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Testing Hypotheses About Methods, Traits, and
Communalities in the Direct-Product Model
Richard P. Bagozzi and Youjae Yi

University of Michigan

The direct-product model has been suggested as
a procedure for estimating multiplicative effects of
traits and methods in multitrait-multimethod
matrices. Research on the direct-product model is
extended in two ways. First, hierarchically nested
models are derived for explicitly testing the overall
and specific patterns of method and trait factors.
Second, formal tests are developed for the pattern
of communalities. These procedures are illustrated
with data from Lawler (1967). Index terms: direct-

product model, method factors, multiplicative model,
multitrait-multimethod matrix, trait factors.

Method factors may interact with trait factors

multiplicatively in the multitrait-multimethod

(MTMM) matrix (e.g., Campbell & O’Connell,
1967, 1982; Schmitt & Stults, 1986). Building on
a model proposed by Swain (1975), Browne (1984)
formally represented the interaction of traits and
methods in a direct-product model (DPM) and de-
veloped the program MUTMUM, which estimates
parameters and tests the general model (Browne,
1991). The DPM can be reformulated as a linear
model (Wothke & Browne, 1990); therefore, the
DPM can be fitted with programs such as EQS

(Bentler, 1989; Bentler, Poon, & Lee, 1988) and
LISREL (J6reskog & S6rbom, 1989).

Given the frequent use of MTMM designs and
the availability of these programs, it would seem
likely that many researchers would employ the
DPM in construct validation studies. However, the
DPM has been used infrequently by applied
researchers-very few studies could be found in
the psychology literature (e.g., Bagozzi & Yi,

1990; Cudeck, 1988). Undoubtedly, the relative
newness of the model accounts for its infrequent
application to date. Further, the procedures for
analyzing and interpreting the DPM are not

straightforward for many researchers performing
substantive investigations.

Although many contributions have been made
to the theoretical formulation and estimation of

the DPM in the psychometric literature, relatively
little attention has been given to its practical
application. Consequently, the literature provides
little guidance on how to use the DPM in analyz-
ing MTMM data. For example, applications to
date have focused only on the appropriateness
and fit of the overall model (e.g., Bagozzi, 1991;
Bagozzi & Yi, 1990, 1991; Bagozzi, Yi, & Phillips,
1991; Cudeck, 1988; Lastovicka, Murry, &

Joachimsthaler, 1990). More detailed hypotheses
about traits and methods need to be specified,
and formal tests of hypotheses of construct
validity should be developed.

The present paper develops procedures for
specifying and testing meaningful hypotheses
regarding construct validity when traits and
methods interact. Specifically, two extensions in
the use of DPMs are presented. First, a series of
hierarchically nested models for testing hypoth-
eses of specific trait and method patterns
are derived. This approach is analogous to

Widaman’s (1985) taxonomy of structural models
for the linear formulation (i.e., confirmatory
factor analysis), but because of the nature of the
multiplicative interaction between traits and

methods, the derivation and interpretation of
the DPM are not straightforward. Second, formal
tests of some meaningful hypotheses about
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communalities are developed. These procedures
are illustrated with data from Lawler (1967),
which previously has been used to introduce
researchers to the DPM (e.g., Wothke & Browne,
1990).

The Direct-Product odel

Swain (1975) proposed the DPM to represent
the multiplicative interaction of traits and
methods in the MTMM matrix:

where £ is the covariance matrix of the observed

variables;
£~ and E~ are method and trait covari-

ance matrices, respectively; and
Q9 indicates a right direct (Kronecker)

product.
However, because this model does not allow for
measurement errors or for different scales for
different variables, the applicability of the model
is limited in many MTMM studies. Browne (1984,
1989) extended the DPM to overcome these limi-
tations (see also Cudeck, 1988):

where Z is a non-negative definite diagonal
matrix of scale constants;

PM and Pr are non-negative definite method
and trait correlation matrices, respec-
tively ; and

E is a diagonal matrix of non-negative
unique variances.

This model, which is called a heteroscedastic
error model, allows for measurement error for
different variables (Wothke & Browne, 1990).
Note that Equation 2 decomposes test scores
into common factor score and error score com-

ponents. Thus, the common factor correlation
(corrected for attenuation) has a direct-product
structure,

One useful version of the DPM is defined by add-
ing a restriction (i.e., E = EM &reg; En with Em and
ET diagonal) that yields

This is called a composite error model (Wothke
& Browne, 1990). Thus, there are two versions of
the DPM: the more general heteroscedastic error
model given in Equation 2, and a composite error
model given in Equation 4. The program
MUTMUM (Browne, 1991) estimates the param-
eters in the DPM.

