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Ethanol Feeding Inhibits Proinflammatory Cytokine 
Expression from Murine Alveolar Macrophages Ex Vivo 

Theodore J. Standiford and Jean M. Danforth 

The prolonged and excessive consumption of alcohol has been 
shown to predispose the host to a variety of infectious complica- 
tions, which may be due, in part, to the inability to produce important 
activating and chemotactic cytokines. In this study, we assessed the 
effect of alcohol ingestion on the expression of tumor necrosis fac- 
tor-a (TNF-a), and the chemokines macrophage inflammatory pro- 
tein-2 (MIP-2) and macrophage inflammatory protein-la (MIP-la) 
from murine alveolar macrophages (AMs) cultured ex vivo. Two- 
week ethanol feeding resulted in substantial impairment in the lipo- 
polysaccharide (LPS)-induced expression of TNF-a, MIP-2, and 
MIP-la mRNA, and protein from LPS-stimulated AMs, compared 
with cytokine production from AMs obtained from CD-1 mice receiv- 
ing an isocaloric control diet. These findings indicate that ethanol 
feeding results in diminished production of chemotactic and/or ac- 
tivating cytokines from AMs ex vivo that may contribute to the im- 
pairment in lung inflammatory responses and antimicrobial host de- 
fense that is observed in the setting of alcohol ingestiodintoxication 
clinically and experimentally. 

Key Words: Tumor Necrosis Factor-a, Chemokines, Alcohol, Al- 
veolar Macrophages, Cytokines. 

OST DEFENSE against lung pathogens requires the H accumulation and activation of leukocytes, including 
neutrophils and mononuclear phagocytes, at the site of 
microbial invasion.’ Resident alveolar macrophages ( A M s )  
are believed to play a critical role in the process of leuko- 
cyte recruitment/activation via the elaboration of important 
activating and chemotactic cytokines.’ Tumor necrosis fac- 
tor-a (TNF-a) is one such cytokine produced by activated 
A M s  that directly activates leukocyte microbicidal activity, 
and can mediate lung polymorphonuclear influx by upregu- 
lating leukocyte adhesion molecules and by serving as an 
afferent signal in the autocrine or paracrine induction of 
chemotactic molecules? A M s  are also rich cellular sources 
of ~hemokines.~ The C-X-C chemokine family, which in- 
cludes macrophage inflammatory protein-2 (MIP-2), exerts 
predominant neutrophil chemotactic and activating effects, 
whereas C-C chemokines-including macrophage inflam- 
matory protein-la (MIP-la)-are chemotactic for mono- 

nuclear cells and eo~inophils.~-’ TNF-a, as well as several 
members of the chemokine family, have been shown to be 
required for effective host defense against a variety of 
pulmonary The induction of TNF-a, MIP-2, 
and MIP-la gene expression in response to endotoxin re- 
quires the binding of a trans-NF-KB binding protein to the 
NF-KB DNA binding site, resulting in enhanced proinflam- 
matory cytokine gene expression.’3314 

The prolonged and excessive consumption of alcohol 
predisposes the host to a variety of infectious complica- 
tions, in particular bacterial infections of the The 
alcohol-induced impairment in lung antimicrobial host de- 
fense is believed to be due, in part, to the inability to 
produce important activating and chemotactic cytokines. 
Specifically, the acute, but not chronic infusion of alcohol, 
has been shown to attenuate lipopolysaccharide (LPS)- 
induced increases in serum TNF-Q.’~-~’ In addition, alco- 
hol inhibits the induction of TNF-a detected in bronchoal- 
veolar lavage (BAL) fluid after the intratracheal 
administration of LPS or live bacterial organisms.” The 
incubation of AMs with alcohol in vitro suppresses the 
production of murine macrophage-derived interleukin 
(1L)-6 production,21 whereas prolonged alcohol feeding 
significantly inhibits the expression of interferon-y and sol- 
uble IL-2 receptor from retroviral-infected murine spleno- 
cytes.” These studies indicate that alcohol exposure glo- 
bally suppresses the ability of immune cells to express 
leukocyte activating cytokines. Molecular mechanisms by 
which alcohol mediates this effect have not been charac- 
terized. 

