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ABSTRACT : This article is intended to describe the development of a fatigue damage
model capable of assessing fatigue damage in offshore structures. This is achieved by for-
mulating a set of damage coupled constitutive and evolution equations which make the for-
mulation of a unified approach possibie under both low and high cycle fatigue damage and
consistent with the structural dynamic response of the changing/deteriorating material be-
haviors. The structural analysis for the whole designed period, say about 30 years, can be
carried out with the aid of the proposed analytical procedure, in which the fundamental
characteristics of sea wave statistics responsibie for the structural dynamic response can
be sufficiently considered. An offshore structure subject to complex ocean environment is
described by a general stochastic system which embeds a group of stochastic subsystems,
each characterizing a duty cycle. An effective analytical method is established by introduc-
ing the concept of duty strain range with a clear mathematical definition and its analytical
solution which covers all possible spectral parameters. The history-dependent damage is
also included in the damage model so that the overload effects can be analyzed. It should
be pointed out that the whole procedure can be fully computerized such that the practical
or engineering significance of varying design variables can be readily highlighted.

1. INTRODUCTION

HE DEVELOPMENT OF offshore structure and equipment for deep sea oil and
gas exploitation has been motivated by an ever increasing demand for energy
worldwide. It has provided an impetus to study further the mechanical behaviors
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and failure modes of offshore structures under complex ocean environment. The
thoroughgoing and painstaking approach reveals a complex interdependence
among many failure modes, and identifies fatigue damage as one of main failure
modes.

Fatigue damage is caused by the gradual reduction in the capacity of structural
components to withstand varying service loading. However, it corresponds in
physics to a rather complex mechanism characterized by the rearrangement of
micro-structures of materials, which associates with an irreversible energy dissi-
pation process. Generally, the changes in micro-structure of a material cannot be
readily observed, rendering the practical difficulties in formulating the
phenomena with a clear physical interpretation. Perhaps this is the main reason
why for more than a century the fatigue lifetime prediction for engineering struc-
tures still relies on the empirical approach of using the Woehler’s S-N curves and
the Miner’s law. Although this approach provides a simple engineering method
in predicting the fatigue lifetime of a structure, it however fails to provide an in-
sight into the actual failure mechanisms. Although significant advance has been
made by the application of fracture mechanics, the structural dynamic response
taking into account the change in mechanical behaviors of a material is yet to be
portrayed. Accordingly, the damage coupled constitutive equations become nec-
essary. These equations have been established with the theory of damage
mechanics (DM) developed since the pioneering works of Kachanov [1] and
Rabotnov [2].

To introduce DM into offshore engineering, the fundamental characteristics of
dynamic response of offshore structures sustaining the sea wave loading will be
briefly described so that admissible analytical models can be established.

2. FUNDAMENTAL CHARACTERISTICS OF DYNAMIC
RESPONSE OF OFFSHORE STRUCTURES

In addition to the self-supporting loading, the offshore structures are continu-
ously subjected to the complex external loading generated by surface waves over
water, wind, currents and so on. The dynamic responses of an offshore structure
are in general dependent on the ocean environments, the operating manners of
the offshore equipment and the characteristics of the structure itself and others.

2.1 Characteristics and Classification of Sea Wave Statistics

The sea environment is a non-stationary stochastic process which depends on
several physical parameters such as over-water wind speed, water depth, geomet-
ric conditions and so on. The process can be characterized by significant wave
heights and wave periods. The structural dynamic response caused by the process
has been recognized as one of the major design considerations. A realistic repre-
sentation of the sea environment with the consequent loading on the structure is
a highly complex problem and is still a subject of intensive experimental and the-
oretical research. As a fundamental treatment, the sea wave statistics are
classified into short-term and long-term statistics. The former aims at general
description of the sea environment during a certain interval of time in which the
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statistic properties of wave remain essentially unchanged. The latter which is
decomposed into several stationary processes is oriented towards design applica-
tions for the structure with a lifetime of several years.

2.2 Long-Term Sea Wave Statistics

The basic data of long-term sea wave statistics can only be obtained through the
in-situ monitor of ocean environment which may continue for several decades. It
is a very arduous task to collect the data of sea wave statistics in the whole globe.
Fortunately, the sea wave statistics for the whole globe have been inspected and
collected in a data-bank [3], named as global wave statistics (GWS), and will be
updated continually. These data do not refer to the special structures and cannot
be utilized directly for the purpose of design. The special mathematical models
and the computer software package have been developed by Chow and Li [4] to
make these data suitable for the purpose of the structural analysis and to repro-
duce the sea wave processes of arbitrary periods, say about 30 years for design
analysis.

