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This paper is concerned with parameter interpretation in longitudinal,
multilevel models. Models are described that consider repeated observations
nested within individuals. These models typically first estimate subject-
specific parameters for growth curves that describe the development of some
observed variable over time. Examples of such descriptors include
polynomials. It is shown that interpretation of polynomial parameters can
be facilitated by linear transformations. Examples of such transformations
include centring (i.e. subtracting the mean from raw data). When parameters
are specified such that they have no straightforward meaning at the first level
of analysis, interpretation problems carry over to the second and higher
levels. Therefore, proper specification of models at the first level is of utmost
importance. Methods of transformation are introduced. Examples illustrate
the method using data that describe children’s vocabulary development in
the second year of life.

Multilevel models (Goldstein, 1986, 1987) have become a prominent
methodological approach in psychology and other social sciences. These
models are suitable for analysing data that were sampled in several stages.
A simple example for a two-stage sampling scheme is: In the first stage
take a random sample of schools and in the second stage take one random
sample of pupils from every school sampled in the first stage. Even if data
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are obtained by simple random sampling, it might be useful to think of
them in terms of a hierarchical structure and therefore use a multilevel
approach to model them. Additionally, data obtained by repeatedly
measuring individuals as it is typically done in, for instance, developmental
psychology can also be considered as possessing a hierarchical structure. In
context of analysing panel data multilevel models are also known as
growth curve models. In cross-sectional data analysis they are also known
as hierarchical linear models (Bryk & Raudenbush, 1987, 1992), random
effects models (Laird & Ware, 1982; Ware, 1985) as well as random
coefficient models (Longford, 1993).

When fitting multilevel models to data, it is important to check whether
model assumptions are at least approximately satisfied. However,
compared to assumption checking for other types of statistical analysis,
checking the assumptions for multilevel models is more difficult because
there is not only one model under consideration, but two or more models
at different levels. Adequacy of models at higher levels depends on the
meaning of the parameters at the lower level. Therefore, when using
multilevel models it is important that the lower level model is
parameterised such that level-two models have a good substantive
interpretation. If this is the case, the formulation of higher level models
is facilitated because the model building process focuses directly on the
research hypotheses under study. In contrast, poor parameterisation at the
lower level model can result in considerable problems in finding an
adequate higher level model, for one is trying to model a variable that is
not related to substantive hypotheses.

In this paper we explain how a transformation of the model matrix for
the lower level model can be used to determine the meaning of the
parameters in such a way that they correspond to substantively relevant
parameters for which a higher level model is sought. The approach
presented is limited to linear transformations. Although this restricts the
set of possible meanings a parameter can be assigned by our method we
believe it is still general enough to answer many practically important
research hypotheses.

In section 1 we review the basic ideas of multilevel models and explain
how growth curve models can be considered multilevel models. Section 2
shows how the interpretation of the parameters can be derived from the
model formulation. In the following section (3) it is shown how the very
common transformation of subtracting a constant from the values of the
predictor variables can be formulated using matrices. Section 4 reverses
the previously given line of arguments and demonstrates by an example
how the reparameterisation can be achieved once the desired meaning of
the parameter is defined. In the final section (5), the suggested approach is
discussed.
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1. Growth Curve Models and Multilevel Models

The most basic idea of multilevel modelling is to use a model for describing
the data that accounts for the hierarchical structure of the sampling plan.
This can be done by specifying separate models for each level. Because
data obtained from a multistage sampling procedure usually result in
correlation between observations of level-one units within the same level-
two units, multilevel models are natural candidates for modelling this type
of data.

However, data from a panel study can also be considered a result of a
two stage sampling process. In the first stage individuals are sampled and in
the second stage each of these individuals is repeatedly observed. Here,
responses are said to be nested within individuals. Note that whereas
observations within an individual are assumed to be correlated, observa-
tions obtained from different individuals are considered independent.
A gain, multilevel models should be well suited to describe this kind of
data.