Testing Hypotheses for Methods and Traits

To introduce a set of procedures for formally
testing hypotheses concerning the effects of traits
and methods, it is useful to consider the simple
case with three traits and three methods. (These
procedures are applicable to other MTMM

matrices.) Suppose the correlation matrices

among methods and among traits can be writ-

ten, respectively, as

and

Five useful hypotheses about methods are:

H, : Method correlations follow a Toeplitz
pattern;

H~: All methods are equally correlated;
H3: All methods are completely unrelated;
H4: All methods are equivalent; and
H5: Some methods are equivalent.

H, is especially suitable for multitest-multi-
occasion data in which methods represent occa-
sions. It posits that the method correlation matrix
is a Toeplitz matrix of the form
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If the occasions are. equally spaced, the cor-
relation between occasions (i.e., methods) de-
pends on the interval between them. In

applications to typical multitest-multioccasion
data, p, >_ P2 > p, would be obtained. For the
MTMM data with three methods, I-I, yields the re-
striction Pm2I = Pm32’

I~2 posits that all methods are equally
correlated. H2 implies that all nondiagonal ele-
ments of PM are equal. Thus, ~I2 yields
the restriction Pm21 = Pm3I = Pm32 (=p). Ac-

cording to H~, whether a method is shared or not
influences heterotrait correlations. For example,
the common factor correlations involving Traits
I and 2 would be P,2~ within each method,
whereas they are pm2iPt2i = Pm3IPt2l = Pm32Pt2l =

PP,2, across different methods (see Equation
3). That is, once different methods are used,
any combination of methods leads to the same
effect.

t-I3 suggests that all methods are orthogonal
or that all nondiagonal elements of PM are 0.
That is, ~I3 implies the restriction Pm2I =

P.31 = Pm32 = 0.0. I-I4 posits that all methods
are equivalent (i.e., I~4: 1VI, = NI2 = IVI3). ~I4
implies the restriction that all methods are per-
fectly correlated: P.21 = Pm31 = Pm32 = 1.0.

Thus, I~4 represents complete redundancy in

methods; that is, a single method factor is suffi-
cient to represent method effects. A formal test
can be conducted by comparing the full DPM
with the restriction p,,,2, = Pm3I = Pm32 = 1.0.

Note that I~3 and I-I4 are nested versions of ~I2.
When I-~4 is rejected, it is still possible that

one or more pairs of methods might not be
equivalent (~I5). For example, a researcher

could investigate whether any methods used in
a pretest are redundant in order to avoid un-

necessary duplication in subsequent research, so
that the length of a survey as well as the poten-
tial boredom effect among respondents could be
reduced. Thus, whether a particular pair of
methods is equivalent could be tested. For in-
stance, it may be hypothesized that Methods 1

and 2 are equivalent (i.e., IVI, = 1~2). This re-
quires the restriction that the two methods be

perfectly correlated (i.e., Pm21 = 1.0). How-

ever, this restriction implies another restric-
tion--both methods must be equally correlated
with the other methods (i.e., pm2r - Pmlr’ ~’ # 1,
2); otherwise, PM will not be positive definite
or semidefinite (Browne, 1991). Thus, the

hypothesis of equivalence between Methods 1

and 2 (~Ip = M2) can be tested with the fol-
lowing restrictions: Pm21 = 1.0 and Pm23 =

Pml3~
Four useful hypotheses regarding traits are:

I~6: All traits are equally correlated;
H7: All traits are completely unrelated;
~IB: All traits are equivalent; and
H~: Some traits are equivalent.

~I6 posits that all traits are equally correlated.
This hypothesis implies that all trait correlations
are the same; that is, P,12 = Ptl3 = Pt23 (=P)’
Thus, whether a common trait is involved or
not affects heteromethod correlations. For ex-

ample, the correlations involving Methods 1 and
3 under each trait would be Pm31’ whereas
those across different traits are P,21P.31 =

P~31P.31 = P132P.31 = PP.31. That is, any combi-
nation of traits leads to the same effect when
different traits are involved.