2.3 Short-Term Sea Wave Statistics and Stress Response of Structures

The short-term sea wave statistics corresponding to the special sea states is
characterized by significant wave height and dominant wave period only. Hence,
it is generally independent of the sea area. The most significant characteristic of
short-term statistics is that it can be rationally represented by a stationary random
process. A Gaussian model for the stationary process has been shown to be a
reasonable choice [5-7]. Therefore, the sea wave process can completely be
described by the corresponding power spectra, such as Pierson-Moskowitz spec-
trum model for ocean waves

H?-B.c ~B

S,,,,(OJ) - Ti) . @ttt cXp Tf) cotl w>0 (1)
where T, and H, denote the dominant wave period and the significant wave
height, respectively; B and c are the spectral shape parameters; and w is the fre-
quency, in radians per second.

Generally, an offshore structure should be considered as a couple, multiple
degrees-of-freedom system, which is governed by a set of differential equations
with non-linear hydrodynamic damping and drag terms. From the standpoint of
application, the linearization technique could be used so that the stress response
of offshore structures corresponding to the sea wave spectrum Equation (1) can be
simplified effectively. To do so, one can assume that the spectral shape of wave
forces exerted on piles is unimodel and has a form similar to the wave energy
spectrum. Subsequently, the wave force spectrum can be expressed as [8]

So(w) = gc ._B < exp[ -5 C], w >0 2)

W T - w
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where Q denotes the force exerted on offshore structures. Generally speaking,
the stress spectrum to be represented in the form of Equation (2) will tend to be
inherently conservative because it neglects reductions in energy due to spatial
cancellation effects. However, for a deep water platform with fixed bottom, the
first mode generally dominates the dynamic response of the structure. In this
case, the stress response spectrum proposed by Wirsching and Prasthofer [8] is
rational, which can be rewritten as

) exp[ — 1050/ (27fTo)*]
TH2a){1 — (f1f)) + QESIf)Y

S(f) = Hg 3)

where £ is damping factor; f denotes frequency with f, being the natural fre-
quency, in Hertz; A and ¢ are magnification parameters.

2.4 Local Stress-Strain Characteristics

Fatigue failure is a complex phenomenon and is highly dependent on the local
conditions of structures such as local history of stresses, micro-structure of
materials, distribution of micro-flaws or cracks and so on. An accurate, at
least reasonable, description of local stress history is one of the most impor-
tant factors for fatigue analysis. Since offshore structures are continuously sub-
jected to random environmental loading because of surface waves over water,
wind, currents and so on, a realistic representation of the sea environment and
the resulting stress on the localized area of these structures is a highly complex
problem and has been the subject of intensive experimental and theoretical
research.

For the tubular welded joints used for offshore platforms, the stresses and loca-
tions of hot-spots where the membrane and bending stresses have the maximum
values can be determined by experiments, or evaluated by either finite element
approach or empirical equations. The local effects are characterized by the stress
concentration factors in saddle, K, and in crown, K., which in general depend
upon the geometrical parameters such as the thickness to diameter ratio of the
chord, branch diameter to chord diameter ratio, branch thickness to chord thick-
ness ratio, the configurations of tubular joints and so on. A number of empirical
or semi-empirical relations have been proposed to estimate the stress concentra-
tion factors. The comparison and analysis on these relations can be found in Ref-
erences [9,10]. As a function of K, and K., the hot-spot stress distribution along
the weld line (hot-line stress) could be calculated by an empirical relation pro-
posed by Dharmavasan and Dover [10]

K@) = K. cos? 8 + K, sin* 83 4)

where 3 denotes the angle around intersection of offshore structure, with 3 = 0°
at the crown position.
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3. BASIC CONCEPTS AND FORMULATIONS
OF DAMAGE MECHANICS

The fundamental framework of DM is developed based on the irreversible
thermodynamics with the internal variable theory in which the observed non-
equilibrium thermodynamic state is approximated by a constrained equilibrium
state corresponding to the current values of a finite set of internal variables
[11-13]. The material damage characterized by a finite set of internal state vari-
ables is integrated into the thermodynamic theory. Consequently, the damage
coupled constitutive and evolution equations can be derived through the thermo-
dynamic potential and the dissipative potential which are separately postulated as
the convex scalar functions of all state variables and flux variables. Due to its
more complete thermodynamic framework with simpler mathematical scheme,
DM has been developed to a stage ready for engineering applications [14-18].
From practical considerations, the isotropic formulation of DM is introduced
although the anisotropic formulations are also possible [19-22].

