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ABSTRACT: The dynamic stability of thin, clamped, composite circular cylindrical
shells is studied for combined axial and torsional loading. Each load is taken to be har-
monically varying; the frequencies of the two loads differ, in general. For the case in
which the frequencies are commensurate, the applied load function is periodic. The equa-
tions of motion for the shell are reduced to a system of Hill equations by means of Fourier
series expansions. Instability regions of principal and combination parametric resonance
are determined by use of the monodromy matrix. Numerical results are generated for
boron-epoxy layered shells for various cases of pure axial, pure torsional, and combined
loading. The width of the principal instability region is presented as a function of fiber ori-
entation for a laminate case. Stability diagrams are presented covering about 6 times the
lowest natural frequency for various ratios of the applied axial and torsional frequencies.
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1. INTRODUCTION

STRUCTURAL COMPONENT subjected to loads periodic in time may undergoAan unstable dynamic response termed parametric resonance. This instability
is considered dangerous because for a given load state it occurs over a range or
ranges of forcing frequencies. In this article, the parametric resonance problem
is studied for a layered composite circular cylindrical thin shell having clamped
ends. The shell is subjected to a combination of harmonic axial and torsional
loads having different frequencies.
A number of recent studies of the dynamic stability of composite plates are

available; composite shells, however, have received less attention. Among the
works on composite plates, References [1]-[5] are given, in which additional ref-
erences are contained. Plates having general layering and subjected to harmonic
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undirectional loading are studied in Reference [1]. A nonlinear study, including
damping, of antisymmetric cross-ply plates is given in Reference [2]. Studies of
the effects of shear deformation are given in References [3]-[5]. In References [3]
and [4], combinations of harmonic loads having the same frequency are con-
sidered. The dynamic stability of composite shells has been studied in References
[6]-[9] for harmonic axial loading, and in References [10] and [11] for harmonic
pressure loading. Parametric resonance induced by torsional loading alone has
been studied for isotropic beam-type structures in Reference [12]. A study is

given in Reference [13] of a general system of time dependent nonlinear equations
containing simultaneous parametric and forcing (i.e., nonhomogeneous) excita-
tions. Resonances involving combinations of the parametric and forcing excita-
tions are considered.

Although work on parametric resonance of composite plates due to certain
types of in-plane combined loading is available [3,4], to the author’s knowledge
no analogous work exists for composite shells subjected simultaneously to axial
and torsional loading. The previous work on shells [6]-[11] outlined above all
treat various non-combined loading cases. In previous work by the author

[7]-[9], pure axial loading is considered and the first order principal regions of
parametric resonance are studied. In the present article, the load case treated in
References [7]-[9] is extended to combined axial and torsional loading. The
loads are permitted to have frequencies different from one another and the focus
of the work is on the effects of combined loading and on several cases of distinct
commensurate frequencies. Both principal and combination instability regions
are studied.
The equations of motion are derived using linear Donnell type shell theory.

Spatial dependence is satisfied by means of Fourier series expansions in the axial
coordinate and a complex periodic function in the circumferential coordinate. If
the load frequencies are commensurate, as assumed, this leads to a set of coupled
Hill equations. For the case in which the two loads have common frequency, the
Hill equations reduce to Mathieu equations. Numerical results are presented for
the dynamic stability of boron-epoxy shells having various cases of antisymmet-
ric layering and symmetric cross-ply layering.

2. EQUATIONS OF MOTION

The shell is taken to have length 2l, radius a and is comprised of an arbitrary
number of orthotropic layers. Displacement components of the shell’s middle sur-
face in the axial, circumferential, and radial directions are denoted by u, v, and

w, respectively (see Figure 1). The shell is loaded by harmonic axial and torsional
loads (per unit length), respectively given by
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Figure 1. Beam geometry.