H~ says that all traits are completely orthog-
onal. Thus, this hypothesis yields the restriction
Pt2l = Pt31 = Pt32 = 0.0. Hg posits that all traits
are equivalent. This hypothesis suggests that all
traits are the same (i.e., T1 = T2 = T3), or that
traits do not make a difference in the hetero-
method correlations.
When Hg is rejected, it is meaningful to

test whether some traits are equivalent (H9). For
instance, it may be hypothesized that Traits 2 and
3 are equivalent (i.e., T2 = T3). This hypothesis
requires the restriction that the correlation

between the two traits be unity (i.e., Pt23 = 1.0).
Again, this restriction implies another restric-
tion that both traits be equally correlated with
the other traits (i.e., Pt2r = P,31, r ~ 2, 3). Thus,
the hypothesis of equivalence between Traits 2
and 3 (TZ = ’T3) can be tested with the restric-
tions pt32 = 1.0 and p,3, = P(21’
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An Illustration

Method. Lawler’s (1967) data were used to
illustrate these hypotheses. The MTMM matrix is
given in Table 1. Three traits are represented:
quality of job performance, ability to perform
on the job, and effort put forth on the job. The
traits were measured with three methods: superior
ratings, peer ratings, and self-ratings.
MUTMUM (Browne, 1991) was used to inves-

tigate DPMs. Although LISREL or EQS could be
used by following Wothke & Browne’s (1990)
parameterization of the DPM as a linear model,
MUTMUM was selected for the following reasons.
MUTMUM estimates the trait and method cor-
relation matrices simultaneously and provides
standard errors for both trait and method corre-
lations. In contrast, a particular LISREL or EQS
run only computes standard errors for trait or
method correlations; the model then must be re-
parameterized and the program run again to
yield both estimates. Also, MUTMUM accommo-
dates equality constraints simultaneously on both
trait and method correlation matrices; this can-
not be done with LISREL or EQS under the DPM.

Furthermore, LISREL sometimes results in empir-
ical underidentification, but MUTMUM is not as
sensitive to such occurrences (e.g., Bagozzi & Yi,
in press). MUTMUM also automatically imposes
inequality constraints for some parameter

estimates; for example, trait and method corre-
lations are bounded between -1 and + 1 (Browne,
1991, p. 4). These inequality constraints result in
maximum likelihood estimates in some circum-
stances in which the likelihood function would
be unbounded otherwise.

Results. The full DPM specified in Equation
4 first was estimated (see Model A in Table 2).
The model fit was satisfactory (this model also
was estimated with LISREL following the proce-
dure by Wothke & Browne, 1990, and the results
were the same as those obtained by the MUTMUM
analysis). Next, a series of restricted DPMs were
fit to investigate the pattern of individual method
factors. X2 tests then were used to test the over-
all hypotheses as well as specific hypotheses
about differences between methods (see Table 2).

H1 was tested by comparing the full model
(Model A) and the restricted model with a

Toeplitz pattern (Model B). The X2 difference test
(test of Model A vs. Model B in Table 2) indicat-
ed that I~1 could be rejected. H2posited that all
method correlations were equal (Model C). The
X2 difference test (Model A vs. Model C) was sig-
nificant at the .001 level. Thus, ~IZ could be re-
jected. H3, which posited that all methods were
completely unrelated, was tested by comparing
Models A vs. D; the xZ difference was significant
at the .001 level, suggesting that I-13 be rejected.
~I4 is an omnibus hypothesis that all methods

Table 1
Lawler’s (1967) Managerial Job Performance Data (N = 113)

[Copyright (1967) American Psychological Association. Reproduced by Permission.]
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Table 2
Results of x2 Goodness-of-Fit Tests for Models and x2 Difference Tests

for Hypotheses About Methods, Traits, and Communalities

aThe degrees of freedom were modified because the MUTMUM program automati-
cally imposes inequality constraints on parameter estimates (Browne, 1991, p. 4).
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are equivalent; the ~2 difference test (A vs. E)
suggested that H4 be rejected.

Hs posited that some of the methods might
be equivalent. Tests of individual methods also
were conducted by comparing the full
trait x method model with restricted models.
The results for the model with the equivalence
constraint for Methods 1 and 2 (Model F) are
provided in Table 2. The results indicated that the
hypothesis of equivalent Methods 1 and 2 should
be rejected (Model A vs. Model F). The

hypotheses of equivalence for Methods 2 and 3
(Model G) and equivalent Methods 1 and 3

(Model H) also were tested. Both hypotheses were
rejected (see tests of Model A vs. Model G and
Model A vs. Model H in Table 2).

