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Summary
Parallelized Monte Carlo algorithms for
analyzing photon transport in an inertially
confined fusion (ICF) plasma are consid-
ered. Algorithms were developed for
shared memory (vector and scalar) and
distributed memory (scalar) parallel pro-
cessors. The shared memory algorithm
was implemented on the IBM 3090/400,
and timing results are presented for dedi-
cated runs with two, three, and four pro-
cessors. Two alternative distributed

memory algorithms (replication and dis-
patching) were implemented on a hyper-
cube parallel processor (1 through 64
nodes). The replication algorithm yields
essentially full efficiency for all cube
sizes; with the 64-node configuration, the
absolute performance is nearly the same
as with the CRAY X-MP The dispatching
algorithm also yields efficiencies above
80% in a large simulation for the 64-pro-
cessor configuration.

Introduction

The Monte Carlo method has been utilized for years to

solve complex problems in particle transport applica-
tions, such as the transport of neutrons in a nuclear re-
actor shield or the transport of photons in an inertially
confined fusion (ICF) plasma. The unique advantage of
the Monte Carlo method is its capability to simulate al-
most any particle transport problem, independent of the
complexity of the geometry or the transport process, as
long as the geometrical configuration can be described
mathematically and the physical process can be repre-
sented by probability distributions, which may be deter-
mined by theory and/or measurement. The usual com-
plaint against the Monte Carlo method is that the time
required to simulate the requisite number of particle his-
tories may be exorbitant on conventional computers.
Modem-day computer architectures provide some relief
-the natural parallelism of Monte Carlo would seem
tailor-made for parallel processors, including massively
parallel architectures such as hypercube parallel pro-
cessors. This paper investigates the development and
implementation of photon transport Monte Carlo algo-
rithms on both shared memory and distributed memory
parallel processors, including a vector/parallel architec-
ture. Actual timing results for both the IBM 3090/400
and the NCUBE hypercube parallel processor are dis-
cussed along with predicted results for a hypothetical
CRAY X-MP configuration with up to eight processors.

Results and Discussion

1. BACKGROUND

The vectorized photon transport Monte Carlo code
VPHOT (Martin, Nowak, and Rathkopf, 1986) was
originally developed to assess whether or not this appli-
cation could be successfully adapted to a vector super-
computer. To provide a comparative tool, the SPHOT
code was created, which solves the identical problem as
VPHOT but with the conventional (inherently scalar)
Monte Carlo algorithm. The VPHOT and SPHOT
Monte Carlo codes solve the specific problem of photon
transport in an ICF plasma, as depicted in Figure 1. The
geometry is constrained to be a two-dimensional z-r

mesh with azimuthal symmetry, and individual zones are
in general quadrilaterals of revolution, as illustrated in
Figure 2. The article by Martin et al. (1987) presents a
detailed description of the capabilities of these codes as
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Fig. 1 Configuration for
ICF application Copyright
1986 by International Business
Machines Corporation; reprinted with
permission.

well as a description of the physics, the Monte Carlo
methodology, and the data base which describes the in-
teraction of photons with the ICF plasma. The VPHOT
results have demonstrated that this Monte Carlo appli-
cation can be successfully vectorized, with speedups in
the range of 5 to 6 on the CRAY X-MP versus the op-
timal scalar algorithm on the same computer. There has
been substantial progress in recent years in vectorizing
particle transport Monte Carlo applications other than
photon transport, and the interested reader is referred
to the recent review paper on this topic (Martin and
Brown, 1987).

2. CONVENTIONAL MONTE
CARLO ALGORITHM

The scalar algorithm contained in SPHOT is depicted in
Figure 3. It is similar to the conventional Monte Carlo

algorithm found in production-level codes such as

MCNP (Los Alamos, 1981) or MORSE (Straker, Scott,
and Byrn, 1970), where particles are emitted one at a
time from a known source distribution and followed
until &dquo;terminated&dquo; by, for example, absorption, escape
from the geometry, or the end of the current time step
(census). For the specific case of photon transport in an
ICF plasma, the photons are created within a speci-
fic zone via Planckian emission and are followed

throughout the plasma, which can either absorb the
photons or scatter them (Thomson scattering).