In this study, we assessed the effect of chronic alcohol 
consumption (2 weeks) on the expression of TNF-a, MIP-2, 
and MIP-la from resting and LPS-stimulated A M s  ex vivo. 
We have chosen to study these cells ex vivo, because these 
conditions allow for cells to be recovered and studied in 
pure populations, while closely reproducing the conditions 
of in vivo alcohol exposure. 
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MATERIALS AND METHODS 

Reagents 

Murine recombinant TNF-a, MIP-2, and MIP-la were purchased from 
R&D Systems (Minneapolis, MN). Polyclonal antimurine TNF-a, MIP-2, 
and MIP-la antiserum used in our ELISA were produced by immuniza- 
tion of rabbits with recombinant murine cytokines in multiple intradermal 
sites with complete Freund’s adjuvant. Stock LPS (Sigma Chemical Co., 
St. Louis, MO) was prepared at a concentration of 200 pglml in sterile 
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RPMI-1640 (Whitaker Biomedical Products, Whitaker, CA) containing 1 
mM glutamine, 25 mM HEPES, 100 units/ml penicillin, and 100 pg/ml 
streptomycin (Hazelton Research Products, Denver, PA) (complete me- 
dia). 

Protocol for Alcohol Feeding 

To assess the effects of alcohol on the expression and regulation of 
proinflammatory cytokines, two groups of 6- to 8-week-old female CD-1 
mice received calorie-matched complete liquids diets (Bioserve, French- 
town, NJ), with the alcohol-fed animals receiving incremental increases in 
ethanol content in their diet as follows: ethanol 2.2% (v/v) X 4 days; then 
4.4% X 4 days, then 6.6% X 6 days, for a total of 14 days of alcohol 
feeding. Serum ethanol levels were determined in the Clinical Toxicology 
Laboratory at the University of Michigan Hospital by gas chromatography. 
The ethanol level in alcohol-fed animals at the end of this period was 
166.9 & 19.4 mgldl (range: 5.9 to 398.4 mg/dl). During the 2-week calorie- 
matched diet, the control mice gained 2.00 & 0.18 g, whereas ethanol-fed 
animals lost 0.99 2 0.15 g. 

Isolation of Murine AMs 

CD-1 mice (Charles River Breeding Laboratories, Cambridge, MA) 
were maintained under specific pathogen-free conditions. The mice were 
then anesthetized and exsanguinated. BAL was performed to obtain 
AMs! Before BAL, the pulmonary vasculature was perfused with 1 ml of 
phosphate-buffered saline (PBS) via the right ventricle. The trachea was 
then exposed and intubated using a 1.7 mm 0.d. polyethylene catheter. 
BAL, was performed by instilling PBS containing 5 mM EDTA in 1-ml 
aliquots. Approximately 10 ml of lavage fluid was retrieved per mouse, 
resulting in the isolation of 5 to 7 X 1 6  AMs/mouse. The BAL fluid from 
mice was pooled. The A M s  were washed using complete media, followed 
by cell counts and differential cell analysis. BAL cell differentials consisted 
of >97% A M s  in both control and ethanol-fed animals. AM viability was 
>95% by trypan blue exclusion. 2 X 16 AMs/200 pl were adherence- 
purified per well of a 96-well culture plate for protein analysis. For total 
RNA isolation, 1 X lo6 AMs/l ml were adherence-purified for each 35 
mm culture plate. 

Cytokine ELISAs 
Extracellular immunoreactive murine TNF-a, MIP-2, and MIP-la was 

quantitated using a modification of a double ligand method as previously 
described?," Briefly, flat-bottomed 96-well microtiter plates (Nunc Im- 
muno-Plate I 96-F, Denmark, Netherlands) were coated with 50 p h e l l  of 
rabbit antimurine TNF-a, MIP-2, or MIP-la antibody (1 pglml in 0.6 M 
NaCl, 0.26 M H,BO,, and 0.08 N NaOH; pH 9.6) for 16 hr at 4°C and then 
washed with PBS (pH 7.5):0.05% Tween-20 (wash buffer). Microtiter 
plate nonspecific binding sites were blocked with 2% bovine serum albu- 
min in PBS and incubated for 90 min at 37°C. Plates were rinsed four 
times with wash buffer, and diluted (neat and 1:lO) cell-free supernatants 
(50 p1) in duplicate were added, followed by incubation for 1 hr at 37°C. 
Plates were washed four times, followed by the addition of 50 p h e l l  
biotinylated rabbit anti-TNF-a, MIP-2, or MIP-la antibody [3.5 pglml in 
PBS (pH 7 3 ,  0.05% Tween-20, and 2% fetal calf serum], and plates 
incubated for 30 min at 37°C. Plates were washed four times, streptavidin- 
peroxidase conjugate (Vector Laboratories, Burlingame, CA) added, and 
the plates incubated for 30 min at 37°C. Plates were again washed four 
times and chromogen substrate (Vector) added. The plates were then 
incubated at room temperature to the desired extinction, and the reaction 
terminated with 50 p h e l l  of 3 M H,SO, solution. Plates were read at 490 
nm in an ELISA reader. Standards were V2 log dilutions of recombinant 
murine TNF-a, MIP-2, or MIP-la from 1 pg/ml to 100 nglml. This ELISA 
method consistently detected murine TNF-a, MIP-2, and MIP-la concen- 
trations above 25 p g l d  and did not cross-react with IL-1, IL-2, IL-4, IL-6, 
or interferon-y. In addition, the ELISA did not cross-react with other 
members of the murine chemokine family, including murine KC, ENA-78, 
MCP-1, and murine MIP-1P. 