Table 2 also includes the results for testing
hypotheses about traits. As for methods, the
trait x method model X2 is a general goodness-
of-fit index for the DPM. A series of restricted
~~~~s were fit to test hypotheses about trait pat-
terns. ~Z difference tests then were used to test
the significance of overall as well as individual
patterns of traits.

~I6 was tested by comparing the full DPM

(Model 1) and the restricted model with all equal
trait correlations (Model J). The ~,z difference
test (I vs. J) was not significant at the .05 level.
H~ posited that all traits were completely un-
related. The X2 difference test (Model I vs. K)
was significant at the .001 level. Hg is an omni-
bus hypothesis that all traits are equivalent. The
X2 difference test (Modcl I vs. L) suggested
that 1-I$ be rejected. I~9 tested the possibility that
some traits might be equivalent (Models M, N,
and 0). The x2 difference test results of Model
I vs. M indicated that the hypothesis of equi-
valent Traits 1 and 2 (Model M) should be re-
jected. Other hypotheses were tested similarly, but
neither Traits 2 and 3 (Model I vs. N) nor Traits
1 and 3 (Model I vs. 0) were found to be
equivalent.

Testing Hypotheses for Communalities

Hypotheses about the error matrix E also may
be considered, because the patterns of E gen-

erate corresponding patterns for communalities.
Some useful hypotheses about errors are:

H,,,: E is unrestricted;

&dquo;’oJ’ .., .

H14: All diagonal elements of E are the same;

where I is the identity matrix. Hio implies a basic
DPM, as in Equation 2, and imposes no struc-
ture on E. That is, E is not restricted under HIO,
Hll defines a useful version of the DPM by
adding the restriction E = Em 0 E,. This
restriction implies that trait communalities have
the same rank order within each method and that
method communalities have the same rank order
within each trait (Browne, 1991).

H12 causes the communality of each trait to
be equal across methods. This hypothesis can be
tested through the restricted model by fixing the
diagonal matrix of errors corresponding to

methods to unity; that is, Em = I (see the ex-
pression in Equation 4). Similarly, H13 implies
that the communality of each method is equal
across traits. Thus, this hypothesis yields the
restriction that ET is an identity matrix.

H14posits that all diagonal elements of E are
the same. This hypothesis implies that trait com-
munalities remain the same under all methods
and that method communalities remain the same
under all traits.

An Illustration

Table 2 also summarizes the results for test-

ing hypotheses about communalities based on
Lawler’s (1967) data. As for the methods and
traits hypotheses, a series of restricted DPMs were
fit to test hypotheses about communality pat-
terns, and ~2 difference tests then were used to
test the hypotheses.

HIO and His imply two versions of the DPM:
a heteroscedastic error model and a composite
error model, respectively. The latter model is a
special case of the former, because Hii imposes
a restriction of composite errors on E. Table 2
shows the results for the general model (Model
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P) and for the restricted model with the compo-
site error structure (Model Q). The XI difference
test (Model P vs. Q) was not significant at the
.99 level. Thus, Hti could not be rejected, and
the composite error model was suitable for the
data.

H12 predicts that trait communalities remain
the same under all methods, and it requires the
restriction l~’M = I (Model R in Table 2). The x2
difference test (Model Q vs. R) was not signifi-
cant at the .20 level. Thus, H12 could not be
rejected, and there is evidence that trait com-
munalities were constant across methods.

H13 posits that method communalities remain
the same under all traits. This hypothesis was test-
ed by examining the restriction E, = I (Model
S) vs. Model Q; the X2 difference test was not sig-
nificant at the .10 level. H14 requires that all

diagonal elements of E are the same (Model T).
The x2 difference test (Model Q vs. T) sug-
gested that this hypothesis could not be rejected.
This finding suggests that trait communalities
remained the same under all methods and that
method correlations remained the same under all
traits.

Conclusions

This paper has shown how the overall and

specific patterns of traits, methods, and commu-
nalities can be formally tested with the MUTMUM
program. Empirical underidentification prob-
lems, which are frequently observed in MTMM
analyses (Schmitt & Stults, 1986), were not

encountered in analyzing the data from Lawler
(1967). These problems were avoided, perhaps
because the program imposes constraints on the
parameter space to avoid ill-defined solutions. In

general, however, it is possible that parameters
constrained at the boundaries point to misspeci-
fication errors such as when negative or zero
uniqueness arises. The results also provided some
useful information-the trait correlations ap-
peared to be equal, and method and trait com-
munalities were constant for the Lawler data.
Such information could be useful in practical
applications of the direct-product model.
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