3. PARALLEL MONTE CARLO:
GENERAL REMARKS

Monte Carlo particle transport is an inherently parallel
application if the particles do not interact with one an-
other or change the background medium with which
they are interacting. This is known as a linear transport
process (Duderstadt and Martin, 1979), and many trans-
port applications fall in this category. For example, neu-
tron transport in a nuclear reactor shield involves the
simulation of neutrons moving in the shield, and each
neutron’s history is independent of the others’. Even in
cases where the histories might interact, such as where
the particles might change the medium (e.g., change its
temperature), this nonlinearity can be handled in such a
way as to allow the simulations to be performed inde-
pendently. The photon transport application we discuss
here is in this category, and time steps are used to re-
move the dependence of the medium on the photon



transport process. That is, within a time step, the

photons are treated as independent particles, and the
medium does not change during the time step. Between
time steps the properties of the medium may be
changed to account for photon interactions during the
previous time step. The linking of time steps is of course
essential for a real production code but is not important
for assessing the efficiency of the Monte Carlo algo-
rithms, since the bulk of the computational time is

usually spent in the within-time-step problem-per-
forming the particle transport simulation.

Given that the photon transport application consid-
ered here is inherently parallel because each photon his-
tory is independent, one would clearly design a parallel
algorithm to partition the photons among the pro-
cessors. There are many ways to perform this parti-
tioning, some more suitable than others. Before we con-
sider the specific partitioning used for our application,
let us consider two alternative approaches, partitioning
by geometry and partitioning by photon energy. Both of
these approaches can be described as &dquo;domain decom-

position&dquo; methods, since the partitioning involves split-
ting up the domain, either space or energy (or both),
and assigning regions to specific processors.

Partitioning by geometry entails assigning geometric
regions to each processor, which would follow only those
photons inside the region, until they left the region,
were absorbed, or reached the end of the time step. The

problem with this approach is twofold: load-balancing
and communications. It is difficult to ensure load-bal-

ancing without some a priori knowledge of the problem,
because the photons may tend to congregate in certain
regions of the domain. This can also lead to inefficient
memory utilization, because each processor must have
sufficient space to contain all particles that could con-
ceivably be in its geometrical region. Communication be-
tween processors becomes an issue, because once a

photon crosses a boundary of a region, it must be com-
municated to the neighboring processor, which may
mean transmitting 10 to 12 words to describe the
photon-position, velocity, weight, time to census, and
any other attributes needed to perform the simulation.
Thus, spatial domain decomposition may result in a
substantial savings in memory due to the need for each
processor to keep track of only one region, but this ad-
vantage may be negated by the adverse effect on
memory utilization. Furthermore, spatial domain de-

’ 
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Fig. 2 Typical two-
dimensional mesh (9 X 6)
Copyright 1986 by International
Business Machines Corporation;
reprinted with permission.
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Fig.3 Sequential
algorithm (SPHOT)

composition has the consequence of increased interpro-
cessor communication (which may be overwhelming if
the regions are transparent to the photons) and the po-
tential of unequal workloads.

Domain decomposition by energy group involves
partitioning the photons into groups depending on their
energy (or frequency). These groups are chosen so that
photons within them have constant interaction proper-
ties with the background medium. In this case, the pro-
cessors would need to know the material properties for
only a small portion of the energy scale, but would still
need to know the entire geometrical mesh. However,
photons can lose energy in collisions (Compton scat-
tering) with the medium, and this would require com-
munication between processors. For the application con-
sidered in this work, we allow only Thomson scattering,
which does not change the photon energy; in general,
both types of scattering would be considered. A second
concern, however, is load-balancing, because the
photons are emitted in different groups and interact
with the medium at different rates depending on the
energy group. Thus, it would be difficult to partition
them in such a way as to ensure equal workloads.

