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Many HIV vaccine trials have been proposed to
evaluate susceptibility of individuals. However, vac-
cines may also affect an epidemic’s course at the
population level by altering the infectiousness of
vaccinated individuals who become infected. A vac-
cine trial design that does not estimate both suscep-
tibility and infectiousness might reject a proposed
vaccine that is capable of halting the HIV epidemic.
We describe a vaccine trial design called the Retro-
spective Partner Trial (RPT), which can quantify
vaccine effects on both susceptibility and infectious-
ness. We describe HIVSIM, a simulation environ-
ment that generates simulated populations and al-
lows for empirical evaluation of the statistical power
of the RPT. HIVSIM explicitly models a number of
factors which influence transmission and preva-
lence, and which have proven difficult to model us-
ing standard models. These factors include the infec-
tion stage of infected individuals, partnership selec-
tion, the duration of partnerships and concurrence,
and transmission of HIV. The simulation analysis
indicates that the RPT design has substantially
greater statistical power for identifying vaccines
which, in spite of exhibiting poor protection against
infection, are nonetheless capable of halting the HIV
epidemic by substantially reducing the infectious-
ness of vaccinated individuals who become infected.
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1. Background

The most common vaccine trial design is performed
in the same manner as a drug trial. However, it is now
understood that important differences in the causal
models underlying trials of drugs to cure non-infec-
tious diseases, and vaccines to prevent infectious
diseases, cause the drug trial designs to be inadequate
for vaccines. This has motivated the development of
several new approaches to vaccine trial design [1-10].
This paper describes a new design appropriate for
HIV vaccine trials called the Retrospective Partner
Trial (RPT) design and illustrates the usefulness of
simulations in comparing the power of different trial
designs.

To understand how different vaccine trial designs
measure different vaccine effects, consider the stan-
dard drug trial designs which have commonly been
used for vaccine trials [11-17]. In such trials one first
enrolls volunteer subjects who are then randomized
to receive either the vaccine or a placebo. Neither the
subjects, their doctors, nor the investigators know
who has received a vaccine and who has received a
placebo until the end of the trial. The outcome which
is observed in the trial subject is either illness or infec-
tion. Subjects might become infected without becom-
ing ill, as is the case with polio.

The underlying causal model for the drug effect
analysis is that all of the drug effect is exerted directly
upon the drug recipient, and the effect of a drug on
one recipient is independent of the effect on other
recipients. However, this model is inappropriate for
describing vaccines. Vaccines such as the Salk polio



vaccine alter the course of infection and decrease the
frequency of disease associated with infection. By
altering the course of infection, they may cause the
vaccinated individual who becomes infected to be less
infectious to other individuals. Epidemiologists com-
monly refer to a proportional reduction in susceptibil-
ity or infectiousness as the susceptibility or infectious-
ness effects of the vaccine, respectively. When infection
rather than disease is the endpoint used in the drug
effect trial design, vaccine infectiousness effects will
not be detected. In the case of HIV, a standard trial
runs the risk of rejecting vaccines exhibiting poor
susceptibility effects, but which could potentially halt
the HIV pandemic with their substantial infectious-
ness effects.

This failure to detect infectiousness effects has not
been viewed as a problem until recently. The reason-
ing was that if a vaccine could not alter the course of
infection sufficiently to prevent disease, then it would
be unlikely to alter the course enough to reduce infec-
tiousness. This reasoning leads to designs in which
the onset of disease is most commonly used as the trial
endpoint. However, the typically long times between
HIV infection and the onset of AIDS make the onset of
disease an impractical endpoint for HIV vaccine trials.
Since the biology of HIV infection and vaccines makes
the complete prevention of infection problematic, it is
important that trials be designed that use infection as
a trial endpoint and still detect vaccine effects that
reduce infectiousness. The recently published vaccine
trial designs that are constructed to detect infectious-
ness effects [1-8] lack the statistical power to detect
those effects when a small number of trial subjects
become infected. The RPT design was developed in
an attempt to increase statistical power under these
circumstances.

There have been several trial designs proposed
recently, including those that use partnership infor-
mation [18]. The RPT design is a further modification
of partnership-based designs to estimate vaccine ef-
fects on infectiousness. As its name suggests, the fun-
damental characteristic of this new vaccine trial design
is that partners are enrolled retrospectively rather
than prospectively. The RPT design was developed in
order to make more complete use of information from
all available sexual partners when estimating infec-
tiousness effects, thereby increasing the statistical
power of the vaccine trial design. The RPT design has
two advantages over the aforementioned designs.
First, it examines partners in partnerships that were
not yet formed when the trial began. Second, it does
not examine partners except when the trial participant
becomes infected.

