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In this paper the composite thermal conductivities of unidirec-
tional composites are studied and expressions are obtained for pre-
dicting these conductivities in the directions along and normal to
the filaments. In the direction along the filament an expression is
presented based on the assumption that the filaments and matrix
are connected in parallel. In the direction normal to the filaments
composite thermal conductivity values are obtained first by utiliz-
ing the analogy between the response of a unidirectional composite
to longitudinal shear loading and to transverse heat transfer; second
by replacing the filament-matrix composite with an idealized ther-
mal model. The results of the shear loading analogy agree reason-
ably well with the results of the thermal model particularly at
filament contents below about 60%. These results were also com-
pared to experimental data reported in the literature and good
agreement was found between the data and those theoretical re-
sults that were derived for circular filaments arranged in a square
packing array.

INTRODUCTION

ONSIDERABLE ATTENTION has been given in recent years to the deter-
C mination of the mechanical properties of composite materials. Rela-
tively little information is available, however, on thermal properties,
although they are of interest in such practical problems as heat transfer
calculations and evaluating the thermoelastic behavior of materials. The
goals in determining the thermal properties of composite materials are
similar to those in mechanical analyses: given the thermal properties of
each of the constituents, their proportion and geometrical relationships,
find the thermal behavior of the composite system.

In this paper thermal conductivities of unidirectional composites will
be discussed. The problem will be approached from two directions. First
a numerical method will be presented based on the analogy between
the response of the unidirectional composite to shear loading and to heat
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Figure 1. Arrangement of filaments,
and the coordinate system used.

transfer. Second, a thermal model will be described, yielding approxi-
mate closed form results. This method is similar to Thornburg and Pears’
[1] who recently obtained simple expressions for predicting thermal con-
ductivities of filled and reinforced plastics. Their expressions were based
on the assumption that the reinforcement (filament) and the matrix are
arranged either in series or in parallel and that the resulting thermal
model is analogous to series and parallel connected electrical circuits.
Consequently the results are independent of the shape of the filaments
and their geometrical arrangement. In the present analysis both of these
effects will be taken into account.

FORMULATION OF THE PROBLEM

The problem of composite thermal conductivities of materials com-
posed of unidirectional filaments embedded in a matrix will be considered
here. In the analysis it will be assumed a.) that the composites are macro-
scopically homogenous, b.) that locally both the matrix and the filament
are homogenous and isotropic, c.) that the thermal contact resistance be-
tween the filament and the matrix is negligible, d.) that the problem is
two dimensional, i.e. the temperature distribution is independent of z,
(Figures 1 & 2), and e.) that the filaments are arranged in a rectangular
periodic array (Figure 1). This last assumption implies that the filaments
are equal and uniform in shape and size and are symmetrical about the
x, y axes. A rectangular packing array has been selected arbitrarily but
this assumption is not essential. The results could be extended to other
packing arrays provided that the symmetry conditions are satisfied.
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(a) Transverse heat transfers (b) Longitudinal shear loading

Figure 2. Fundamental element used
in the analogy between transverse
heat transfer and longitudinal shear
loading.

Of primary importance are the composite thermal conductivities in
the two principal directions, namely in the directions parallel (k;;) and
normal (k) to the filaments. Once these conductivities are known, the
conductivities in other directions can be calculated using the transforma-
tion properties given by Carlslaw and Jaeger [2]. The conductivity ki,
may be predicted by assuming that the filaments and the matrix are con-
nected in parallel [1], i.e.

ki1
5 = (vki/kn) 4 Om (1)

m
where v is the volume and k the thermal conductivity; the subscripts m
and f refer to the matrix and filament respectively. Similarly as in the
determination of elastic constants of multiphase materials [3] this expres-
sion may be considered as an upper bound for k. This is borne out by a
comparison between the theory (Eq. 1) and experimental data as shown
in reference [1]. In the remainder of the paper the composite thermal
conductivity in the direction normal to the filaments (k;,) will be in-

vestigated.

SHEAR LOADING ANALOGY

The temperature distribution at any local point in the element shown
in Figure 2a must satisfy the equation
*T *T
=0

2 ay? - (2)

Utilizing the symmetry conditions described previously the boundary con-
dition corresponding to Eq. (2) may be written as
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T
k—ag-:'.o at y:O and y:ib

T=T,, and T=T_, at x=+4a and x= —a (3)

T:A—2T=const. a x=0
k is the thermal conductivity of either the filament or the matrix, and
AT is the temperature difference between the surfaces x — a and x =
—a (AT =T, — T_,). In addition to the boundary conditions given
in Eq. (3) the conditions existing at the interface between the filament
and the matrix must be specified. For zero thermal resistance at the in-
terface

(4)

f_ n |n
Here n symbolizes the direction normal to the interface.

One could now proceed to solve the above problem (Egs. 2-4) by
imposing a known uniform temperature distribution (AT) between the
x = = a surfaces. Having obtained a solution to this problem, one would
first calculate the local heat transfer rate at points along the surface x
= a and then compute an average heat transfer rate g. Using this G
value a composite thermal conductivity will be now defined as

_ T
ke = AT/2a (5)

Inspection of Egs. (2-5) reveals an analogy between the above problem
and that of longitudinal shear loading of a unidirectional composite. The
latter problem is indicated in Figure 2b and described in detail in ref.
[4]. Equations (2-5) become identical to the equations and boundary
conditions describing the longitudinal shear loading when the tempera-
ture (T') is replaced by the displacement (w), and the average heat
transfer rate (7) and the thermal conductivities (k) are replaced by the
average shear stress (T,.) shear moduli (G), respectively. Thus, the nu-
merical solutions obtained by Adams and Doner [4] for the shear loading
problem may be applied directly to the present problem by simply re-
placing the composite stiffness with the composite thermal conductivity
and the shear modulus ratio with the thermal conductivity ratio.