Domain decomposition, either in space or in energy,
does not seem to be a desirable approach for parti-
tioning the problem. It does reduce the memory re-

quirement, but leads to increased communications and
increased difficulty in obtaining equal workloads. In-
stead, we have focused on methods where the entire do-
main (space and energy) is assigned to all processors and
the particles are distributed among the processors in
such a way as to equalize the workload and minimize
communications. This partitioning of the photons is nat-
ural, and there are many specific methods to implement
it. The next section describes the partitioning for the
shared memory architecture.

4. PARALLEL ALGORITHM: SHARED MEMORY

The effort to develop a parallelized algorithm was tar-
geted for the IBM 3090/400 shared memory parallel
processor (Wan and Martin, 1986). A &dquo;dispatching&dquo; al-

gorithm was developed that partitions the photons by
the zone in which they were born (emitted) and assigns
them to separate processes, which are in turn assigned
to the next available processor. That is, a separate pro-
cess is defined for all photons emitted in a given zone.
The process emits the photons and follows them, re-
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gardless of which energy group they are in or where
they happen to travel. This algorithm was chosen for
our initial examination because it was relatively easy to
implement on the IBM 3090/400 with the Multitasking
Facility (MTF). Since the MTF requires communication
between the main task and slave tasks by argument list
only (i.e., no &dquo;GLOBAL&dquo; COMMON), only the zone
index must be transmitted to each process. The process
then determines the total number of photons to be
emitted (a function only of the zone volume and mate-
rial properties) and processes the photons one at a time,
similar to a conventional Monte Carlo algorithm. Since
the photon histories are all independent (within the cur-
rent time step), there is no need for interprocess com-
munication until the simulation is completed. At that
time the global tallies are accumulated from the partial
tallies that have been accumulated by the slave processes.
The algorithm is described in Figure 4.

This first approach is probably not optimal, because
it is not load-balanced (the workload depends on the
zone properties and location) and it is relatively fine-
grained, with one process created for each zone. For the
test problem that we have analyzed, there are 1,960
zones, hence 1,960 processes to be dispatched to at most
four processors for the IBM 3090/400. We are currently
investigating alternative algorithms that are load-bal-
anced and coarser grained, with the number of pro-
cesses equal to a small multiple (1,2,3,4, ...) of the
number of available processors.

Since the individual processes are independent sta-
tistical simulations, a method is needed to generate, for
each process, independent random number sequences
that will ensure statistically independent simulations as
well as the reproducibility of the simulation. By repro-
ducibility we mean that if the starting random seed is

the same, then the overall simulation should always yield
identical results regardless of the number of processors
assigned to the simulation at run time (including the
uniprocessor case). The &dquo;Lehmer tree&dquo; approach (Fred-
erickson et al., 1984) is used to generate these random
sequences for each process. The basic idea is to generate
a &dquo;left&dquo; sequence of random numbers, each of which will
be the starting random seed for the random number
sequence (&dquo;right&dquo; sequence) used within each process.
The linear congruential random number generator
(Knuth, 1969) is used for the left and right sequences,
with a careful choice of the multipliers and increments

Fig.4 Dispatching
algorithms (shared
memory)
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&dquo;&dquo;Even the negligible sequential fraction
of .0301o has severe petfonnance im-

plications for a massively parallel
architecture...

Table 1

Measured Versus Predicted Speedups for
IBM 3090/400

N = number of processors.
Total CPU = total elapsed time lmin) for simulation excluding 1/0.
tjbsec/trk - total CPU time I j.LSec)/total number of tracks.
Speedup = total time f1 CPUlltotal time (N CPUsI.

(Frederickson et al., 1984) to ensure that the sequences
are disjoint. In addition, since this approach guarantees
that one can reproduce the random number sequences,
reproducibility is ensured. However, the Lehmer tree

approach, while convenient and easy to implement, has
been shown to suffer from intersequence correlations
(Bowman and Robinson, 1987). Since the purpose of
our study was to assess the efficiency of our parallel al-
gorithms (rather than obtain actual answers to a specific
problem), and the correlations do not affect this study,
we have continued to use the Lehmer tree approach.
We have not noticed any anomalous results with the

Lehmer tree, but this may be a consequence of our spe-
cific application.