The model for the first stage, that is, for observations within the ith
individual at the jth point in time, is obtained by expressing the
observations y; as a function of time #; as well as a function of other
time-varying covariates x; involving parameter 6;, plus a residual term, g,

Vi = fty, x5, 0:) + €5

where the conditional expectation of the residual term is assumed to be
zero, that is, E(Sl'/' lx,-,-, tj/') = 0.

Although this model equation is too general to be practically useful, it
shows that the dependence of the observations y;; on time and time-varying
covariates is allowed to vary across individuals. This is indicated by the
subscript i assigned to the parameter 6. Usually a linear function in the
parameters is chosen for f.

For concreteness and to illustrate the use of nonlinear functions we write
the foregoing equation assuming a quadratic model for the dependence of
the observations on time and omitting all time-varying covariates. This
yields

- 2
Yip= ot oty +oapnt; t e, (D

as the level-one model, where 9; = (oo, o1, 2). Note that the expected
value of y;; is given as E(y;) = ajo + ot + oc,-ztl-z/-.

In the second level each regression coefficient that is assumed to vary
across individuals, becomes the dependent variable of a linear model. For
the quadratic level-one model from above we could write, for instance,
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aio = Boot Boiz *+ i,
ain = Bt Bzt G,

an = Byt Bzt Cp.

Although the B-coefficients are typically considered fixed in a two stage
model each of the regression equations contains a residual term { that is
considered random with zero mean. Hence, the a-regression coefficients of
the first level are random as well. The observed independent variable z
models the dependence of the a-parameters on time-invariant character-
istics of the individual. The P parameters can be interpreted in the
following way. If z is a dichotomous variable such as gender that isdummy-
coded with values, 0 for males and 1 for females, then B;, can be
interpreted as the mean of the a;-coefficients for males, and f,; indicates
the mean shift in the o;1-coefficients between males and females. Similar
results hold for the other B parameters.

It is often the main goal of a multilevel analysis to obtain good estimates
of the level-two coefficients as they contain the information that relates the
covariates, for example, z, to the a-coefficients that are part of the
systematic component E(y;) of individual responses. The main purpose of
the level-one model is to allow for correlations among the repeated
observations within individuals.

Obviously, a correct specification of the level-one model is crucial for
the estimates of the level-two model to give useful and valid results.
Suppose that an important variable has been omitted from the level-one
model. If that variable is correlated with other predictor variables already
in the equation it is well known that parameter estimates will be biased
(Box, 1966; Miller, 1990). Hence, the level-two model will try to predict a
biased estimator. If the bias is considerable then the results of the level-two
model that tries to predict this random coefficient will not be interesting as
they are also biased (see Bryk & Raudenbush, 1992, p. 203).

2. Interpretation of Level-One Parameters

Assuming a correct specification of a level-one model the ease with which
a correct and meaningful formulation for the level-two model can be found
depends on the meaning of the level-one parameters. To see how the
meaning of parameters can be changed it is important to understand how
the interpretation of parameters can be obtained from the model
specification.

In general, the meaning of a parameter in a statistical model can be
found by taking a model equation that contains the parameter and then try
to solve the equation for that parameter in such a way that no other
unknown parameters are contained in the resulting equation. Once this is
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achieved the interpretation of the parameter can be found from this
equation. We will now demonstrate this for the level-one model in
equation 1 that describes the response variable as a quadratic polynomial
in time by finding the interpretation of all the three parameters, aj, 0,
and o, contained in that equation.

Finding the interpretation of o is straightforward. We simply insert
zero as the value for #. This yields.

E(y(0)) = op.

Hence, aj is the y-value that the quadratic polynomial assumes when ¢
equals zero. If 1= 0 describes the point in time where the observation of y
started, o; can sometimes be considered a baseline. This may be a
substantively important parameter for some studies, for others it may be a
meaningless value. For instance, if ¢ is set equal to age of individuals and
y(f) represents [Q-values over time, then a;p has the meaning the expected
I1Q value for that individual at birth.