Notfhern Blot Analysis 

Total cellular FWA from A M s  was isolated using a modification of 
Chirgwin et a]." Briefly, cells were overlaid with 1 ml of a solution 
consisting of 25 mM Tris (pH 8.0), containing 4.2 M guanidine isothio- 
cyanate, 0.5% Sarkosyl, and 0.1 M 2-mercaptoethanol. After homogeni- 
zation, the above suspension was added to an equal volume of 100 mM 
Tris (pH 8.0), containing 10 mM EDTA and 1.0% sodium dodecyl sulfate. 
The mixture was then extracted with chloroform-phenol and chloroform- 
isoamyl alcohol. The RNA was alcohol-precipitated and the pellet dis- 
solved in DEPC H,O. RNA was separated by Northern blot analysis using 
formaldehyde, 1% agarose gels, transblotted to nitrocellulose, baked, 
prehybridized, and hybridized with a 32P S'-end-Iabeled oligonucleotide 
probe. The murine TNF-a oligonucleotide probe used had the sequence 
5'-GTC-CCC-CIT-CTC-CAG-CTG-GAA-GAC-TCC-TCC-3', the mu- 
rine MIP-2 oligonucleotide probe had the sequence 5'-GTG-GGC-TT'C- 
ACA-CIT-CAC-AGT-TAC-3', and the MIP-la oligonucleotide probe 
had the sequence 5'-GAA-GCA-GCA-GGC-AGT-CGG-GGT-GTC- 
AGC-TCC-3'.6*7 In addition, a "P-labeled oligonucleotide probe for P- 
actin with the sequence 5'-CCA-AAG-CGC-TCC-ATG-GCC-TCC-3' 
was used as a control. Blots were washed and autoradiographs quantitated 
by video densitometry using a Javelin chromachip camera (Javelin Elec- 
tronics, Torrance, CA) interfaced with a Macintosh I1 computer contain- 
ing an Image Capture lo00 frame grabber (Scion Corp., Walkersville, 
MD) and image 1.40 software (NIH Public Software, Bethesda, MD). 
Equivalent amounts of total RNA/well were assessed by monitoring 28s 
and 18s ribosomal RNA. 

Statistical Analysis 

Data were analyzed by a Macintosh I1 computer using Statview I1 
statistical package (Abacus Concepts, Inc., Berkeley, CA). Data are ex- 
pressed as mean ? SEM and compared using a two-tailed Student's t test. 
Data were considered statistically significant i f p  values were <0.05. 

RESULTS 

Effect of Ethanol Feeding on TNF-a, MIP-2, and MIP-la 
Expression from Murine AMs Ex vivo 

Because AMs are the chief immune effector cells of the 
lung airspace,2 we assessed the effect of alcohol feeding on 
the expression of proinflammatory cytokines from murine 
A M s  ex vivo. A M s  were harvested from control and alco- 
hol-fed mice, adherence-purified for 1 hr, challenged with 
various doses of LPS, and supernatants harvested after 24 
hr in culture. This time point was chosen, as maximal 
accumulation of cytokines is observed at 24 hr post-LPS 
stimulation. As shown in Fig. 1, unstimulated AMs ob- 
tained from control mice produced low levels of TNF-a and 
MIP-la, and moderate levels of MIP-2, whereas cells 
treated with graded doses of LPS from 100 ng to 10 pg/ml 
expressed substantial quantities of these cytokines in a 
dose-dependent fashion. Interestingly, AMs obtained from 
ethanol-fed mice expressed significantly less TNF when 
stimulated with maximal levels of LPS (10 pg/ml), whereas 
AMs obtained from ethanol-fed mice expressed signifi- 
cantly less MIP-2, and MIP-la when stimulated with both 
1 and 10 pg/ml LPS. Maximally, cells isolated from ethanol- 
fed mice challenged with 10 pg LPS producing 38.2%, 
61.3%, and 43% less TNF-a, MIP-2, and MIP-la, com- 
pared with similar numbers of AMs obtained from control 
animals. Interestingly, the effect of ethanol feeding was 
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Fig. 1. TNF-a, MIP-2, and MIP-la produc- 
EToH tion from LPS-stimulated AMs after 24 hr in 