In this algorithm the work in the loop over zones is
completely parallel and the sequential portion is simply
the input, initialization, and output. The fraction of
work that is done in parallel depends on the number of
photon histories. For the standard ICF simulation
(Martin, Nowak, and Rathkopf, 1986), there are
-240,000 photons emitted in the plasma and the vast
bulk of the work is done in the parallel section. The

sequential fraction, denoted by a, was determined to be
approximately .03%, by executing the parallel algorithm
on a uniprocessor and explicitly taking synchronization
delays into account by timing each process individually.
However, as noted below, even this negligible sequential
fraction (a = .0003) has severe performance implica-
tions for a massively parallel architecture.

This algorithm was implemented on the IBM
3090/400, and dedicated runs with one, two, three, and
four processors yielded the measured speedups tabu-
lated in Table 1, where the measured speedup S- is
defined

sm 
elapsed time for single processor 

(1)N 
elapsed time for N processors 

~ 

Table I includes an absolute indicator of perfor-
mance, the &dquo;microseconds per track&dquo; (jjLsec/trk), which is
simply the total CPU time in microseconds divided by
the total number of &dquo;tracks,&dquo; where a track is the move-
ment of a particle from one position in phase space to
another. This measure has been found to be a useful

absolute measure of Monte Carlo performance because
it is relatively insensitive to the problem physics or geo-
metrical mesh. For the test problem reported in Table 1,
there were approximately 4,170,000 tracks, or more



than 17 tracks for each of the nearly 240,000 photons
emitted in the plasma.

The performance with the optimal sequential algo-
rithm was essentially the same as the parallel algorithm
on a single processor, because the overall algorithms are
similar and the MTF is not utilized for one processor.
Therefore, the definition of speedup in Eq (1) is consis-

tent with the usual definition-the ratio of the optimal
sequential elapsed time to the elapsed time for multiple
processors. Elapsed times were used because the IBM
3090/400 was run in dedicated mode; they are included
in Table 1, with the resultant speedups calculated with
Eq (1). It should be noted that all of the IBM 3090/400
timing results discussed here are for the parallel-scalar
algorithm. We are currently implementing the vector
code VPHOT and the parallel-vector code PVPHOT
(discussed below) on the IBM 3090 and hope to obtain
results shortly.

A few remarks regarding the MTF might be of in-
terest. The MTF has limited capability, but we found
that this made it relatively easy to use and difficult to
abuse-it can only create processes, assign them to pro-
cessors, and terminate processes. There is no way to
communicate between processes, such as posting an
event or setting a barrier. There is also no &dquo;GLOBAL&dquo;
COMMON, which means that to update global variables
one must first exit the slave task and return to the

MAIN task. This also constrains one to communicate all

information via argument list, although subordinate
subroutines in a slave task can be called with shared

COMMON blocks (tantamount to &dquo;TASK&dquo; COMMON).
But these constraints were relatively easy to deal with
(perhaps a consequence of our inherently parallel appli-
cation), and we encountered no difficulties in executing
the multitasked code.

In addition to the measured speedups, Table 1 in-
cludes predicted speedups using Amdahl’s law (Amdahl,
1967),

where a is the sequential fraction and N is the number
of processors. It is clear that the measured and pre-
dicted speedups do not agree for any of the runs. In an
attempt to explain this discrepancy, we have introduced
a &dquo;multitasking fractional overhead,&dquo; denoted by f, which
accounts for the overhead introduced by multitasking
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Table 2

Effect of Multitasking Overhead

the sequential algorithm. For example, there will be
some overhead due to the MTF creating and destroying
processes and assigning them to the next available pro-
cessor. There may also be some overhead due to

memory conflicts. Defining the additional workload due
to the postulated overhead as f times the total workload
in the sequential algorithm, one obtains a revised version
of Eq (2) which accounts for the postulated fractional
overhead,

Thus, Eq (3) with f = 0 yields the usual Amdahl’s
law prediction for the speedup. (Note that we have pos-
tulated a fractional overhead that is independent of N.)
A reasonable value for f may be determined by forcing
the predicted speedup SN to equal the measured
speedup SN~’ for N = 2. This results in f = .018, which
implies that there is an additional workload imposed
that is equal to 1.8% of the total workload on a unipro-
cessor. If this value is then used for the runs with N = 3

and N = 4 processors, the predicted speedups are very
close to the measured speedups, as noted in Table 1.