3.1 Fundamental Formulation

According to Lemaitre’s theory [14], damage represented by a scalar internal
variable, D, is identified by the reduction of the net load carrying area due to
microcavities and microcracks. The damage coupled constitutive equations are
established through a strain equivalent postulation with the concept of effective
stress, o, defined by

o
1-D

&)

g =

With the assumption that damage is coupled through elastic response only, the
thermodynamic potential ¥, as dual free energy potential ¥, is expressed as [14]

1 1 +» v s
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where 7 denotes micro-plasticity; p denotes accumulative plastic strain; £ and v
are elasticity coefficients varying with temperature; g is the density; 4 is a clo-
sure coefficient which characterizes the closure of the micro-cracks and micro-
cavities; k and m are micro-plasticity coefficients; Ky and My are material and
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temperature dependent coefficients. From thermodynamics, the state laws can be
derived from

v av v oV
€=e5-; R= ey T e —Y =035 @)
where R, r and Y are the associated variables of p, 7 and D, respectively. Conse-

quently, the elastic laws and the dual variable Y/conjugate force of D are derived
as

. 1 1 +» v I
€ = El — kem |1 = p<9> — 1 D<tr(0)>
1+ v
+ 1 — Dh<—0> - 1—_E<—tr(o)>l] (8)
and
Y = A+ r<o>: <> — v<tr (0)>?
N 2E(1 — D)*
I+ ryy<—0>:<—0>—p<~—tr (0)>? 1
+h 2E(I — Dh)? ](1 "k O
respectively.

The complementary kinetic laws or evolution laws can be derived from a con-
vex scalar dissipative potential ¢, or its dual potential &, with the aid of the gen-
eralized normality rule;

P
éP=QcI_>. R = .
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A simple dissipative potential, only with its two coefficients characteristic of
the material, S, and «,, suggested by Lemaitre [14] has the form

- Y (p + %)
(. p T e D) = o Po T an

This yields a general damage kinetic constitutive equation as

- 0  -Yp + %)
D= =%y =5 - by (12)
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This equation may reflect some properties of damage, as pointed by Lemaitre
[14], such as

¢ Damage rate is always positive because — Y, p and # are positive.

* The variable — Y containing the triaxiality ratio (o4/0.,) models the effect of
triaxiality on damage.

e If —Yis calculated from the quasi-unilateral expression, it can model the dif-
ference in the damage behavior in tension and compression and also mean
stress effects on fatigue damage.

* The non-linearity of damage with regard to stress is given by its dependence
on p and 7 which are non-linear functions of stress.

¢ The non-linearity of damage with regard to number of cycles or time is given
by the term (1 — D)*° which corresponds to a non-linear differential equation
in damage.

3.2 Formulation for Fatigue Damage

According to Lemaitre, the formulations for fatigue damage are divided into
low cycle fatigue and high cycle fatigue. For low cycle fatigue, the plastic strain
involved is high enough to be measured macroscopically. Accordingly, the for-
mulation of damage evolution is based on the evolution of plastic strain or accu-
mulative plasticity. From Equation (12) and the Ramber-Osgood strain hardening
law, the damage evolution law is derived as

D = [R(p — p)" - pUIS(1 — D) (13)

where S, and «, are two material coefficients; vy = 2/M, with M, being the coef-
ficient of Ramber-Osgood law; p denotes the accumulating plasticity with p, be-
ing the value of p at the beginning of cycle i. R, is the triaxiality function which
in pure bilateral condition can be expressed as

R‘, = 2(1 + V)/3 + 3(1 - 2V)(0H/Geq)2 (14)

in which oy is the hydrostatic stress and ¢, denotes the Von Mises equivalent
stress.

The cyclic constitutive equation is obtained by integrating Equation (13). A
simple formulation can be derived as

O0D/6N = (R,Ap™)/[S:(y + H(1 — D)*] (15)

under the assumptions of R, and (1 — D)= being constants over one cycle.

When the plastic strain in high cycle fatigue is assumed to be small rendering
difficulty in the macro-measurement and modeling, the formulation for damage
evolution may be changed to the stress space. The general formulation (13) in
conjunction with a stress relative micro-plastic model leads to [14]

D = [0%] 0 — 6.4 ]MS:]/IR,

o | /(1 — D)7 (16)
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where S,, o, and A are material coefficients. The formulation could also be inte-
grated to obtain the cyclic formulation [14].