Monte Carlo simulation studies have been used to
assess the statistical power of some partnership-based
designs because of the difficulty in formulating math-
ematical analyses [19, 20]. Most of this previous work

assumes that transmission events are independent,
rather than depending on complex chains of disease
transmission. However, Morris and Kretzschmar [43,
44] argue that complex disease dynamics have a sig-
nificant influence on the conclusions of an epidemio-
logical analysis.

This paper describes the use of HIVSIM, a discrete-
event computer simulation (DES), developed for the
purpose of quantifying differences between the RPT
HIV vaccine trial design and the standard vaccine
trial design. Through the retrospective collection of
information regarding the timing of sexual partner-
ships and phylogenetic analysis of HIV viral sequence
data, the RPT design estimates the infectiousness
effects of the vaccine by comparing the per-partner-
ship transmission probabilities from the infected vac-
cinated and unvaccinated trial participants.

HIVSIM was developed for the evaluation of the
RPT study design to produce simulated vaccine trial
data that result from a complex, dynamic HIV trans-
mission model. HIVSIM was constructed as a Monte
Carlo DES in a continuous-time framework with ran-
domly determined times to future events. This simu-
lation environment is capable of generating many
real-world complexities of trials and trial data which
are difficult to generate in simulations based upon
continuous compartmental models (e.g., the genera-
tion of complex contact patterns between different
individuals) [21]. Real-world sexual contact patterns
can include partnerships of variable length that might
be made preferentially between different types of
individuals depending on the partnership status of
those individuals. Other characteristics of real world
contact patterns include:

1. Concurrent partnerships as well as monogamous
partnerships;

2. Partnerships with differing rates of sexual activity
which are dependent on both the partners’ per-
sonal attributes and mutual compatibility of the
partners with regard to those attributes; and

3. Individuals with different partnership-seeking
propensities based on their intrinsic inclinations
for frequency of sexual activity and/or multiplicity
of partners.

A DES simulation environment can readily produce
all of these real-world contact patterns in a manner
that would be impractical with continuous compart-
mental models.

This paper presents the RPT design and uses the
HIVSIM simulations to compare its efficiency to the
standard vaccine trial design. An overview of the logi-
cal structure of HIVSIM is provided, and then experi-
mental results are presented to demonstrate how data
generated by HIVSIM can be used to compare the
efficiency of alternative vaccine trial designs. This
endeavor provides epidemiologists with an example

OCTOBER 1998 SIMULATION 229



of the utility of the DES simulation framework and its
application to the task of epidemiologic study design
and evaluation of associated statistical methods.

2. Evaluation of Vaccine Effects: VEg, VE;
and VE,

Standard vaccine efficacy estimates measure the vac-
cine effect on reducing the relative susceptibility of
those vaccinated. The vaccine efficacy for susceptibil-
ity (VEg) can be estimated as:

VE;=1-RR 1)

where RR measures the Relative Risk or Rate of infec-
tion in vaccinated as compared to unvaccinated trial
participants. Estimation of the relative risk or rate can
be made using per-contact transmission probabilities,
time-to-infection incidence data or cumulative inci-
dence data [22].

However, the total effectiveness of vaccination
depends not only on the reduction of susceptibility in
the vaccinated individuals, but also on the reduction
of infectiousness in vaccinated individuals who have
become infected in spite of vaccination. Estimation of
infectiousness effects can only be accomplished by
study designs which collect data on the infection of
individuals who are exposed to infected vaccine trial
participants. In other words, the vaccine effect for
infectiousness (VE;) must be estimated conditional on
the exposure to the infected trial subjects who were
either vaccine or placebo recipients. VE, can be esti-
mated as:

Fraction of partners who were infected
when exposed to infected placebo recipients

VE,=1-

Fraction of partners who were infected 5
when exposed to infected vaccine recipients 2

The fraction of partners who were infected when
exposed to infected trial subjects can be called the
secondary attack rate (SAR), and thus we can express
the estimate of VE; as the following:

SAR
VE,=1-SaR, (3)

The Basic Reproduction Number (R,) is a critical mea-
sure for the epidemic potential of any infectious dis-
ease [23]; and under certain hypothetical conditions,
the combined susceptibility and infectiousness vacci-
nation effects can be used to derive a vaccination effect
on R,. The basic reproduction number is defined as
the average number of secondary infections produced
when one infected individual is introduced into a
population where everyone is susceptible. When R, is
greater than one, epidemic disease transmission re-
sults; when R; is less than one, disease transmission
cannot be sustained and eventually the disease will
become eradicated. The vaccine effect on the basic
reproduction number can be approximated by:
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VE.=1-((1-VE5)1-VE)) (4)

when the following three conditions are met:

¢ The sexual mixing in a population is random and
homogeneous,

¢ All of the individuals in the population are vacci-
nated,

® The vaccine does not change the duration of the
infection.