Thus this simple model appears to explain the mea-
sured results quite well. The origin of this overhead is
not clear, however, and we are examining alternative al-
gorithms in an attempt to verify this simple model and
explain the source of the overhead. We emphasize that
this simple model is only tentative and should be sub-
jected to further testing with alternative partitioning
schemes that are more equally load-balanced and
coarser grained.

It is interesting to project what the speedup would
be for N processors assuming that the 1.8% overhead
held for any number of processors. Table 2 illustrates

the sensitivity of the predicted speedups to the presence
of the seemingly modest 1.8% overhead. Thus, for an
inherently parallel application such as Monte Carlo,
where the degree of parallelization is close to 100%, the
impact of a relatively small overhead due to the multi-
tasking implementation will still be significant. Even for
a modestly parallel configuration, the effect of a 1.8%
overhead is significant--the change in speedup from
eight processors to 16 processors is 5.42, an effective loss
of more than two and a half processors. Similarly,
adding 16 processors to a configuration with 16 pro-
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cessors will result in an effective gain of less than eight
processors. Thus, less than half of the added capability
can actually be utilized. These results, however, are for
only one possible partitioning of the simulation, by zone
of emission. Figure 5 plots the results contained in Table
2 for a graphic display of the degradation in perfor-
mance due to the postulated multitasking overhead.

5. PARALLEL ALGORITHM:
DISTRIBUTED MEMORY

A parallelized algorithm for the 64-node NCUBE hy-
percube parallel processor at the University of Michigan
(Hayes et al., 1987) has been developed. Three ap-
proaches were examined (Martin et al., 1987), stemming
from the relatively modest memory (128 Kbytes) per
node that made it impossible for the SPHOT code to be
replicated on each node. (It should be noted that the
NCUBE is now available with 512 Kbytes per node.)
These versions are denoted A, B, and C.

5.1 VERSION A

The DIMENSION statements in SPHOT were reduced

to allow a maximum of 20 zones versus a maximum of

2,000 zones for the original version of SPHOT. The en-
tire code (except for input/output) was replicated in each
processor, and the host merely reads in the input data,
broadcasts it to the nodes, and then receives the results
from each node and prints out separate results for each
calculation. The Lehmer tree method was utilized to

start each node calculation with a different random

seed, allowing the separate Monte Carlo runs to be com-
bined to yield results statistically equivalent to one large
run with the same total number of photons. Table 3
summarizes the results for the reduced-dimension algo-
rithm (Version A) as a function of N, the number of
nodes.

Table 3 also includes the microseconds per track

performance measure, which was 39.6 psec/trk for the
64-node NCUBE/six. For comparison, the identical 5 X
4 mesh problem was run on the CRAY X-MP/22 (single
CPU) with the scalar code SPHOT and yielded 37.5
~,sedtrk. Thus, in scalar mode, the 64-node NCUBE/six
was approximately as fast as a single CRAY X-MP pro-
cessor for the 5 x 4 test problem. It should be noted
that the vectorized code VPHOT is nearly six times
faster than the scalar code SPHOT, and this comparison
between the NCUBE and the CRAY is only to indicate

Fig. 5 Effect of

multitasking overhead
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Table 3

Measured Timing Results on NCUBE

N = number of processors.
Node = average CPU time per node (sec).
Total = elapsed time from posting of first message to nodes to receipt of last result from nodes (sec).
pLsec/tt1( = average CPU time to process one track (move a photon from one position in phase space to the nextl.

their relative scalar performances on this particular
Monte Carlo simulation.