4. GENERAL ANALYTICAL PROCEDURE

Since coupled constitutive laws for stress, strain and damage have been estab-
lished by DM, the damage assessment in conjunction with the stress/strain anal-
ysis of a structure can be carried out by virtue of the numerical methods, such as
those proposed by Chow and Wang [23] and Simo and Ju [18]. Theoretically, a
continuous analysis for the non-linear damage response in conjunction with the
effect of stress triaxiality, overloading induced by random sea wave process and
so on, can be achieved because complete stress response for the structure over
the entire period designed for service, say about 30 years, can be simulated by
a fully computerized numerical method [4]. In practice, this analysis is prohibi-
tive in considering the limitations of numerical calculation with respect to com-
puter speed and practical difficulties in the experimental identification for mil-
lions of different sea waves. Accordingly, an admissible analytical procedure
with suitable simplifications is still necessary.

A general analytical procedure proposed here is based on the fundamental
characteristics of sea wave statistics. Classification of the sea wave process re-
quires that the structural dynamic response, coupled with changing material be-
haviors, be divided as short-term and long-term responses. Consequently, the
general procedure can be carried out analytically by two steps as follows.

The first step is to analyze the fatigue damage induced by the short-term stress
response represented by the stress power spectrum shown in Equation (3) in-
cluding the effect of local stress concentration at hot-spots. The damage analysis
includes all possible responses for different sea states characterized by different
wave heights and wave periods. The analysis could be carried out in the manner
of cycle by cycle within the characteristic periods so that the detail results can be
obtained. It is possible since the analytical method for fatigue damage, the exper-
imental identification for the practical response as well as the computer simula-
tion for the special stress response are all available. However, this analysis will
be very tedious, so it should be avoided except to meet the practical requirement.
A simple model to be developed in the following two sections can provide an ef-
fective analytical method for the step.

The second step refers to the general dynamic response corresponding to the
long-term sea wave statistics. The damage response to be analyzed in the step de-
termined by a stochastic Markov process with transition probability being identi-
cal with that of long-term sea wave statistics, and hence can be analyzed and
simulated using the method and software developed by Chow and Li [4]. The
damage evolution is also dependent on the sea state determined by the Markov
process, which is treated as a stochastic subsystem embedded in a general
stochastic system represented by long-term statistics. The interactions among dif-
ferent subsystems could be portrayed if experimental identification for these in-
teractions is possible. A simple model described in Section 7 enables both ex-
perimental identification and theoretical analysis to be realized.
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5. A UNIFIED FORMULATION FOR BOTH LOW AND
HIGH CYCLE FATIGUES

As a common practice, fatigue damage is, in general, divided into low cycle
and high cycle ones represented by an obscure definition; the number of cycles to
failure, Ng, less than 10° as low cycle one; Ng, more than 10° as high cycle one.
There is no clear definition for 10* < Ng < 10°. By following the division, dif-
ferent formulations for low and high cycle fatigues have been established. For ex-
ample, Lemaitre’s damage evolution laws for low and high cycle fatigues are for-
mulated in strain and stress spaces respectively. In practical applications,
particularly for offshore structures subjected to random sea wave loading,
difficulties arise in identifying and distinguishing these two kinds of fatigue, and
hence the choice of a formulation. In fact, the division of fatigue between low and
high cycle is not clear cut and there exists no dependable physical judgment to
support this division. Perhaps the only difference is that low cycle fatigue is nor-
mally associated with a significant amount of observable plastic deformation
while high cycle fatigue is not, rendering the difficulty in both parametric and
macro-mechanics identification. To overcome this problem, a new method based
on the concepts of duty cycle and duty strain range is proposed. This leads to a
modified formulation of Equation (15) expressed as

oD/6C, = (RAEY/[S:(y + 1)(1 — D)*'] a7

where ¢ = v + 1. In contrast to Equation (15), the number of cycle, N, has been
replaced by the number of duty cycle C, which is to be defined and discussed
later; and the accumulating plasticity Ap has been replaced by duty strain range
Ae, with the mathematical definition and solution to be presented in the following
subsection. This modification renders a small change in material coefficient §,,
written as S;. The physical and thermodynamic fundamentals for using the
unified formulation to describe the whole fatigue process are established through
a physical-macro-mechanics-probabilistic consistent approach [24-31].