VE can be interpreted as the proportional reduction
in the basic reproduction number caused by vaccina-
tion.

Although these conditions do not hold either in the
real world or in our simulations, equation (4) pro-
vides a convenient framework for evaluating the
maximum potential combined susceptibility and in-
fectiousness effects of vaccines upon transmission in a
population. Under these hypothetical conditions, it is
possible to derive a critical VE; which would be re-
quired to reduce the reproduction number for the
HIV epidemic in a population to a level below 1, thus
halting the epidemic transmission process. The critical
VER under the hypothetical conditions would be
given by the equation:

Critical VEg 2 1-%- 5)

Vaccines which have a VE less than the critical
VE[; could not be expected to halt the epidemic even
under the hypothetical conditions used to derive
these equations. For example, Blower and McLean
estimated the basic reproduction number for the HIV
epidemic in San Francisco to be as great as 5.0 [24].
Based on these estimates, only HIV vaccines with a
VE of .80 or greater would be capable of halting the
epidemic transmission process if the entire population
at risk were vaccinated and the other hypothetical
conditions were also met.

3. The RPT Vaccine Trial Design

The RPT can be distinguished from other proposed
vaccine trial designs by the manner in which data to
calculate the SARs are collected. The previously pro-
posed designs use prospective follow-up of the part-
ners of vaccine trial subjects to accomplish this. For
those trial subjects who have become infected during
the vaccine trial, the RPT design uses retrospective
contact tracing (also called partner notification) to
enroll the sexual partners of the trial subjects in the
trial. Two types of information obtainable during the
contact tracing process are used to calculate the re-
quired SARs:

1. Phylogenetic analysis of blood samples from the
trial subjects and their sexual partners, and

2. Timing of the sexual partnerships.



Phylogenetic analysis is utilized to determine when
HIV has been transmitted between those sexual part-
ners [25, 26, 27, 28]. Phylogenetic analysis of all HIV
viruses found in blood samples obtained during the
trial, and additional HIV samples isolated from the
population in the geographic area where the vaccine
trial is being conducted, is used to determine if the
viruses identified in trial subjects and their partners
were likely to have been transmitted between the
partners. By considering only HIV viruses that are
nearest neighbors on the phylogenetic analysis to be
related, the phylogenetic analysis determines if the
viruses found in blood samples from two sexual part-
ners were transmitted between those sexual partners.

Using the information from the phylogenetic analy-
sis and the timing of the partnerships, the following
five types of sexual partnerships must be successfully
distinguished in order to properly calculate the condi-
tional SAR:

1. Partnerships which resulted in the infection of the
trial subject,

2. Partnerships which ended prior to the infection of
the trial subject,

3. Partnerships with individuals who were already
infected with HIV by someone other than the trial
subject,

4. Partnerships with uninfected individuals which
were in existence after the infection of the trial
subject (i.e., partnerships in which transmission
was possible but did not occur),

5. Partnerships with infected individuals who were
infected by the trial subject.

Proper calculation of an SAR requires the determi-
nation of those individuals who could potentially
have been infected by the trial subjects (to be included
in the denominator of the SAR) and those who actu-
ally became infected by the trial subjects (to be in-
cluded in the numerator of the SAR). Similar to the
common epidemiologic procedure of developing
rules for the calculation of a household SAR [29],
there are various rules by which each partnership
might be classified into the preceding five partnership
categories or be determined to be unclassifiable. Very
conservative rules admit only partnerships where an
uninfected partner was very clearly exposed to a
study subject in order to estimate the SARs. Less re-
strictive rules classify a greater number of partner-
ships as providing relevant information, but run some
risk of error. For example, different choices in how to
define the time at which a trial subject was infected
lead to different rule sets and hence, different imple-
mentations of the RPT.