5.2 VERSION B

The uniform and homogeneous mesh (in the ICF test
problem) was exploited by calculating the zone vertices
and material composition as a function of the zone

index. (The SPHOT and VPHOT codes allow an arbi-
trary two-dimensional mesh.) This eliminated the need
to store the zone vertices and composition for each zone.
This modified version allows the analysis of the &dquo;stan-

dard&dquo; test problem with the 49 X 40 mesh, which could
not be fit into the NCUBE node if the zone vertices and

compositions were to be stored. Other than this change
to eliminate the stored arrays, Version B is identical to
Version A and yields identical results. Table 3 summa-
rizes the Version B results for the &dquo;small&dquo; mesh (5 X 4)
and the &dquo;standard&dquo; ICF test problem with the 49 x 40
mesh. A comparison of the timing results for the 5 x 4
mesh with Versions A and B indicates the penalty
(nearly doubling the computational time) associated with
calculating the zone vertices rather than storing them.

5.3 VERSION C

The &dquo;dispatching&dquo; algorithm developed for the shared
memory parallel processor was modified to be opera-
tional on the NCUBE. In this case, the algorithm is

I, shown in Figure 6. Version C differs from Versions A
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and B in that a single Monte Carlo simulation is being
spread out over the N processors in the cube, rather
than replicating the same calculation (with different
random number sequences) in each of the N processors.
This is the more conventional approach to &dquo;parallel-
izing&dquo; an algorithm. However, the replication approach
(Version B) does take advantage of the unique feature
of Monte Carlo wherein results of several calculations

can be combined a posteriori to yield an improved re-
sult. As with Version B, the method to conserve

memory by calculating zone vertices and compositions
&dquo;on the fly&dquo; was used. Tables 4 and 5 summarize the
performance results for Version C as a function of the
number of nodes and the problem size (i.e., the number
of photons simulated). The results reported in Tables 4
and 5 are for the 49 x 40 mesh.

As can be seen, the measured efficiencies are poor
for the small problems, which is to be expected, since
the parallel workload is proportional to the number of
photon histories that are simulated. For the large
problem, which is the standard ICF test problem dis-
cussed earlier with ~-~-240,000 photon histories, the effi-
ciencies are considerably better, approaching 80% for
the 64-node configuration. Anomalous results are ob-
tained for both the medium-size problem (Table 4) and
the large problem (Table 5) in that the efficiency is

greater for 64 nodes than for 16 or 32 nodes.

Table 4

Measured Timings for Version C as a Function of Problem Size

N = number of processors.
Total = total elapsed time for simulation excluding 1/0 (host clock resolution - 1 sec).
~.sec/trk - total dme (wsec)Inumber of tracks.
Speedup = total time for 1 CPU/total time for N CPUs.

Efficiency = spesduplN.

Fig.6 Dispatching
algorithm (local memory)
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Table 5

N’leasuring Timings for Version C (Large
Problem with ̂ ~~40,000 Photons)

N = number of processors.
Total = total elapsed time for simulation excluding 1/0 (host clock resolution = i sec).
lxsecltrk = total time (¡;..sec)/number of tracks.
Speedup = total time (1 CPU)/total time (N CPUS).
Efficiency = speedup/N.

One possible explanation for the anomalous results
is that better load-balancing is achieved with 64 pro-
cessors because of a better distribution of the zones to

the processors. The distribution depends on the number
of processors, the number of zones, the order in which

the zones are dispatched to the next available processor,
as well as the message traffic through the I/O structure
of the overall cube. Since there is a specific order in
which the zones are dispatched to the next available pro-
cessor, and the workload is a sensitive function of the