where POt and P02 denote the static parts of the loads, P,, and P,, denote the
amplitudes of the dynamic parts of the loads, Qi and O2 denote the frequencies
of the dynamic loads, and t denotes time.
As a matter of convenience, P* and P2* are expressed in terms of the three

quantities P~, Pd and Q in the following way

where the constants q~, , q02’ qd,, qd2, mi, and m2 are prescribed according to the
particular load case.
The shell is modeled by linear Donnell theory. Classical lamination theory is

used to determine the stiffness properties of the overall laminate shell structure.
The equations governing the response of the shell are derived by applying
Newton’s law to a shell element in the deformed configuration. This approach,
which is also used in static buckling theory, yields a set of coupled nonlinear par-
tial differential equations. These are then linearized by the standard perturbation
technique in which the response is separated into a pre-instability part, called the
unperturbed response (subscript p) and an incremental perturbation part, called
the perturbed response (subscript 1). The equations governing the perturbed re-
sponse then become:
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where D(l)-D(8) are differential operators given in the Appendix, A,, , B,, , and
D,~ are the usual laminate stiffness properties, and the C, and E, are constants
given in Reference [8]. The quantities Nxop’ Nxxp’ and Noop denote the unper-
turbed response stress resultants and are functions of the loads P* and P2*-

Solutions to Equations (3)-(5) are assumed in the form of Fourier series with
respect to x given by

where k is the circumferential wave number, i is the imaginary unit and the
Fourier coefficients Ao , An’ Bn , Co , etc. are functions of time.
The shell is taken to have clamped supports. As is well known, there are four

different types of clamping conditions. Here the following case is studied (com-
monly designated Case C 1, [14]).

The assumed solutions [Equation (6)] may be made to satisfy these boundary
conditions through proper differentation of the Fourier series (see Reference
[15]). Specific details can be found in Reference [8].

Substitution of Equation (6) and appropriate derivatives into Equations (3)-(5)
leads to a system of time dependent ordinary differential equations having the fol-
lowing form.

where
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The quantities m, R, S,, ~2, and S, are constant matrices containing material
and geometric properties, and f is the vector of unknowns. Note that equations
reflecting the boundary conditions are also contained in Equations (8), see Refer-
ence [8].
For the case in which m1 and m2 are integers, the frequencies S21 and O2 are

commensurate and so then the function _Q(t) is periodic. The Equations (8) are
then a system of Hill equations. If m, = m2, _Q(t) is harmonic and Equations (8)
then form a system of Mathieu equations, which is a special case of Hill equa-
tions.

3. STABILITY

In this section, methods for determining the shell’s dynamic stability will be re-
viewed.

In the case m, = m2 = 1, Q(t) is given by

The Equations (8) are then a system of Mathieu equations. For each circumferen-
tial wave number, k, the principal regions of parametric resonance emanate in
load-frequency space from the values 0 = 2~,//, where w, denote the natural
frequencies for the particular k value and j is a positive nonzero integer. The re-
gions associated with j = 1 are termed the first order regions and are ordinarily
the most significant of the principal regions. In addition, sum and difference
combination resonances may occur. These emanate from the values So =

(W, + Wl)lj and S2 = (W, - w,)/j, respectively.
The principal regions of parametric resonance are most readily extracted from

the system (8) (for m, = m2) by methods set forth in the text by Bolotin [16].
Specifically, the bounding branches of the instability regions are given by

In addition, the natural frequencies of the statically loaded shell, are given by

Here, the calculations (11) and (12) are made by conversion to the respective
eigenvalue problems. Routines in the Eispack software library are used to per-
form the eigenvalue calculations.
The calculation (11) gives the principal regions of parametric resonance and

only applies for m, = m2. In general, stability diagrams containing all possible
regions of instability are determined using the monodromy matrix technique (see,
for example, Reference [17]). To use this method, it is first assumed that m, and
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m2 are integers so that the function Q(t) in Equation (9) is periodic. The n x n
system (8) is then cast as the N x N (N = 2n) first order equations:

where Z is a vector containing f and dlldt, and A_(t) is an N X N periodic
matrix having period T.

Stability of the system (13) is determined by the eigenvalues of the so-called
monodromy matrix, M. This matrix may be obtained from the fundamental
matrix of the system (13), ~, in the following way. Suppose that the i th column
of ~(t) is generated by the special initial conditions

for each column i = 1,2,...,N. Then, it can be shown that M and ~ are
related by

According to Floquet’s theorem, the system (13) is then stable so long as the
eigenvalues of M have magnitude less than or equal to 1.
The method is quite numerically intensive since the N X N system (13) must

be numerically integrated N times over interval T. Here a single pass scheme is
adopted [18,19] which results in reduced, although still high, computation time.