Now, let us look at the meaning of a;. Because E(y) is a smooth
function of time, we can find its first derivative with respect to ¢ This yields

d
—F 1)) = nt 2 nt.
di () = an A2

A's this expression still contains two different o parameters we first have to
eliminate a;, from the equation to find the meaning of a;. This can be
done by inserting zero for z. We obtain

4 _
TEG)]_ = an.

A's the first derivative of E(y) evaluated at t = 0 expresses how fast the
function y changes at that point in time, the parameter o; can be
interpreted as the instantaneous rate of change for the time point that is
defined for = 0. As with the interpretation of o ;0 the substantive interest
of this parameter may crucially depend on how the time variable is scaled.
Thus, it may be the case that researchers have no specific hypothesis
concerning an instantaneous change rate and it may therefore be difficult
to express a level-two model for that parameter.

Finally, let us see what meaning can be given to a;. Calculating the
second derivative of equation 1 we obtain

2

d—E =2
“SEG(0) = 2ap.

Therefore, a;» can be interpreted as half of the second derivative of E(y)
with respect to £. The second derivative of a function is often interpreted as
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the ‘“‘acceleration’. As the right-hand side of the last equation does not
involve the variable 7 the “‘acceleration’’ is constant over the support of «
Although this explanation concerning o;; may be satisfactory from a
mathematical point of view, researchers rarely have substantive hypoth-
eses concerning the ‘‘acceleration” of a time-dependent process y(?).
Therefore, specifying a level-two model for this parameter is often hard, if
not impossible. Perhaps the best that can be done is to not specify a model
for that parameter at all and consider a model where o, is just allowed to
vary randomly without specifying any model on how the mean of this
random variation depends on covariates, that is, to use a model as

ap = By + Cp.

However, this may not be satisfactory because the possibility to model
variation in the outcome variable under study is not used.

3. A Simple Example for Determining the
Meaning of Parameters

Perhaps the best known change in interpretation of a parameter that is
achieved by manipulating the values of the predictor variables is the
change in the meaning of the intercept parameter, o, that results from
subtracting a constant ¢ from the predictor variable. If ¢ equals the mean of
tj one also says that subtracting ¢ from each #; centres the predictor «. To
see how the meaning of the parameters changes consider the quadratic
growth curve model

2
Yyig= ot oa(t— )+ ap(ty— o) + &

Note that we have marked every parameter with a “tilde’’ as the
manipulation of the predictor has changed the meaning of at least some of
the parameters. In order to obtain an equation that contains just the
intercept parameter o0 from which its meaning can be inferred we insert
the value c for #; instead of zero. Therefore, 0;) has now the meaning of the
y-value that is expected to be observed if the observation time takes the
value c.

Note also, that the interpretation of the parameter &;; changes as well,
whereas the meaning of the parameter &, remains the same. The
parameter 0;; expresses now the instantaneous change rate if the time of
observation takes the value c.

The subtraction of a constant value does not change the most important
characteristics of the model under study such as for instance, the fitted
curve and, therefore, the fitted values, the residuals, the explained variance
in terms of R%, and so forth. However, the intercorrelation of the estimated
parameters might change. This will only be of interest if the subtraction of



MULTILEVEL MODELS 481

a constant value induces considerable multicollinearity among the
predictors of the model matrix. However, in contrast, multicollinearity
can often be considerably reduced by this operation. For instance, it is well
known that centring typically decreases the correlation between the
columns of the model matrix in polynomial regression (von Eye &
Schuster, 1998).

It is instructive to see how the transformation just described proceeds,
using a more general matrix formulation. It is sufficient to consider the
level-one model for a single observation of an individual. Let tl./'. = (1,4, 11.2/.)
be the jth row of the model matrix 7;. The vector of individual regression
coefficients is a./= (oo, a;1,a2). The level-one model is given as

o
E(yy = (Lt 11-2,-) o |,
A2
or expressed in shorthand notation
E(yij) = o (2)

Now, suppose we have a square matrix Q of full rank that transforms #;
to 770 = 7, where 7;= (1,(#;— ¢), (#;~ c) ). Because by assumption the

inverse of Q exists, we can express equation 2 as
— 47 -1
E(yy) = ;00 "a;
— w1
= 7,0 a
= 71-/’-(11'.
While 7; contains the predictors from which the constant c is subtracted,
the vector a; contains parameters with changed meaning.