The duty cycle C, introduced in Equation (17) is defined as a characteristic
quantity of one time transition of sea wave states determined by the long-term
wave statistics. This definition includes three implications as follows:

1. Duty cycle itself corresponds to a damage accumulating process induced by
a stationary random process, but not a single loading cycle.

2. In one duty cycle, damage is treated as a process of non-ageing effect, that is,
the damage process is only dependent on the current damage and strain states.
Therefore, the damage process in one duty cycle can be viewed as a stationary
Markov process.

3. Duty cycle denotes only a repetitive quantity, but not a characteristic of
damage. Only are two states referring to the start and end of a duty cycle im-
portant for the whole damage process.

It is obvious that the introduction of duty cycle leads to two significant advan-
tages. One is that the simple mathematical formulation for strain response which
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controls the damage response is possible since the sea wave response in one duty
cycle could be treated as a stationary stochastic process represented by the power
spectrum [see Equation (3)]. Another is that the damage identification for both
low and high cycle fatigue (in fact, this division has been nullified) is possible
simply because the damage in one duty cycle corresponds to the results of accu-
mulation.

It should be noted that the whole damage process is characterized by a Markov
process in relation to the long-term sea wave statistics, and the accumulation of
damage is determined by the duty strain ranges in relation to the duty cycle in
which another Markov process is included.

6. DUTY STRAIN RANGE AND ITS SOLUTIONS

Associated with the concept of duty cycle, another characteristic quantity in
relation with the dynamic response to be introduced is the duty strain range. The
word “duty” associated with quantity, cycle and strain range refers to responsi-
bility and equivalence which are often used in the theory of probability and
system engineering.

6.1 Definition of Duty Strain Range

There exist many methods to define a duty strain range which could be used to
characterize the strain response induced by the short-term sea wave statistics. The
simplest method is to relate it to the distribution of strain peaks and assume that
the stochastic process in one duty cycle is one of non-ageing effects. It implies
that the interaction of sea waves in one duty cycle induces only a shift of the mean
value of damage state. Consequently, the duty strain range can be defined as the
mean value of all strain ranges considered. Furthermore, the non-linear relation
between the strain range and damage can also be established through the defini-
tion of the duty strain range. For the damage evolution laws describing the non-
linear relation of strain and damage with the power function, Equation (17), by
means of the constant ¢, the duty strain range e, can be expressed similar to the
equivalent stress range used in Reference [35}:

1/¢

Y (Aey - (n) .
Ae, = ‘E—n, = [s Q2e) - pe) - d(f)] (18)

0

where e denotes the strain level of peak with As, identifying the strain range of
ith level of amplitude, and n; denotes the number of cycles corresponding to Ae,.
p(e) is the probability density of €, which could be expressed by means of the
spectral parameters, effective band width e and irregularity factor a.

6.2 Probabilistic Description of Duty Strain Range

According to the probabilistic theory, the peak distribution of a continuous
random process, x(#), can be obtained by means of the joint distribution of x(z),
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x(n), and x(¢) if x(2) is differentiable at least twice. Assuming the expected
number of peaks in x(¢) above the level s is bounded, the mean value of s at time
t can be expressed as

@

0
E[s()] = — S dx§ X Puninntx, 0, X, Hdx (19)

s

where P, 35 (+) denotes the joint distribution of x(#), X(¢), and x(r). The ex-
pected total number of peaks per unit time, regardless of their magnitudes, is ob-
tained from Equation (19) by letting s— — oo, that is

] 0
E[S®] = — S dx S X P &, 0, X, Hdx (20)

—®

If the ratio of the expected number of peaks per unit time (E[S(H)] — Els(®)])/
E[S(n)] is postulated to be equal to the distribution of the peaks at time ¢, i.e.

- _ - EB@]
pGs.) = (E[SM] — E[sMN/EISO] =1 - E[S0)] 2D
then the probability density of the stress peaks can be obtained by
_op(s,t) 1 ‘ a
P = = T Epsay st B!
—1 0
= E[SO)] s X P (x 0, X, ndx (22)

If x(z) is stationary and Gaussian and has a zero expectancy, then the probabil-
ity density of the peaks can be derived in terms of the matrix of covariances of
x(#), X(), and x(f) which is not difficult to solve [32]. However, a simpler solu-
tion, suggested by Huston and Skopinski [33], reads

1 -1
p(s) = —(i—\/TW\/(I_a ) - exp(—s*[s0%(1 —a=) ]}

S
+--a-

s —s?
o [l + erf [h : m” . exp(a;) (23)
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By putting
s = xbe~/2/a 24)

Equation (23) can be simplified to [34]

e x\?
W = 7555 o] (3] ]

(4

X xe \2
+ m[l + erf(x)] - exp[ — ( a )] 25)

in which the error function (or probability integral) is defined as

o

erf(x) = ﬁ s exp(—z¥)dz (26)

o

Equation (25) is a general expression for the probability density of the peaks
of a stationary and Gaussian random process. In two extreme cases correspond-
ing to 0 and 1 of &, Equation (25) will reduce to the Rayleigh and Gaussian distri-
butions, respectively, i.e.