culture. ’ p < 0.05, compared with AMs from 
control-fed mice. Experimental, n = 10-12 
per condition. ETOH, ethanol; unstirn, un- 
stimulated. 
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reversible, as the expression of TNF-a and chemokines 
from LPS-treated A M s  returned to control levels when 
alcohol feeding was discontinued for 7 days postethanol 
feeding (data not shown). These data indicate that ethanol 
feeding results in a marked reduction in the ability of A M s  
to express important activating and chemotactic cytokines 
in response to exogenous stimuli, and this inhibitory effect 
of alcohol is maintained even when these cells are removed 
from the environment of in vivo alcohol exposure. 

Effect of Ethanol Feeding on TNF-a, MIP-2, and MIP-la 
mRNA Expression from Murine AMs Ex vivo. 

To examine the molecular level at which alcohol sup- 
pressed proinflammatory cytokine expression from endo- 
toxin-challenged A M s ,  we assessed TNF-a, MIP-2, and 
MIP-la mRNA levels from A M s  obtained from control 
and ethanol-fed animals after 4 hr in culture. This time 
point was chosen because maximal accumulation of chemo- 
kine mRNA is observed at that time point in vitro, whereas 
TNF-a mRNA continues to be expressed in high levels at 4 
hr post-LPS stimulation. Both the constitutive and LPS- 
induced expression of TNF-a (Fig. 2) and MIP-la (Fig. 3) 
mRNA were markedly reduced, compared with cytokine 

mRNA expression from control AMs. Whereas the consti- 
tutive expression of MIP-2 mRNA was not altered by eth- 
anol feeding, the LPS-induced expression of MIP-2 levels 
was diminished, compared with that observed in control 
A M s  (Fig. 4). Maximally, steady-state levels of TNF-a, 
MIP-la, and MIP-2 mRNA from ethanol-exposed AM 
were 47%, 51%, and 48% less than steady-state mRNA 
levels in control AM, respectively. 

DISCUSSION 

Alcohol exposure has previously been shown to result in 
significant impairment in inflammatory cytokine expres- 
sion. The incubation of murine peritoneal macrophages in 
1% vlv ethanol in vitro inhibited the LPS-induced produc- 
tion of IL-6.20 In vivo acute alcohol intoxication resulted in 
significant attenuation of TNF-a release in response to 
either endotoxin or intrapulmonary challenge with Meb- 
siellu p n e ~ m o n i a e . ~ ” ~ ~  In contrast, the chronic administra- 
tion of ethanol (6 weeks) had either no effect or actually 
enhanced the peak expression of serum TNF-a postendo- 
toxin admini~tration.~~,’~ Our study is the first to examine 
the effect of in vivo alcohol feeding on the ability of pure 
populations of AMs to express important proinflammatory 
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Fig. 3. Representative Northern blot analysis depicting the effect of ethanol on 
steady-state levels of MIP-lo! mRNA from unstimulated and LPS-stimulated AM. 
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Fig. 2. Representative Northem blot analysis depicting the effect of ethanol on 
steady-state levels of TNF-a mRNA from unstimulated and LPS-stimulated AMs. 
(A) Autoradiogram of TNF mRNA expression. (B) Densitometric quantification of 
the conesponding autoradiogram. (C) The 28s and 18s rRNA demonstrating 
equivalent loading of RNA. ETOH. AMs from ethanol-fed animals. Experimental, 

= 2. 