For the operation of subtracting a constant from the predictors the
matrix Q is given as

-c
o=1]10 1 -2¢
0 o0 1

Simply calculating #;Q shows that Q yields the desired transformation
from ¢; to 7. Note also, that Q is of full rank. At the moment, the
expression O 'a; is not of much interest. Here, it merely shows that the
transformed parameter vector o; relates to the original a; through a linear

transformation. However, for completeness we also present Q!
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0 '=

S O =

¢
1 2¢
0 1

From this matrix it can be seen that although the meaning of a;o and a;;
changes as a result of the subtraction of the constant ¢ from the predictors
the meaning of a;, is unchanged because of the simple form taken by the
third row of 0~ 1.

Although the preceding mathematics were not necessary to derive the
meaning of the new parameters it shows that the change in their meaning
results from a transformation of the model matrix 7; to a new model
matrix 7T,;. This transformation is defined by the matrix Q. Hence,
transforming parameters to a new substantive more meaningful inter-
pretation translates into the technical question of how to set up the matrix
0 or equivalently, how to set up Q.

4. A More Complex Example of Determining the
Meaning of Parameters

In the following example we reverse the line of argumentation. In the last
section we determined for a given transformation the new meaning of the
parameters. Technically this corresponds to specifying Q. In this example
we first define the meaning the parameters are supposed to have and then
determine the appropriate transformation. Technically this corresponds to
specifying O~ '. Once this matrix is found, calculating its inverse yields Q,
and after determining T; = T,Q the model can be fitted as usual and the
parameters have the desired interpretation.

Suppose data from a panel study are going to be fitted by a two-level
model. Assume further that after examining the data it turns out that a
quadratic polynomial provides a good description of the individual
trajectories over time.

Also assume that—perhaps after subtracting a suitable constant from
the predictors—the parameters a0 and o;; have a substantively interesting
interpretation and therefore specifying a level-two model for these two
parameters is relatively easy. However, the parameter a, might not
correspond to a meaningful research hypothesis. From a substantive
viewpoint the most interesting parameter might be the difference of two
mean responses that occur at two well-defined points in time. For instance,
in developmental psychology the most important variable for predicting a
future outcome might be the progress a child makes in a variable between,
say, the ages of two and five. If it is possible to replace the ‘“‘acceleration”
parameter a;; by a parameter that expresses the change between these two
ages it may be possible to find a good model for that parameter because it
is the most meaningful and interesting one.
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We will now show how this can be accomplished by a simple line of
argumentation. Let r; and r, represent the two time points or ages. If a
quadratic model fits the data then the difference in mean response for the
ith individual can be expressed as

E(yi(r2) = yilr1)) = an(ra = r) + an(ry - ).

From this equation it can be seen that the transformed parameter
o= E(yi(r2) — yi(r1)) can be obtained by a linear transformation of the
original parameters. Suppose that we would like to retain the meaning of
the other two parameters o ;0 and a; then the matrix Q’1 can be specified
as follows

1 0 0
o '=10 1 0

0 (n—-r) (3-1dH

because o; = O 'a;. It follows that the inverse of O~ !, that is Q, is

1 0 0
o=1]0o 1 0
0 —(n+r) ' (3-r!

Hence, transforming the model matrices 7; to T; and fitting the model
using T'; instead of T, allows one to specify the level-two model for o, that
has exactly the desired meaning.