1 -5
pis) = \/(2—”_5) exp(zhz) (27)

for —oo < 5 < oo and & = 0, and

pG) = 33 exp(;—hi) 28)

for0 < s < o and & = 1. Except in these two extreme cases, the distribution
of peaks of a stationary Gaussian random process is neither of Rayleigh nor of
Gaussian type.

Using Equation (25) and with s = ¢, the duty strain range defined by Equation
(18) can be rewritten as

g2 c+1 a c+ 2 e
Aeu—Zﬁh-[sz( 5 )+ 21‘( 5 )+a‘§] (29)

where the function ¢ has the form

= ex] ex\?] fex
¢ = L erf(x) - [;] exp[—(—a—) ]d(;) (30)
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and Gamma function is defined as

@

I'z) = 25 Y= exp(—y?)dy €2))

0

forz > 0.

6.3 Series Resolution of Duty Strain Range

In general, the exact resolution for the duty strain range expressed by Equation
(29) is quite difficult to be obtained since this equation contains a transcendental
function. Therefore, a solution by virtue of asymptotic and series expansions will
be resorted to in the present study.

By means of Maclaurin expansion, the error function, erf (x), can be ex-
pressed as

(_ l)k .y

2 =
erf(x) = \/—(?)lg)k! @2k + 1) >

This expansion leads to an alternative form of Equation (30), that is
2 v (= 7 e e-x\?] fe-x
— |22 . - — ldl—=
¢ m)kg K-k + 1) So T a cxp a a

_ Ly (=DF faym o fe 4 2k +3
—\/(T)Ek!~(2k+1) (e) F( 2 ) 33

k=0

Consequently, the series solution for the duty strain range is obtained as

Ae, = 2\/(2)11[ e (&) + 2 F(': + 2)

2\/T7r‘)r 2 2 2

—1*(a/e)** * ! (t + 2k + 3)]”‘ 34)

a_y (
+\/(T),§) k- 2k + 1) 2

An alternative solution can also be derived by using a series expression. By
virture of series expansion, erf(x) can be expressed as

2k . y2k+1

2 . i__
Ty P2 (53)

k=0

erf(x) =
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for |x| < oo. Substituting Equation (35) into Equation (30) yields

k

2 - 2 ”
= — t+2 - 2k+0+2 — 2 _ 2| dx 36
Y \/m(f/ﬂ) kgﬂ ok + D Sox exp[ x (xe/a) ] (36)
Since

[t + (e/2)?]'? = 1/a 37

then Equation (36) becomes

k ., n2k+t+3

¢ = ﬁ(t/&)‘* Emso (x/a)¥**2 exp[ —(x/a)*]d(x/a)

[

c+2 2 Dk . g2k+l 2% ¢ 3
e E 2. a F( +c + ) (38)

“Jm =k + 2

Consequently, another solution of the duty strain range can be expressed in the
series form as

e t? c+ 1 a c+ 2
Ae_m[m SRS

g+2 b kg 2642 2% + ¢ + 3\
39
; 2k + D! ( 2 )] ©9

The solutions of duty strain range, Equations (34) or (39), are based on the
series expansion of error function in the integral Equation (30). By means of
D'Alembert method of series convergency, it can be readily proved that Equation
(39) is convergent with any set of the statistical parameters (¢,a) and Equation
(34) is only convergent with finite values of (e,a). The maximum absolute values
of truncated error of (32), according to Leibniz convergence principle, can be
calculated from

1
s Tk + Dl @k +3)

x2 k+3 (40)

by taking the first k¥ term as its solution. It is obvious that the solution is not
suitable for large x because the number of terms needed to obtain a certain
number of significant digits increases rapidly as x increases. For a general solu-
tion capable of covering all possible statistical parameters, a complementary
solution is necessary.
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64 Asymptotic Solution of Duty Strain Range

In contrast with the series solutions, the solution based on the asymptotic ex-
pansion is specially suitable for larger x. It means that it needs only the fewer
terms of an asymptotic expansion to obtain a required accuracy. From Equation
(24), x will tend to infinity when e approaches to zero, corresponding to the cir-
cumstances near the narrow band spectra. In these cases, an asymptotic solution
is necessary.