zone properties (volume and temperature), it is probably
fortuitous that the efficiency was higher for the 64-pro-
cessor case. We have examined the CPU timing statistics
(workload) for each node and have calculated the frac-
tional standard deviation in the node workload (stan-
dard deviation/mean workload X 100%). This value,
which is indicative of the uniformity (or nonuniformity)
of the workload, was approximately 22% for both the
16-node and 64-node cases and 30% for the 32-node
case given above in Table 5. Thus the 32-node case re-
sults in a significantly more nonuniform workload, con-
sistent with the above postulated reason. Since this
anomaly is repeatable, this explanation seems plausible,
although we are still examining this issue. We also will be
trying the alternative algorithm described above, which
utilizes fewer tasks and is more load-balanced. This may

help us to explain these anomalous results.
For Versions A and B, it is important to note that

the problem size grows linearly with the number of
nodes, because the same problem is simply run on more
processors. However, since the random seeds for each

problem are different, the overall simulation does repre-
sent a meaningful calculation because the results from
each simulation can be combined to yield overall results
with the standard deviation in the estimated results im-

proved by the ratio 111~, where N is the number of
processors (simulations). The Version C algorithm, on
the other hand, partitions the workload internally, dis-
patching work (batches of particles emitted within a spe-
cific zone) to the next available processor.

6. PARALLEL-VECTOR ALGORITHM:

SHARED MEMORY

With the introduction of parallel and/or vector shared
memory architectures such as the CRAY X-MP/48 and

IBM 3090/400 computers, the development of multi-
tasked vectorized algorithms gains importance. In gen-



69
70

eral, the first priority is vectorization to maximize the

utilization of a single processor. Clearly, one important
trade-off is vector length versus granularity-as the
number of tasks increases, the vector length decreases
given a constant problem size. Some effort has already
been reported, for multitasking a vector Monte Carlo
code (Chauvet, 1984, 1985). Chauvet reports results for
the CRAY X-MP/22, which has two vector processors.
His results are for a multitasked version of an alternative

vectorized algorithm, which is &dquo;stack-based&dquo; (Martin and
Brown, 1987), rather than the VPHOT algorithm con-
sidered below.

Since the VPHOT code is vectorized (Martin,
Nowak, and Rathkopf, 1986), an attempt was made to
develop a parallelized version for a multiple vector pro-
cessor. The resultant parallelized and vectorized Monte
Carlo algorithm is a simple extension of the original
VPHOT algorithm illustrated in Figure 7.

Figure 8 plots the measured performance of
VPHOT as a function of the problem size (i.e., the
number of photons emitted within the plasma). It is ap-
parent that the performance degrades with decreasing
problem size, even for what appear to be reasonably
large simulations (e.g., a 10% degradation in perfor-
mance with 15,000 photons compared with 240,000
photons).

In order to address this issue, an algorithm was de-
veloped that distributes the workload &dquo;evenly&dquo; among
the available processors. The disadvantage of this ap-
proach is that it relies on some a priori knowledge of the
problem, in this case that the number of photons
emitted was proportional to the volume of the zones.
Figure 9 summarizes the parallel-vector algorithm,
which is contained in the code PVPHOT.

This algorithm has not yet been implemented on
the CRAY X-MP, but results have been obtained by sim-
ulating the parallel algorithm on a uniprocessor and
using the data contained in Figure 8 to predict the re-
sulting performance of the algorithm. Table 6 tabulates
the results of these emulated runs, as a function of the

number of slave processes (i.e., the number of indepen-
dent &dquo;VPHOT&dquo; simulations) and the number of avail-
able processors. Since this is an emulation study, results
were also obtained for more than four processors.

The number of photons simulated by each slave
process is approximately equal to 240,000/Ns, where Ns
is the number of slave processes. For the PVPHOT al-

Fig. 7 Vector algorithm
(VPHOT)

Fig. 8 Effect of problem
size on VPHOT

performance



Fig. 9 Parallel-vector

algorithms (PVPHOT)

Table 6

Emulated Performance (Speedup) of PVPHOT
on CRAYX MP

gorithm, the sequential fraction has been measured to
be approximately 4%, which is somewhat higher than
the parallel-scalar algorithm because of the need to de-
termine the number of emitted photons for each zone
beforehand and to partition these &dquo;equally&dquo; to the slave
processes. The following two observations are made
based on the results in Table 6: (1) Increasing the
number of slave processes, while keeping the number of
CPUs the same, results in a degradation in performance,
a consequence of the decrease in vector length; (2) in-

creasing the number of available CPUs, while keeping
the number of slave processes constant (hence the vector

length constant), also results in a degradation in perfor-
mance, due to the increasing number of processors
waiting during the sequential portion of the algorithm
(synchronization delay).

