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FORD’S PROCEDURE FOR COMBINING MULTIPLE
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More than a decade ago, Lester R. Ford, Jr. published a
mathematical procedure for combining multiple sets of partially
ordered data (Ford, 1957). Although this procedure has received
little attention from social scientists, it solves a methodological
problem which is not uncommon in some fields of educational and
psychological research. Furthermore, it permits certain flexibilities
in the way data are collected which, if used, would probably in-
crease measurement validity in some kinds of variables.

Ford’s procedure is likely to be useful whenever one wants to
achieve a single rank order by combining data obtained from
multiple “judges” who have placed “objects” into ordered cate-
gories. Of course, the “judges” need not be people, but any proce-
dure which orders objects. The procedure has special advantages
when data are untidy in any of several ways: (a) some objects
are unclassified by some judges (e.g, when some judges lack
knowledge about some of the objects being ranked), (b) there is
less than perfect agreement among the judges, (¢) some objects
are tied—i.e., placed in the same ranked categories by certain
judges, (d) the judges differ in the number of ranked categories
they use (e.g., when judges differ in their ability to discriminate
along the dimension being considered), (e) the judges differ in
their perception of the overall distribution along the dimension

1 We are grateful to Allen Krebs, who assisted in getting Ford’s procedure
operational on computers at the University of Michigan, and Bernard Galler

and Robert Hsieh, who did the computer programming. Some of the material
presented here also appears in Appendix A of Pelz and Andrews (1966).
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being considered (e.g., one judge might feel that highs were rather
common, while another might feel they were rare). To our knowl-
edge, Ford’s procedure is the only one which appropriately handles
situations involving substantial “missing data’’—the first of the
problems listed above.

Because of the difficulties of handling such situations, investi-
gators usually try to avoid them. Often judges are asked to cate-
gorize all objects, to use exactly X categories, and to distribute
their assignments in some pre-determined manner. It is eclear,
however, that in some research settings these requirements would
be overly restrictive. Rather than impose an unrealistic task on
the judges (with consequent losses in validity) or forego an inter-
esting research opportunity, use of Ford’s procedure may permit
the researcher to utilize the data he can collect.

Research Examples

A situation in which Ford’s procedure proved helpful occurred
when the authors wished to measure the quality of scientists’ per-
formance (Pelz and Andrews, 1966). A group of the scientists’
peers and supervisors were asked to make qualitative discrimina-
tions (on a carefully defined dimension of technical contribution)
among the members of a lab. They were instructed to judge only
those members whose work they knew. And they were permitted
to use as many qualitative categories as they chose, and to place
as many people in each category as they thought appropriate.

In this case judges differed in the subsets of objects they
evaluated, in the numbers of categories they used, in their distri-
butions across these categories, and (sometimes) in the relative
positions assigned to the scientists. Ford’s procedure handled
these data well and produced a single rank order among the
scientists which could be used as a variable in subsequent analyses.

Other situations in which the procedure might be applied are
easy to imagine. It might be used in assessing hierarchies among
needs or motives, attractiveness of products to consumers, com-

petitive skill among groups such as simulated business teams,
and many more.

Application to Data

The advantages of Ford’s procedure over certain other ways of
combining partially ordered data are shown in Table 1, which
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contains a realistie, but fictitious, situation. Ten objects comprise
the set being considered (A, B, ... J) and the table shows the
categories assigned by each of six judges. (In terms of the re-
search example cited previously, the reader may wish to think of
the objects in Table 1 as being scientists, and the criterion of
ranking as being their technical contribution.)

One may note that the judges showed high, but not perfect,
agreement in their rankings. Judges I, V, and VI considered ob-
jects relatively low on the dimension being considered. Judges
IT and IV ranked only objects at the upper end. Judge III
categorized some of each. The number of categories used by the
judges ranged from three (Judge I) to six (Judge IV). Although
Judge IIT used only four categories, he evaluated more objects
than any other judge.