The asymptotic expansion of Equation (26) can be expressed in the form as

1 -DFQRk - DI
erf(n) = 1 = exp(—x) = [ Z( )(;xz)k & ] (41)
=1

Consequently, the asymptotic solution of duty strain range is

g2 c+ 1 c+2 g2 c+ 1
s = v [ 55 (1) 4 ar(2) - 2o (o)

e N (=DFQRk = DI fe — 2%k + 1\]
— . r 42
2/ () kzz (2a%* 2 “2)
with the maximum truncated error to be determined by
—x¥) - 2k — DN
E, < exp(—x?) - ( ) @3)

2k, \/_(‘7?) . x2ktt

forx > 0 (k = 1,2,. . .). It is also obvious that E,, rapidly decreases with the
increase in x. Accordingly, this solution is suitable for the conditions of small e.

6.5 Combination of Series and Asymptotic Solutions

Theoretically, a solution of the duty strain range with any degree of accuracy
for the statistical parameters (¢,a) is attainable by the combined use of the series
and asymptotic solutions if the number of terms & tends to be infinite. Practically,
it is not necessary to taking k— oo since a certain degree of accuracy is acceptable
from the standpoint of an engineering solution. A solution with a finite number
of the k-terms is therefore derived as

— | e*? c+1 a c+ 2
2(2)“[2\/“)(2 )+2F(2)

ki
g2 kg 2k+2 2% + ¢ 4+ 3\
+ . T 44a

V() E 2k + DN ( 2 )] (442)
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c+2 c+ 1 c+ 2
Nm[zﬁ (T)+aF( 2 )

pr+2 c+ 1 pe+2 c — 1\]
—2\/(7)1‘( 2 )+ 4m-a-ar( 2 )] (44b)

for ¢ < e1, where ¢l and k1 can be determined automatically with the aid of a
simple computer program by following the methodology described in Figure 1
when the expected accuracy for duty stress range is specified as input. The
algorithm and formulation are the same as those described in Reference [35] for
the fatigue damage assessment using Paris crack growth law. Equations (44a) and
(44b) are a unified formulation for the duty strain range as a function of the strain
or stress power spectrum associated with all possible spectral parameters. The
accuracy of calculation with only a few terms is sufficient to satisfy the practical
requirement. The comparison with several empirical and semiempirical models
proposed for a similar objective has been performed by Chow and Li [35]. Ex-
cellent results as well as their practical significances were highlighted.

Input maximum error expected

E
m
b
Evaluate ¢, a, and & from S(f)
b
For k=1 to 30
Y
Calculate Aeu from equation
(44a)

t
(k-17] SEm/Z and

[Ae (k)-Ae yes
u u
|ae (k)-Ae (k-2)|sSE /2
u u m
Y no
Next k

Calculate Aeu from Equation

(44b)
Y

Output Ae
u

Figure 1. Flow chart for calculating the duty strain range.
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7. MODELING FOR WAVE HISTORY DEPENDENT DAMAGE

For a complex engineering system, a comprehensive model incorporating all
history-dependent response is almost impossible. The proposed model is limited
to a general stochastic system applicable to long-term sea wave statistics only.
This means that the short-term sea wave statistics are treated as a stationary ran-
dom process characterized by a sea wave spectrum and the damage response in
one duty cycle corresponds to a process of non-ageing effect. It should be noted
that if the history dependence for damage is directly introduced into the general
stochastic system, then the damage response in relation with long-term sea wave
process will also be a history-dependent process. In this case, a new stochastic
system needs to be established since it is contradictory to the long-term sea wave
process characterized by a stationary Markov process. This will lead to a very
complex mathematical structure and may lose its practical signification. To retain
the stochastic system characterized by a finite, stationary, and regular Markov
process, a simplified model for the present investigation is proposed below.

Without the historical effect on damage from the practical stochastic system,
the general stochastic system is thus a history-independent system such that the
stochastic damage process can characterize the long-term sea wave process in
which Markov model is valid. The history-dependent damage is considered
through the modification of the damage evolution law in conjunction with the
duty cycle. If we denote the modifying function as L(H) where H is a history de-
pendent variable, the damage evolution law can be written as

dD = L(H) - f(Ae., D) (45)

where f(Ae,, D) is a general expression of damage evolution law which is a
history independent function. It should be noted that f(Ae,, D) used here denotes
a stochastic function since Ae, and D are determined by a stochastic process; it
is a simplified expression in which the deterministic quantities, such as mean
stress, etc., do not appear.