The two-processor results seem comparable to those
reported by Chauvet (1984), where a speedup of 1.94
was measured for a sequential fraction of approximately
2%, compared with the emulated speedup of 1.91 re-
ported in Table 6 for a sequential fraction of 4%.

On the basis of these results, it is clear that one

would like to keep the number of tasks equal to the
number of processors, at least for our case where the

load-balancing could be ensured. The results reported
by Chauvet (1984) also suggest this. Furthermore, there
is a noticeable degradation in performance for even a
modest number of processors, even when the number

of processors is equal to the number of tasks. This might
suggest that it is going to be difficult to obtain high par-
allelization efficiency for a configuration of multiple
vector processors, unless the problem is extremely large.

The emulated performance cannot take into ac-
count operating system overhead or memory bank con-
flicts, which will further degrade the speedups tabulated
in Table 6, and this effect should be more pronounced
as the number of processors increases. As such, these
emulated speedups are probably optimistic, and we are
currently implementing PVPHOT on the CRAY
X-MP/48 as well as the IBM 3090/400 to obtain mea-
sured timing results.

7. CONCLUSIONS

Parallel versions of the Monte Carlo codes SPHOT and

VPHOT have been developed for shared memory and
distributed memory parallel processors. Measured
timing data have been obtained for the IBM 3090/400
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for the parallel-scalar algorithm, and emulated data have
been predicted for the CRAY X-MP for the parallel-
vector algorithm. The overhead to implement multi-
tasking is seen to be an important consideration for the
shared memory algorithm, at least for the specific
Monte Carlo algorithm studied. For the parallel-vector
algorithm, the trade-off between vector length and
granularity is the important issue. With respect to the
distributed memory parallel processors, two different al-
gorithms were examined, replication and dispatching,
and extensive timing data for the NCUBEIsix-hypercube
parallel processor are reported. Linear performance as a
function of the number of processors can be obtained
for the replication algorithm, but this takes advantage of
a unique feature of Monte Carlo and results in the
problem size growing linearly with the number of pro-
cessors. For the dispatching algorithm, where a single
Monte Carlo simulation is spread across N processors,
the speedups are almost linear with N, if the original
problem is large enough.

The Monte Carlo photon transport application con-
sidered here is an inherently parallel application, as are
almost all Monte Carlo particle transport applications. In
addition, it is completely vectorizable, which implies that
it should be an ideal candidate for advanced architec-

tures with multiple scalar and/or vector processors, in-
cluding massively parallel distributed memory architec-
tures as well as shared memory architectures. The re-
sults obtained to date seem to indicate that even for such
an inherently parallel application, the extrapolation to
massive numbers of processors may not result in a cor-

responding increase in performance, especially if the

processors are vector processors. This conclusion is re-
laxed if the problem size is allowed to grow at the same
rate as the number of processors, although we feel that
the efficient utilization of a massively parallel configura-
tion of vector processors will still be difficult.

Regarding the effort to convert production-level
Monte Carlo codes to vector and/or parallel architec-
tures, it is clear that the vectorization effort represents a
substantial investment, because it necessitates changes to
the global algorithm and attendant data bases (Martin
and Brown, 1987). On the other hand, its inherently
parallel nature makes it relatively straightforward to par-
allelize a typical Monte Carlo code, whether scalar or
vector. It should be pointed out that in essence the &dquo;rep-
lication&dquo; algorithm discussed above could be imple-
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mented on a multiple CPU configuration by the oper-
ating system-it could queue up several independent
Monte Carlo simulations, and the user could accumulate
the results afterward.
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