4. NUMERICAL RESULTS

Numerical results describing the stability of boron epoxy shells having fiber re-
inforced layers are presented in this section. The properties of the material are
Q = 2048 kg/m3, E, /Et = 11.11, G,,IE, = .24, vi, = .28, where Q denotes
density, E denotes Young’s modulus, G denotes shear modulus, v denotes
Poisson’s ratio, and subscripts l and t denote the directions parallel and transverse
to the fiber directions, respectively.

Figures 2-6 are for a shell consisting of three equal thickness layers and fiber
orientations -0/0/0. The shell’s geometry is 211a = 4 and a/h = 400 where h
is the total thickness of the shell.
To ensure that the shell is statically stable, the applied dynamic loads, P * and

P2*, are chosen as fractions of the minimum static buckling loads. The normal-
ized static buckling loads as a function of 0 are given in Figures 2-4 for pure axial
loading, pure torsional loading, and combined loading, respectively. In Figures
2 and 3, the minimum critical buckling loads are normalized as
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Figure 2. Minimum static buckling loads, pure axial loading- qo, = 1, q02 = qd, = qd2 = 0.

Figure 3. Minimum static buckling loads; pure torsional loading: q02 = 1, qo, = qd, =
qd2 = 0.
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Figure 4. Combined loading static buckling load pairs

and

Po;‘ and Po2‘ refer to the static buckling loads for the circumferential wave num-
bers which yield the minimum load values. In the combined loading case, the
axial and torsional loads are taken to be applied in the ratio of their critical values
when applied separately. Specifically, in Figure 4,

where Pi(0) and PZ(9) are the values from Figures 2 and 3, respectively. The
critical value of P, is then calculated for loads applied in this ratio. The critical
load pairs in Figure 4 are normalized as in the previous figures. Specifically,

In Figures 5 and 6, features of the first order principal region of parametric
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Figure 5. Frequency values on lower branch of first order principal regions of parametric
resonance

Figure 6. Relative widths of first order principal regions of parametric resonance
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resonance are presented as a function of 0 for the common frequency case,
m1 = m2 = l. For the three load cases, Figure 5 gives the normalized lower
branch parametric resonance frequency corresponding to w, and Figure 6 gives
the corresponding normalized width of the region. The calculations are made by
use of Equation (11). For each load case the shell is taken to be subjected to static
and dynamic load magnitudes equal to .3 times the critical values given in

Figures 2-4. Thus, the shell is subjected to constant static loading and superim-
posed harmonic loading. The frequency values in Figure 5 are non-dimension-
alized as in [6]:

In Figure 6, S2 denotes the normalized relative widths of the instability regions.
Denoting 0’ as the lower branch value and S2&dquo; as the corresponding upper branch
value, So is defined as:

The circumferential wave numbers, k, in Figures 5 and 6 are those which yield
the lowest frequency regions. Table 1 gives the fiber orientations and the corre-
sponding wave numbers for the three load cases.

In Figure 5, it is seen that the lower branch frequency value for each load case
is quite affected by the fiber orientation. Likewise, in Figure 6, the relative widths
of the instability regions are also quite affected by 0. Also, the three curves in
Figure 5 each vary in the same general way with 0. However, in Figure 6, the
three relative width curves have somewhat different character from one another.
This is especially apparent for 0 = 15 ° to 9 = 35 where the pure torsion re-
gion remains quite narrow, whereas the widths for the other two load cases are
increasing.

Table 1. Critical circumferential wave numbers
in Figures 5 and 6.
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It should also be observed that although 0 > 60 is a good choice of orientation
if one wishes the instability frequencies to be relatively high, the widths of the
pure torsion and combined load regions achieve their largest values in this range.
Also, the pure axial buckling loads are relatively low for 0 > 60. In general,
overall analysis of the shell would be based on a number of factors including the
expected forcing frequency range, the expected load magnitudes and whether tor-
sion, axial and/or combined loading is expected.