Generally, the form of L(H) is dependent on the physical and macro-
mechanics processes under consideration. Some simplifications are necessary
from the practical standpoint. A simple form proposed here considers only the
effect of overloading, and postulates that there exists a restoring period induced
by the overloading effect. It will further assume that damage within the restoring
period is kept as constant corresponding to the beginning state of the restoring
period. This implies that L(7) is a step function in relation to 0 and 1 only, in
which H has been replaced by | and termed as the restoring function.

Now we define a critical sea wave state denoted by the sea state number, N,,,
such that the significant effect of overloading is considered only if the sea state
number beyond N... Consequently, L(i ) assigned to unity needs to satisfy two
conditions; the current sea state number, N,, is smaller than N,, and the restor-
ing period has passed.

To formulate the restoring period, we further assume that the restoring period
is directly proportional to the maximum sea state number, N,,, from the start of
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the process or from the state in which the last restoring period has passed. The
current restoring period in effect needs to satisfy two conditions; N,, = N, and
the current sea state number is smaller than N,,,. Furthermore, we assume that the
passing rate of the restoring period is directly proportional to the current sea state
number. Consequently, the restoring function [ can be expressed as

0, for N,, < N,and N, = N,,
= (46)
b,N,, — b,N, for others

where N, is the current sea state number, and b, and b, are two constants. It

should be noted that i is also a stochastic function since N,, and N, are deter-

mined by a stochastic process with respect to the long-term sea wave statistics.
Using this restoring function, the step function L(i ') can be expressed as

1, ifF =0
L) = @7)
0, ifli>0

This is a simple model from which the phenomena under investigation is
simplified. In this model, only two constants, b, and b, need to be identified by
experiment. The function || could be modified by introducing the non-linear de-
pendence on N,, and N, if necessary.

For the sake of illustration, the applicability of this model may be described
through the following example. A simulated sea state sequence of South China
Sea with 10 different sea states is shown in Figure 2 as elucidated by Chow and
Li [4]. If N, is assumed to correspond to number 8 of the sea state, then first
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~
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Figure 2. Simulated sea state sequence of South China Sea.
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significant overloading effect will be acting in the position A4 of this figure. After
that, the damage enters into a restoring period. Assuming b, = 10 and b, = 2,
then the restoring period is b, X N, = 10 X 8 = 80. In this period, the
system needs to pass the states

L b,-N. = X2N. = 80 (48)

without any further damage. In this sequence, the state numbers generating by
Monte Carlo method are 7, 6, S, 4, 5, 5, 6, 5% 4,3, 3,2,2,2,2,3,....The
restoring period will be over at the state number 5 with superscript * since
2XT+6+5+4+5+5+6+5) = 80. After the sea state 5% the
damage will be accumulated continuously until the next restoring period shown
in position B of Figure 2 appears. Then the overloading effect occurs in positions
C, D and so on.

8. CONCLUSIONS

From the practical requirements and the possibility of achieving an automated
computer solution to predict the dynamic responses of offshore structures cou-
pled with the changing/deteriorating material behaviors, the theory of damage
mechanics is employed in the analysis of offshore structures. The damage cou-
pled constitutive and evolution equations with the unified formulation for both
low cycle and high cycle fatigue damage enable a consistent analysis for the struc-
tural dynamic response to be realized. The structural analysis for the whole
designed period, say about 30 years, can be carried out with the aid of the pro-
posed analytical procedure.

The proposed fatigue damage model is based on the fundamental characteris-
tics of sea wave statistics responsible for the structural dynamic response taking
into account changing or deteriorating material behaviors. An offshore structure
subjected to complex ocean environment is characterized by a general stochastic
system which includes a group of stochastic subsystems, each corresponding to
a duty cycle. An effective analytical method has been established through the
concept of duty strain range with a clear mathematical definition to achieve an
analytical solution which covers all possible spectral parameters. The history-
dependent damage is also modeled so that the overload effects can be analyzed.

It is worth noting that the proposed damage model with its numerical proce-
dure could be readily extended by integrating a more complex formulation of DM
and introducing the history-dependent damage with the restoring function F
described by the nonlinear one on N,, and N.. Moreover, the whole procedure
could be fully computerized such that the practical or engineering significances
deduced from the computed results can be identified for any design analysis.
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