One important advantage of using DES simulation
to evaluate the RPT design is the ability to readily
evaluate the potential effects of different classification
rules on the bias and precision of the vaccine effect
estimates produced by the RPT design. This is pos-
sible because in the simulated world, one can obtain
perfect information. One can know exactly when each
individual was infected and by whom and can there-
fore calculate SARs exactly and establish an upper

HIV Infection Total number of VEI Trials = 3 (A,D&E) HIV Infection
Status at thc.: start of Total number of transmission = 1 (A) Status at th.e end of
the trial the trial
Unknown Partnership period with F  |——+ Unrelated

Positive
Unknown Partnership period withE  p——ond Negative
Unknown —— Partnership period with D Negative
. . . Related
Partnersh

Unknown — artnership period with C Positive
Unknown —— Partnership period with B Negative
Unknown i - - : i Rel'at.ed
Partnership period with A ® Positive
Negative : - - - | Positive

Trial Subject Period of Observation

Figure 1. Two hypothetical infection times for the index case are indicated with dots. The inability to determine
when the index case became infectious with certainty introduces the potential for bias in the estimates of VE;
and VEy. For example, whether partnership B should have been included in the SAR denominator for VE; is
dependent on whether infection of the index cases occurred at the first dot or the second. Evaluation of RPT in
a discrete-event simulation environment allows direct comparison between the actual infection times recorded
by the simulation model and the infection times chosen by the classification rule logic.
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bound on vaccine effects on infectiousness. In the real
world, perfect information is unavailable, but classifi-
cation rules may provide reasonable estimates of SARs.
The evaluation of classification rules is the subject of
current research [30, 31].

Figure 1 illustrates the timing of six sexual partner-
ships for one infected trial subject. Time is represented
by the horizontal dimension, and the relative timing of
the partnerships of the index case is illustrated by the
line lengths indicating when each sexual partnership
began and ended. The columns at the left- and right-
hand sides of Figure 1 show obtainable information
on the subject’s HIV infection status at the start and
end, respectively, of the vaccine trial. In addition, the
right-hand column indicates whether phylogenetic
analysis determined that the HIV sequences in part-
ners were related.

As suggested by the five categories of partnerships
enumerated above, an RPT must have a rule that de-
fines the time after which a trial subject case should be
considered to have been infectious for HIV. One could
define the onset of infectiousness for the trial subject
case as the time at which the earliest partnership with
related HIV ended. Such a definition accurately reflects
the logic that the trial subject case must have been
infected by the time the first partnership with related
virus ended, but can not accurately determine whether
the trial subject case was actually infected at an earlier
point in time. Using this logic, the trial subject case in
Figure 1 contributes a count of three partnerships to
the denominator of the SAR (partnerships A, D and E
were in existence after the end of partnership C,
which was the first partnership to end with a geneti-
cally related HIV sequence) and one partnership to
the numerator (partnership A was in existence after
partnership C ended and thus it is presumed that the
trial subject case infected partner A).

Potential biases or loss of precision could result
from the inability of classification rules to accurately
time the infectiousness of the trial subject case. For
example, consider the two hypothetical infection times
which are marked with dots in Figure 1. If the first
dot on the partnership line for partner A is the actual
time of the trial subject’s infection, then partnership B
should have been included in the SAR denominator.
If the second dot on the partnership line for partner A
is the actual time of the trial subject’s infection, then
partnership B has been correctly excluded from the
SAR denominator.

A classification rule is also needed to treat partner-
ships involving partners infected with unrelated HIV
strains. An example of such a rule is to count all such
partners as if they had been infected with HIV prior
to forming a partnership with the trial case. This rule
thereby classifies the partnerships such as partnership
Fin Figure 1 as those in which transmission from the
index case was not possible and excludes them from
the SAR denominator. An important research area for
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the RPT design is analyzing the effects of these classi-
fication rules on the accuracy of the VE; and VE esti-
mates. The evaluation of the RPT design in a DES
environment allows direct comparison between the
actual infection times as recorded by the simulation
model and the infection times decided by the classifi-
cation rule logic. Another advantage of evaluating the
RPT design using a DES is the ability to examine the
relationship between various study population char-
acteristics (such as the number of concurrent partner-
ships found in the study population or the average
duration of a sexual partnership) and the accuracy
and precision of the VE; and VE[ estimates.

Initial investigations of the RPT design using the
HIVSIM model assume that the information obtained
from contact tracing and phylogenetic analysis is com-
plete and without error. These assumptions will be
relaxed in subsequent investigations in order to exam-
ine the effects of missing data, incorrect viral linkages
and incorrect timing information which would be
present in real-world RPT vaccine trials.