To gain a more intuitive understanding of the suggested method we can
solve the matrix expression

E(yy) = Tjo: = 100,

and write it as a simple equation. This yields

2 2
£ = ens anle- D) el ) (3)

We can now consider equation 3 from a naive point of view and ask
about the meaning of the parameters. It comes as no surprise and is easily
verified that

d
ajp= E(y(0)) and a;= _E(y(l))‘
dt =0

as the transformation was intended to leave these parameters unchanged.
However, consider the meaning of the parameter a ;. This time calculating
the second derivative will not result in an equation where & is the only
unknown in the resulting equation. Although we already know its
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interpretation it is instructive to calculate E(y;(r2) — yi(r1)) and see that the
result is indeed o ;. We obtain

E(yi(r2) - yi(r1))

2 72 2 72
— ELE SEELATRN 1 ISP (U & S & T
=0 |\r2— - \"n- G\ 27 2 2

ry+ r; ry+ r; ry— 1 ry — 1]
=0 *0+ ap*l
= 0Op.

This calculation shows that the parameter @,; has indeed the meaning it
is supposed to have.

The computations for transforming the values in 7; are very simple for
the example given and require only a few programming statements in a
SA S data step or in other statistical software packages as SPSS, SYSTAT,
or S-Plus. From equation 3 it can best be seen what calculations have to be
performed. Only the second and third column of the model matrix 7'; have
to be changed to yield T,.

The values of second column must be changed from zto - 12=(r2 + ry)

2

while the values of the third column must be changed from ¢ to

12=(r§ - rf). In SAS this can be achieved with the following statements:

data new_T,;
input y t t2;
rl=2;r2=25;
t_tilde =t-t**2 / (rR+rl);
t2_tilde = t**8 / (r**8 — r1**2);
cards;

; Tum;
By setting the values of r1 and r® to the desired values and using the new

variables t_tilde and t2_tilde instead of t and t& the meaning of &,
changes as desired.

In general, transformations of parameters can be made arbitrarily
complex as it is possible, once a first transformation Q is applied, to repeat

the procedure over and over again using matrices Q;, Q3, ... . Formally,
E(y) = 15(0102...00(Q; ... 05,0 Da,
= tl./'.ch,-,

where Q = Q10>...0k and a; = ;1... 51 ]loc,-Z Q’loc,-.
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For instance we can transform the parameters using the transformation
of the last section to change the meaning of a; and a; and after that
change the meaning of a;» by applying the transformation suggested in this
section. It should be noted that the transformation from this section will
retain the change in meaning that has been achieved by the transformation
of the last section.

5. Example

To illustrate the outlined approach to analysing repeated measures data
with multilevel models we reanalyse data from a study of children’s
vocabulary development during the second year of life (Huttenlocher,
Haight, Bryk, & Seltzer, 1991). The data set is distributed with the HLM
(Version 4) computer software (Bryk, Raudenbush, & Congdon, 1996) and
has been analysed by Bryk and Raudenbush (1992, p. 141).

It combines the data of two different studies. In each study, the
vocabulary size of 11 children was measured at the age of 12 months and
on several follow-up studies thereafter. The exact schedule of obtaining
measurements as well as the amount of repeated observations differed
somewhat between the two studies but this poses no problems when
analysing the data using a multilevel model. However, it is important to
note that the number of repeated observations ranges from 3 to 8 time
points. If one does not want to exclude children with only three repeated
measures this restricts the order of level-one polynomials that can be fitted
to the second-degrees.

When the children were 16 months old the amount of maternal speech
was also recorded. This measure serves as a level-two covariate. The other
level-two covariates are gender and study group.

Bryk and Raudenbush considered fitting a multilevel model based on
the following decisions:

1. Age isexpressed as deviations (in months) from the age of 12 months.
Therefore, when speaking of age zero in the following we essentially
refer to the age of 12 months.

2. The intercept coefficient for the level-one model, o, is constrained
to be zero. Consequently, all individual trajectories take on a value of
zero vocabulary size at the age of zero. This is equivalent to saying
that all individual trajectories are constrained to pass through the
origin.

3. The slope coefficient of the level-one model, a;, expressing the
change rate at age zero is a random variable with mean zero.
Therefore, no level-two model is necessary for this parameter.
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4. The ““‘acceleration” coefficient is modelled as

ap = Byt Poz1+ Bpzat Boszat Buzizat PBaszizat+ Cp,

where
z1 = study group,
zp = gender,
z3 = maternal speech index.

