous variable AGE at
age 50 and 70 (20th and 80th percentile of age distribution),
together with the other 17 binary variables, the total possible
number of different configurations of patient profiles is 218 =
262,144. For each of these 262,144 hypothetical or future pa-
tients, we can predict the probability of outcome in region Δ
given treatment A, F, or G.

In general, the experimental treatment F had a slightly
higher probability of achieving an outcome in the favorable
region Δ compared to the standard treatment A, whereas
the treatment G had a lower probability (See Web Figure 7).
Under treatment A, patients with younger age, mutant mark-
ers 5 and 23, and wild-type marker 13 had greater than 50%
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(b) Nested 10-fold CV

Figure 2. Comparing treatment outcomes of patients who received optimal treatment versus those who received nonoptimal
treatment in the colorectal cancer study.

chance to achieve the outcome region Δ. Patients with mu-
tant marker 7 have worse outcome than those with wild-type
marker 7 given treatment G.

4.4 Choice of Tuning Parameter c
Because we are dealing with the n < p situation in this appli-
cation, further sensitivity analyses of model size were done

using different settings of the tuning parameters c and τ
(Web Table 2). The range of c where the predictive perfor-
mance is invariant is narrower in our application (with n < p)
than that recommended by George and McCulloch (1993).
Possible explanations of this phenomenon are the small
transition probabilities and sample size, discussed in Web
Appendix A.
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Because of the strong influence of tuning parameter c, we
used a 10-fold cross-validation (CV) approach to choose c. We
randomly divided data into 10 parts, stratified on treatment
arms. In each of 10 subsets, one was set aside as testing data
and the remaining nine were used as training set for mod-
eling with different values of c. Optimal treatments for the
testing set were predicted (see Section 2.5 for the calculation)
using the model trained from the training set. We then sep-
arated the 513 patients into two groups: group 1 consisted
of patients who received nonoptimal treatment; group 2 con-
sisted of patients who received optimal treatment. When c =
10, the survival curve and percentages of toxicities and re-
sponses of each group are shown in Figure 2a. The median
time to progression of group 2 was 11.5 months which was
53% greater than that of group 1 (7.5 months). Figures with
other c values are shown in Web Figures 8–10. The predictive
performance with c = 5 (Web Figure 8) was less than that of
c = 10. This is likely due to the smaller model size, which left
out a few important predictors. The predictive performance
with c = 20 (Web Figure 9) was less than that of c = 10.
This is probably due to the large model size, which led to
model overfitting. Hence, c = 10 was chosen to have the best
prediction performance.

4.5 Model Validation
To further validate whether or not the proposed individu-
alized therapy model results in any difference in treatment
effect, the 10-fold method in Section 4.4 is not appropriate
because it used all the data for selecting c. Therefore, to ob-
tain an assessment of prediction, a nested 10-fold CV was
performed. We again divided data into 10 parts. For the 9/10
parts that were used for model building, we did inner 9-fold
CV to select c – building models for a grid of c values (c = 5,
10, 15, 20) on the 8/9 parts and choosing the one that per-
formed best in predicting the held-out part. Then, whichever
c was the best, it was used on predicting the 1/10 part that
was not used in selecting c. This was repeated for each of the
ten 9/10 splits resulting in a valid assessment of prediction
shown in Figure 2b.

The statistical testing and confidence intervals in Figure 2
are for illustration only, and the significance has to be inter-
preted with caution. Lusa et al. (2007) reported that the CV
process results in inflated testing type I error rates. As pointed
out by one referee, the only way to truly assess the value of in-
dividualized therapy would be to perform a prospective trial
in which the patients were treated based on an individualized
plan.

5. Concluding Comments
In this work, we proposed a multivariate Bayesian regres-
sion model for individualizing cancer treatments. We have ad-
dressed three issues: comparing the treatments using a quan-
titative score derived from predicting the multiple endpoints,
modeling jointly non-Gaussian outcomes, and building a re-
gression model with the selection of interactions. The end-
points considered were categorical and censored continuous
variables, which are very common in most phase III clinical
trial settings. The MBSI procedure which incorporates the se-
lection rule for interaction terms by controlling posterior ex-
pected FDR was implemented. This particular selection rule
increased the power of detecting interactions, which becomes

more and more important in defining useful comprehensive
models for complex diseases.

Our simulation study suggests the feasibility of predict-
ing the multiple non-Gaussian outcomes simultaneously. Al-
though the categorical outcomes in the current model were as-
sumed to be binary outcomes, it is straightforward to extend
the proposed approach to multilevel outcomes. The survival
outcome in the colorectal cancer study was assumed to follow
a log-normal accelerated failure time model for the simplicity
of computation. We suggest checking this assumption before
implementation in the data analysis.

Regarding the priors, although spike and slab mixture pri-
ors for variable selection were proposed and applied in the
literature, we consider the narrow normal priors for non-
significant regressors as proposed by George and McCul-
loch (1993) to be more practical. An important issue is the
choice of c. We used CV type of methods to choose c in
this application. These are all fairly computationally intensive
methods. Further theoretical development is needed in this
area.

When applying the MBSI method in the colorectal can-
cer study, we modeled each arm separately. Because different
treatments work through different mechanisms, the possibility
of treatment-biomarker interactions exists. Separate models
eliminate those interaction terms and result in a less complex
model structure and faster computation. As pointed out by
one referee, it would be better if the modeling was not com-
pletely separate, but rather borrowed strength across treat-
ments in estimating the covariance parameters. A hierarchi-
cal model component could be introduced that allowed each
treatment to have its own covariance parameters. Nonethe-
less, the increased model complexity due to the additional
level is beyond the scope of this article.

6. Supplementary Materials
Web Tables and Figures referenced in Sections 3.2 and 4.1–4.4
are available under the Paper Information link at the Biomet-
rics website http://www.biometrics.tibs.org.
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