n = 2. ated mRNA degradation. Preliminary studies in our labo- 
ratory using gel shift analysis suggest that nuclear NF-KB 

cytokines ex vivo. Two-week alcohol feeding resulted in activity is attenuated in LPS-treated AMs from alcohol-fed 
significant inhibition of AM TNF-a mRNA and protein mice, compared with control AMs. Indeed, impaired 
expression in response to LPS, with cells demonstrating a NF-KB activity would account for diminished LPS-induced 
relative insensitivity to LPS, compared with control A M s .  synthesis of TNF-a, MIP-2, and MIP-la! mRNA-all of 
In addition, we observed a marked inhibition of C-X-C and which require for NF-KB activation."'25 Our preliminary 
C-C chemokine expression in A M s  from alcohol-fed mice findings are consistent with the findings of Fox and col- 
in a fashion similar to that observed with TNF-a. It is of who noted decreased NF-KB activity in Kupffer 
interest that the suppressive effects observed after 2-week cells exposed to 100 mM ethanol in culture. In vivo, how- 
exposure to alcohol was similar to that observed in acute ever, acute ethanol administration or chronic ethanol in- 
ethanol intoxi~ation,'~*'~ rather than the enhancing effects gestion followed by acute rechallenge has been associated 
observed after chronic alcohol ingestion." Furthermore, with enhanced NF-KB activity in rat indicating that 
our data suggest that A M s  are susceptible to reversible disparity exists between those observations made in vitro to 
alcohol suppressive effects, and the observed impairment in those made in the in vivo settings. Although these studies 
TNF production in the airspace of acutely ethanol-intoxi- suggest ethanol suppresses cytokine mRNA transcription, 
cated animals challenged with K pneumoniae" is likely due we cannot exclude a component of ethanol-induced accel- 
to impairment in TNF production from AMs.  eration of cytokine mRNA degradation. 

The molecular mechanism(s) by which alcohol sup- Despite strict calorie-matching of complete liquid diets, 
presses macrophage-derived cytokine production had not ethanol-fed mice experienced modest weight loss during 
previously been defined. Our studies indicate that alcohol alcohol feeding, whereas control animals gained weight 
feeding suppresses cytokine mRNA levels from endotoxin- during the experimental period. Disparity in weight gain 
stimulated AMs,  indicating that the effects of ethanol occur while on isocaloric diets has been noted previously." 
as a result of decreased mRNA synthesis and/or acceler- Therefore, it is possible that nutritional factors could con- 
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Fig. 4. Representative Northern blot analysis depicting theeffect of ethanol on 
steady-state levels of MIP-2 mRNA from unstimulated and LPS-stimulated AM. 
(A) Autoradiogram of MIP-2 mRNA expression. (6) Densitometric quantification of 
the corresponding autoradiogram. (C) The 28s and 18s rRNA demonstrating 
equivalent loading of RNA. ETOH, AMs from ethanol-fed animals. Experimental, 
n = 2. 

tribute to differences in ex vivo cytokine expression. How- 
ever, this limited degree of malnutrition over a relatively 
brief time-span is unlikely to account for the effects ob- 
served. Furthermore, malnutrition and alcoholism fre- 
quently co-exist clinically. 

The inhibitory effects of ethanol on AM-derived cytokine 
expression has important pathophysiological implications. 
In vivo and in vitro studies in ethanol-treated animals and 
humans have revealed significant impairments of both neu- 
trophil and AM mobilization and a c t i v a t i ~ n . ’ ~ ~ ~ ” ~  Specif- 
ically, in vivo studies indicate that short- or long-term 
ethanol administration decreases neutrophil influx into 
traumatized skin or rabbit corneas. Moreover, acute etha- 
nol intoxication significantly attenuates neutrophil influx to 
the lung airspace in response to aerosolized Staphybcoccus 
aureus, Proteus mirabilis, and intratracheally administered 
LPS.19,31 Interestingly, neutrophils recovered from alcohol- 
challenged human subjects display no abnormalities in the 
ability to migrate in response to chemotactic stimuli.33 
Additional studies indicate that alcohol treatment inhibits 
the ability of neutrophils and/or macrophages to kill bac- 

terial organisms such as S. aureus, P. mirabilis, and Legio- 
neUa p n e ~ m o n i a e . ’ ~ ~ ~ ’ ~ ~ ’  Collectively, these observations 
suggest that defects in leukocyte recruitment and antimi- 
crobial activity may be due to insufficient expression of 
required chemotactic and activating cytokines. The obser- 
vation of alcohol-induced changes in TNF-a and chemo- 
kine release by activated A M s  would readily explain obser- 
vations made previously. Further studies are required to 
determine the duration of alcohol effects on ex vivo cyto- 
kine expression, as well as effects of alcohol on chemotactic 
and activating cytokine expression during the evolution of 
innate and acquired immune responses in vivo. 
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