Note that this model equation contains two interaction terms. Fig 1.
gives a visual impression of the data from both studies. The left panel
shows data from the children of the first group, the right panel shows data
from the second group. For the observations of each child a second-order
polynomial was fitted by ordinary least squares (OLS). These regression
lines are also shown in the plot. Note that all regression lines are
constrained to go through the origin and that in the figure the x-axis
expresses age as deviations from the age of 12 months.

From Fig. 1 a few details should be noted. First, the data points for each
child are usually quite close to the quadratic polynomials. Second, there is
no variation of the vocabulary size measure at age zero. Looking at the raw
data shows that all children obtained a score of one for vocabulary size at
the age of 12 months. Third, although the polynomials capture the overall
shape of the growth in vocabulary size quite well, there are also some
undesirable characteristics of the polynomials presented in the left panel of
Fig. 1. Note that the visual impression is that there might be two different
types of children. The first type shows a fast increase in vocabulary size in
the time interval under study whereas the second type shows only a
moderate increase. However, for the ““type one”’ children the development
at the age of 18 months is clearly overestimated by the polynomials
whereas for the ‘“‘type two’ children it appears that at least for some
children vocabulary size decreases at first which is unreasonable.

Problematic characteristics of fitted polynomials like these are very
typical. Polynomials are virtually always fitted to data because they can be
easily handled and are very flexible. However, polynomials seldom are
believed to be the “‘true’ model but are considered a more or less good
approximation to it. For a discussion of undesirable characteristics of
polynomial regression models see Royston and Altman (1994).

Consider now the parameter estimates for the level-two model for a;; as
reported by Bryk and Raudenbush (1992, p. 147) given in Table 1. First
note that neither interaction effect associated with the coefficients f,4 and
B,5 is significant. With the contrast coding scheme employed for fitting the
model to the data the difference in the average ‘“‘acceleration’ between
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TABLE 1
Param eter Estimates with Standard Errors (SE) for the Level-Two Model of the
“Acceleration” Parameter o, as well as the Variance Components for the Three
Random Effects in the Model

Coefficient Estimate SE t-value
B,o Intercept 2.031 0.157 12.887
B, Group -0.433 0.157 -2.747
By, Gender 0.312 0.165 1.891
B3 Momspeech 0.793 0.334 2.370
B,4 Interac.1 0.144 0.165 0.876
B,s Interac.2 -0.158 0.334 -0473
Random Variance

Effect Comp. df x?
(] 18.778 22 39.547
[ 0.282 16 39.864
& 707.156

Deviance = 1,284.3 with 4 df

Note: These values were reported by Bryk and Raudenbush (1992, p. 147).

boys and girls is estimated to be 2 * [322 = 0.624 words/month?. Likewise,
the difference in the average ‘“‘acceleration’ between children from the
two study groups is estimated to be 0.866 words/month?.

These results are not easily interpreted as the units in which the
differences are expressed are at least in the minds of the present authors
not very meaningful. This is due to the fact that the units in which the
regression coefficients are expressed include the term “month?”. Evaluat-
ing these regression coefficients in a qualitative way one could say that a
positive value means a faster growing change rate for one of the groups.
This results on average in higher vocabulary size values for one of the
groups with the difference between vocabulary size growing over time.
Note also, that the “‘acceleration’ rate does not depend on age. Therefore,
extrapolating vocabulary size beyond the time period from which data
were obtained should be avoided because it might give unreasonable
results.