THERMAL MODEL

The solution of the equations given in the previous section requires
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numerical techniques. Approximate closed form solutions for k;, may be
obtained by replacing the filament-matrix composite with an appropri-
ately idealized thermal model. One of the simplest such models is that
of the filament and the matrix arranged in series. The resulting composite
thermal conductivity is [1]

kgz _ 1
km o (Ufkm/kf) + Up

Again, as in the case of elastic constants [3] Eq. (6) may be considered
a lower bound for k. The above expression is independent of both the
filament shape and its geometrical arrangement. These factors may be
included in the analysis by considering the thermal model shown in
Figure 3. In this model it is assumed that the temperature difference is
constant between x = = a and that the total heat flow per unit length
along the filament, Q, through the surface x = — a may be divided
into three independent parts, i.e. @ = Q; 4+ Q: 4 Q;. For this condition,
and using the expression given for k, previously (Eq. 5) we may write

(6)

2b —s
ks 2b = 2k, Rl L —
y (222) [ o dy (7)
T
or
kez )8 d
=\l-z)4-=( g
k., ( 2b) b.[ (2a — h) + (hkn/ks) (®)

The parameter s is the maximum dimension of the filament in the y
direction and h is the width of the filament at any given y (Figure 3).
While Eq. (8) is for a rectangular packing array, similar expressions
could be obtained for other symmetrical packing arrays. In order to solve
Eq. (8) the shape of the filament must be specified. For a square filament
(s = x = const) and square packing array (¢ = b) Eq. (8) yields
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[ — 1
= (1 — - - 9
k. ( V) + AN T (9)

For a cylindrical filament (s = d) and square packing array Eq. (8)
gives

S N [ : e

tan

VI=(Bo/x) 1+ VBolx
(10)
B=2 (——1)

DISCUSSIONS

m

Adams and Doner [4] present numerical results for the longitudinal
shear loading problem for cylindrical, elliptical and square filaments
and for selected volume ratios.* Using these results one may now com-
pare the composite thermal conductivities obtained from the shear load-
ing analogy and from the thermal model equations (Eqs. 9, 10). Such a
comparison, shown in Figure 4, indicates that the idealized thermal model

~——— Shear Loading Analogy
Thermal Model
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Figure 4. Comparison between the re-
sults of the shear loading analogy and
a thermal model. Square packing ar-
ray.

® A complete numerical analysis of the problem together with a FORTRAN IV computer pro-
gram is given in reference [51.
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gives a somewhat (~ 10%) lower thermal conductivity than the shear
loading analogy, particularly at filament volume ratios above ~ 75%.
Below filament volume ratios of about 60% the two methods agree within
approximately 5% for cylindrical filaments.

In Figure 5 the theoretical results are compared with experimental
data. The data shown are from reference [1] and are for various lam-
inated glass-plastic, and graphite fabric-plastic composites. For a high
thermal conductivity ratio (k;/k,, = 666) the data agree reasonably well
with the results of the shear model analogy but are higher than the val-
ues predicted by either one of the thermal models (Eqgs. 6, 9, 10). The
data also indicate that the assumption of cylindrical filaments is more
appropriate than that of square filaments. Furthermore, it is interesting
to note that the laminae-in-series model underestimates considerably
both the data and the other theoretical results. At a lower thermal con-
ductivity ratio (k;/k,, = 4.4) a similar trend is apparent, although from
the four available data points definite conclusions cannot be reached.

Another interesting observation can be made from Figure 5 regard-
ing the assumption of a square packing array. It is pointed out in ref-
erence [4] that a hexagonal packing array yields lower values for com-
posite stiffness (and by analogy for composite thermal conductivity) than
the square array for the same filament volume content. Thus, as is evi-

Cylindrical Filament, Shear Loading Analogy

Cylindrical Filament, Thermai Model (EQ.I0) » Square Packing Array
Square Filament, Thermal Model (EQ.9)

Laminge in Series (EQ,6)
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Figure 5. Comparison between experimental data and the results of the shear load-
ing analogy and thermal models. Experimental data from Thornburg and Pears
[1] for glass-plastic (ke/km = 4.4) and graphite fabric-plastic (k¢/km = 666) com-
posites are shown.
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dent from Figure 5 the square array gives values closer to the experi-
mental data than would be given by the hexagonal array.

The foregoing results indicate that the composite thermal conductiv-
ity normal to the filaments may be predicted with reasonable accuracy
by using either the analogy between heat transfer and shear loading or
the thermal model given for cylindrical filaments in square packing ar-
rays. It must be recognized of course that the composite thermal conduc-
tivity values thus obtained are subject to the approximations listed pre-
viously.

NOMENCLATURE
2a,2b = filament spacing in x and y directions
B = dimensionless parameter = 2 (km/ky — 1)
h = filament width at any given y coordinate (see Figure 3)
k = thermal conductivity
ki1, k22 = composite thermal conductivities in the directions parallel and
normal to the filaments
q = average heat transfer rate per unit area and unit length
Q = average heat transfer rate per unit length
s = maximum dimension of filament in y direction (see Figure 3)
T = temperature
AT = temperature difference betweenx = gandx = —a
v = volume content, in percent
%Y, 3 = Cartesian coordinates
Ty = shear stress component
sub f, m = refers to filament and matrix
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