Given the simplicity of Table 1, one can identify the “true”
order of the objects. This is shown at the left, Note that the order
between objects B and C is undefined (Judge II placed C above
B, but Judge IV placed B above C, and no other judge compared
them). It is clear, however, that these two objects fall below A
and above D. In addition, there was minor disagreement among
the judges concerning the relative positions of F versus G (two
judges out of three placed F ahead) and I versus J(three out of
four placed I ahead).

Three Unsatisfactory Systems

In some kinds of data the average rank assigned by several
judges provides a satisfactory way of combining judgments. The
fact that in the present data judges evaluated different sets of
objects, and used different numbers of categories, however, makes
this system inappropriate. Note in Table 1 that this first method
gives results very different from the true rank order.

Allowance could be made for the judges’ using different numbers
of categories by converting to a “percentile equivalent” for the
rank (if one were willing to assume equal distances between cate-
gories). A combined score could then be based upon an average
of the “percentile equivalents.” This second method was applied
to the data of Table 1. Note that it also fails to reproduce the
true rank order. The reason is that this method, like the first,
neglects the fact that judges ranked different sets of objects.

A somewhat more sophisticated system is to set up a “win-loss
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matrix,” as shown in Table 2. For each possible pair of objects,
this matrix indicates the number of times the first was ranked
above the second, and vice versa. Such a matrix can be used to
determine each object’s “win percentage”—the number of times it
scored above others relative to the total number of times it
won or lost. The “win percentages” derived by this third method
are also shown in Table 1. This third method gives an order
somewhat different from either of the previous two, but still fails
to reproduce the true order.

Ford’s Procedure

When Ford’s procedure was applied to these same artificial data,
the results (shown at the right of Table 1) were virtually identical
with the true order.?2 The procedure works as follows.

Ford proposed that one assign to each object a number or
“sveight” (w) which could be interpreted as odds, in the sense that
the probability of object 7 being preferred to object j in a future
comparison would be w; /(w; 4+ w;). With these probabilities, one
could compute the a priori probability of obtaining exactly the
win-loss matrix actually obtained. Furthermore one could rank the
objects in order according to these weights.

The problem, then, is to determine that set of weights which
maximizes the likelihood of obtaining the given matrix.

Ford showed that, beginning with an arbitrary set of weights?
one can arrive at the desired set of weights by an iterative tech-
nique—if the data meet certain assumptions. His procedure is to
solve the following equation for each object in the set until the
resulting weight for each object stabilizes.*

2 Qur computer program embodying Ford's procedure produced a com-
pletely ordered set (that is, no ties), whereas in actuality the set contained
a pair of tied objects. The discrepancy is probably attributable to the addi-
tion of a small constant to the cells of the win-loss matrix to ensure that all
sets of data would meet Ford’s assumptions (described below).

8 Qur computer program uses as the initial set of wi's the percentage of wins
in the win-loss matrix, as illustrated in Table 2. We believe this will usually
minimize the number of iterations required.

¢ Although the criterion of what constitutes “stability” is arbitrary, one
criterion used by us has been that no weight should change by more than
0.5% from one iteration to the next: that is, for all objects

w_‘_l_:nl"_‘._ < 005.
wy
As described subsequently in the text, stability in rank order of the weights
(even though their actual values may change from iteration to iteration) is an
alternative criterion.
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2 ay
N A
Z i + ay,

7 w‘.n + wiﬂ

where a;; = number of times object ¢ was preferred to object j; ax
= number of times object j; was preferred to object ¢; and, w;"
= number (weight) assigned to objeet 1 on the nth iteration.

Assumptions

For Ford’s technique to yield a solution, the data must meet
the following assumption: “In every possible partition of the ob-
jects into two non-empty subsets, some object in the second set
has been preferred at least once to some object in the first set.”
(Ford, 1957, p. 29). Thus if the objects were all baseball teams,
this assumption would be violated if it were possible to divide
the teams into a major and minor league, where the major teams
had always defeated the minor teams.