We now use the reparameterisation that was explained theoretically in
the last section. From a substantive point of view the change in vocabulary
size between 12 months and 26 months of age may be an interesting
characteristic. We can obtain a parameter that expresses that difference
simply by using equation 3. However, before using this transformation we
“‘centre’’ the age variable so that age 12 months corresponds to age zero.
Therefore, the values r, and r; in equation 3 are set to the values 14 and 0,
respectively. A fter having transformed the variables in the design matrix
we fit the model again and obtain the results that are given in Table 2.
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TABLE 2
Parameter Estimates with Standard Errors (SE) for the Level-Two Model after
Reparameterisation as well as the Variance Components for the Three Random
Effects in the Model

Coefficient Estimate SE t-value
B0 Intercept 398.44 30.71 12.971
B, Group - 84.60 30.71 -2.754
By, Gender 60.72 32.17 1.887
B3 Momspeech 155.41 65.34 2.379
B,4 Interac.1 29.05 32.17 0.903
B,s Interac.2 -30.52 65.34 -0.467
Random Variance

Effect Comp. df x?
(] 17.557 22 36.639
[ 24697.8.71 16 812.888
& 713.062

Deviance = 1,221.1 with 4 df

Before considering the interpretation of the parameters note that both
interaction terms are, as before, not significant. Hence, the main effects
behave additively. Also note that the #values of Tables 1 and 2 are
virtually identical. The reparameterisation does not change the validity of
the model. It merely influences the meaning of the parameters.

These have now a very natural interpretation. Consider first the
coefficient for gender, B,,. Recall that all fitted polynomials are forced
to go through the origin. Taking the contrast coding scheme for gender
into account (-1 = male, 1= female) the estimated value of [322 = 60.72 as
given in Table 2 means that on average by the time the investigation is
finished the mean difference in vocabulary size between girls and boys is
1 %60.72 - (- 1) ¥60.72 = 121.44 after controlling for study group and
maternal speech.

In a similar manner the estimate for the group effect, B, can be
interpreted that after controlling for gender and the maternal speech index
the vocabulary size of the first group (coded as -1) is at the time the
investigation is finished on average 169.2 units higher than the vocabulary
size of the second group (coded as 1).

Finally, the parameter estimate for the maternal speech index, B,3,
shows that an increase of this variable in logarithmic units is accompanied
on average by a change of vocabulary size of 155.41 over the 14-month
study period after controlling for gender and group.

A look at the variance component estimates of Tables 1 and 2 is also
very interesting. The first and the third variance component are very
similar in both tables meaning that the variation of the slopes at time zero
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(12 months of age) is about the same in both models and the random error
variance of the level-one model is about equal in both models. However,
the variance component for the individual differences in growth of
vocabulary size over the 14-month study period is huge. This is a very
desirable characteristic of a parameter since it is usually easier to specify a
model for a parameter that shows considerable variation than for a
parameter that shows only a small variation.

It should be noted that although the example illustrates how the
meaning of the parameters can be determined by transforming the model
matrix it could not be used to demonstrate how the model building process
is influenced by modelling parameters that are substantively meaningful.

DISCUSSION

A's with statistical models in general, conclusions drawn from multilevel
models depend heavily on an adequate model specification and on at least
approximately satisfied model assumptions. When using multilevel models
the problem of possible model misspecification is even more problematic
than in most of the other statistical models since multilevel models set up
not only a level-one model but usually several level-two models as well. It
is well known that misspecification of the level-one model not only leads to
bias in the level-one but also in the level-two parameter estimates.
A dditionally, a level-two model for a level-one parameter that holds, will
only lead to the right conclusions if there is no or only a small bias in the
estimates for the level-one parameter.

Another important aspect of formulating level-two modelsisthe meaning
of the level-one parameters. Because it is much easier and much more
desirable from a substantive viewpoint to specify models that focus directly
on the research hypothesis under study, the possibility to custom tailor the
meaning of level-one parameters might considerably improve the statistical
analysis. Once an adequate level-one model is found, a reparameterisation
of the level-one model formula can lead to more meaningful parameters
and therefore to more natural model formulation at the second level. The
method suggested by the present authors can be used as long as the new
parameters can be expressed as linear functions of the original parameters.
It is easy to use and there is no need for specialised software since in most
situations it should be possible to yield more meaningful parameters
through relatively simple transformations. Furthermore, because a repar-
ameterisation can proceed in several steps the computations can be split up
to make calculations with matrices unnecessary.
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