In Figures 7-10, stability diagrams are presented for a 90/0/90 shell having
211a = .5 and alh = 333.3. The case of combined axial and torsional dynamic
loading is studied. (The static parts of the loads are zero.). For this shell, the nor-
malized minimum static buckling load pairs (combined load case) have been cal-
culated to be Po;&dquo; = 1.3356 x 10-3, P~’ = .9616 X 10-3 when the axial all
torsional loads are applied in the ratio of their critical values when applied
separately. In this case the ratio is given by qoB = 1, q02 = .72. The quantity q
in the figures defines the applied dynamic load magnitude and is given by the
ratio P,,/P~&dquo; or P~/P~’. The minimum natural frequency was found using
Equation (12) to occur at k = 9. The first three normalized natural frequencies
for k = 9 are WI = 147.9, w2 = 301.6 and W3 = 396.9. The instability of the
shell, for k = 9, in the frequency range covering approximately 6 times its lowest
natural frequency is studied in the figures for the following frequency cases:
MI = m2 = I; MI = 1, m2 = 2; m, = 2, M2 = 3; m, = 3, m2 = 2. The
results in these figures were generated using the monodromy matrix technique
described in the previous section. Load-frequency space was swept using a fre-
quency iteration value of OSl = .45. More exact location of the instability re-
gions was determined by refinement in the vicinity of the branches. Very narrow
instability regions having widths less than about .45 are not shown since damping
in the system would most likely prevent them from being physically realized. The
principal regions of parametric resonance can also be determined by Equation
(11) for the m1 = m2 = 1 case and so was used as a check. It was found that

Equation (11) gave principal regions nearly identical to those shown in Figure 7.
In all four figures it can be seen that only principal and sum combination reso-
nances occur for this shell; difference combination resonances did not occur.
Also, only sum combination resonances corresponding to odd-even frequency
mode pairs occurred. In all cases, the instability regions were bounded by almost
exactly straight lines.

In Figure 7 the common frequency case is studied. There it is seen that the
widest regions are those of principal parametric resonance corresponding to the
second and third natural frequencies. The first (lowest frequency) combination
resonance is very narrow but the second combination resonance is about twice as
wide as the lowest principal region. The normalized frequency range from 600
to 800 is more dangerous from the standpoint of parametric resonance than the
lower frequency range.

In Figure 8, a case in which the torsional loading is applied at twice the fre-
quency of the axial loading is given. The left vertical scale gives the frequency
of the axial loading, and the right vertical scale gives the frequency of the tor-
sional loading. It is seen that principal parametric resonance occurs when the
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Figure 7. Stability diagram, combined loadmg, m, = m2 = 1



1734

Figure 8. Stability diagram, combined loading, m, = 1, m2 = 2.
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axial loading frequency is near 2-W,, 2 (&eth;2, and 2 W3, and sum combination reso-
nances occur when the torsional loading frequency is near &1 + (&eth;2 andw2 +
(&eth;3’ The widths of the principal regions are about the same as in Figure 7, but
the combination regions are less wide than in Figure 7. Although the combination
regions are fairly narrow, in this frequency case they cluster near the 2-W, region
to cause a relatively unstable range of load frequency space.

In Figures 9 and 10 two additional frequency cases are presented, m, = 2,
m2 = 3 and mi = 3, m2 = 2, respectively. In both these cases the 0)1 + w2 re-
gion becomes very narrow and so is not shown. Also, as in Figure 8, the principal
regions occur at the appropriate axial loading frequencies, and the combination
resonance occurs at the appropriate torsional loading frequency. Comparing to
the common frequency case, Figure 7, all the regions in Figures 9 and 10 are less

Figure 9. Stabihty diagram, combined loadmg, m, = 2, m2 = 3.
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Figure 10. Stability diagram, combmed loading, m¡ = 3, m2 = 2

wide than their counterparts in Figure 7 except the 2-W, region in Figure 9. Also,
the instability regions do not tend to cluster as in Figure 8. Roughly, it can be said
that the m, = 2, M2 = 3 and m, = 3, M2 = 2 frequency cases would be less
likely to induce instability than the prior two cases.

5. CONCLUSIONS

The dynamic stability of clamped composite shells subjected to combined har-
monic axial and torsional loading has been studied. Plots were given describing
the effect of fiber orientation on the lowest first order region of principal paramet-
ric resonance. Stability diagrams covering about 6 times the lowest natural fre-
quency have been constructed for various load cases. Principal and sum combina-
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tion resonances have been found to occur for the cases studied here. It has been
shown that the widths of the instability regions and the relative location of the re-
gions in load frequency space is affected by the ratio of the frequencies of the ap-
plied loads.
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