In practice, this basic assumption can be violated in four ways.
(a) One object may be universally preferred by the judges. It
heads all lists on which it appears. (In Table 1, A is such an object.)
(b) An object might be at the bottom of all lists on which it
appeared. (¢) Some objects might be judged neither universally
high nor universally low, but taken as a group, were simply not
judged in relation to the other objects. (d) Some objects might
fall in a subset such that the comparisons with another subset
were all in one direction. (After removing object A from Table 1—
see next paragraph—the subsets B-C, B-C-D, B-C-D-E, and
B-C-D-E-F-G constitute violations of this type.)

In programming Ford’s procedure for the computer, it proved
relatively easy to identify violations of the first and second types.
Our Ford Program identifies objects which were ‘“universal highs”
or “universal lows,” and removes them before computing the
weights. (They subsequently get ranks above or below the set
of objects for which weights are computed, as appropriate.)

Violations of the third and fourth types, however, are often
extremely difficult to identify. Our solution consisted of adding
an extremely small constant (0.00001) to every cell of the win-
loss matrix derived from the judges’ evaluations. This constant
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insured that the matrix would not contain violations of the third
and fourth types.®

A Computer Program

With the information provided above, a competent computer
programmer could write a program to carry out the various steps
described. We have substantial experience with one such program.
This program, written in FORTRAN for an IBM 360/40, will han-
dle up to 130 judges who may use up to 130 ranked categories in
evaluating up to 130 objects.® In a wide variety of test cases, our
Ford Program has yielded a combined rank order which closely
approximated a known “true” order, as in Table 1.

However, experience with this program has shown that for some
sets of data an exceedingly large number of iterations would be
required before all weights met the stability criterion described
above (see footnote 4). (In such cases the iterative procedure
is usually stopped after a designated number of iterations.) It
turned out, however, that the rank order of the weights usually
did not change after 20 to 30 iterations. Since it is the rank order
of the weights which we desired, the slowness to reach stability is
usually not a problem.”

The data shown in Table 1 provided one example where the
rank order of the weights stabilized after 25 iterations even though
the actual values of some weights had not reached the stability
criterion. Figure 1 shows how the weights of each object changed
over 150 iterations. Note that no lines crossed after the 25th
iteration.

Conclusion and Discussion

Ford’s procedure, virtually unknown to social scientists, pro-
vides a practical and appropriate way for combining several sets

5 This solution was accepted only after experimentation with several other
possibilities which included: adding 0.00001 only to the zero cells of the win-
loss matrix, adding 1.0 to all cells, and adding 1.0 only to zero cells. In several
trial sets the smaller constant produced more rapid stabilization of the weights,
and whether the constant was added to all cells or only to zero cells proved
to make little difference.

6 A listing of the program (operational on IBM’s 360/40) and instructions
for data input are available from the authors.

7 Where all weights did reach stability it might be possible to use the
relative distances among them to scale the objects with more precision than
a simple rank order.
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Figure 1. Weights assigned objects B-J on each of 150 iterations.

Note—Based on data shown in Table 1. Object A was removed as a “uni-
versal high” prior to the first iteration..

of partially ordered data. Although such data are usually avoided
because of the difficulties of analysis by traditional means, in
many instances data of this kind could be exploited, in conjunc-
tion with Ford’s method, to derive better measures of many
variables of interest to social scientists. This article has described
Ford’s procedure, given a specific example of its use, and shown
how it produced more valid results with these data than three
more traditional techniques.

While the method, as embodied in a computer program described
above, has already proved useful, several modifications might
further improve its results. In working directly from the win-loss
matrix, it takes no account of the fact that a judge might have
placed two or more objects in the same category. Furthermore, it
does not separately maintain the identity of each judge, nor
examine the extent to which his rankings were consistent with
those of other judges. One can imagine that a still more sophis-
ticated approach might explicitly incorporate ties, and might
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somehow weight each judge’s decisions according to the extent
they were consistent with information from other judges. Such
developments await the attention of an appropriately inclined
methodologist.
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