4. The HIVSIM Simulation Model
4.1 The Simulation Model

The moedel implemented by HIVSIM is one of an HIV
epidemic moving through a closed population of ho-
mosexual males. Because the timing, duration and
concurrency of partnerships are key factors in the dy-
namics of the HIV epidemic [32, 33, 34, 43, 44], the
simulation explicitly models individuals and the part-
nerships they form, the sexual contacts that each part-
nership witnesses, the insertive and receptive role that
each partner plays during a contact, and the partner-
ship termination. Individuals seek out new sexual
partners at random times and select their partners
according to their own characteristics and the charac-
teristics of potential sexual partners. This partnership
selection process creates a complex stochastic mixing
mechanism dependent on the sexual preferences, con-
currency potential and sexual activity frequency of the
population.

During a partnership, episodes of sexual contact
occur at random intervals, and if one of the partners is
infected, each sexual contact presents the opportunity
for disease transmission. Consistent with the available
epidemiological evidence, the probability of HIV trans-
mission between partners is dependent on the particu-
lar sexual activity (oral sex or anal sex), the activity
roles assumed by the partners (insertive or receptive)
and the stage of the infection in the infected partner
[35, 36]. The natural history of HIV infection is mod-
eled in three stages: primary infection, clinically latent
infection and the ARC/AIDS stage [37, 38]. Individu-
als leave the population only by death from AIDS.
Finally, a vaccination process is modeled whereby
vaccine effects are modeled as proportional reductions
in an individual’s susceptibility, infectiousness or both.



HIVSIM can produce a wide variety of sexual con-
tact patterns which impact both HIV transmission
dynamics and the potential for the RPT to accurately
estimate SARs. The simulation allows the investigator
to specify various mixtures of individuals by sex act
preferences [39, 40], sexual role preferences [41, 42],
concurrent partnership potential [43, 44], and rates of
sexual activity [45, 46]. It also allows the investigator
to specify biases with regard to what kinds of indi-
viduals are likely to be linked in partnerships [47, 48,
49, 50].

The rest of this section describes in detail the model
implemented by HIVSIM. The model is perhaps best
understood in terms of the processes in which indi-
viduals participate—namely, partnership formation,
sexual contact and disease transmission, vaccination,
and vaccine trial enrollment. The following sections
treat each of these in turn.

4.2 Partnership Formation

The partnership formation process utilized by HIVSIM
is illustrated by the flow diagram in Figure 2. At ini-
tialization, individuals are randomly assigned several
attributes that determine partnership formation dy-
namics and that remain fixed over time. First, an indi-
vidual is randomly assigned a preference for either
anal sex or oral sex. If anal sex is preferred, then the
individual is also randomly assigned a preference for
either the insertive role or the receptive role during
the act. Second, each individual is randomly assigned
a limit on the number of concurrent partnerships in
which he can participate. This limit is between one
and five, inclusive. Finally, each individual is ran-
domly marked as desiring either a high or low sexual
contact rate.

At run time, individuals attempt to seek out new
partners on dates that are randomly sampled from a
geometric distribution whose parameter depends upon
their current number of partnerships and whether
they have a high or low sexual contact rate.

When an individual attempts to seek out a new
partner, a candidate is uniformly sampled from the
pool of individuals who currently have less than their
maximum number of concurrent partnerships. Once a
candidate is chosen, there are three opportunities for
this seeker to fail in his attempt to acquire a new part-
ner. First, the candidate has the opportunity to decline
the offered partnership. The probability of doingso is
conditional upon the difference between the number
of partnerships in which the candidate is currently
participating and the maximum number in which they
are allowed to participate. Second, the possibility
exists for the seeker and candidate to decide that their
preferred sexual activities and roles render them in-
compatible. Note that this does not imply that part-
nerships never form between, for example, two indi-
viduals who each prefer the insertive role-during anal

sex. Rather, there is a probability distribution over the
event space { Anal Insertive, Anal Receptive, Oral } x

{ Anal Insertive, Anal Receptive, Oral } that determines
the frequency with which individuals with given pref-
erences abort the partnership formation process. Fi-
nally, the seeker and candidate may decide that their
sexual activity rates render them incompatible. Again,
a distribution over the event {High Rate, Low Rate} x
{High Rate, Low Rate} determines the frequency with
which individuals with given activity rates abort the
partnership formation process.

If it is determined that a partnership will not be
formed between the seeker and the candidate, then a
new interval, d, is sampled for the seeker who must
then wait d days until next opportunity to acquire a
new partner. On the other hand, if it is determined
that a partnership will form, then the duration of the
partnership is chosen. Partnership durations are a
multiple of a sample from one of five randomly cho-
sen Erlang distributions having a shape parameter of
2 and means 2, 6, 30, 180 and 800 days. The probabil-
ity of choosing a particular distribution is conditional
upon the maximum number of concurrent partner-
ships permitted each partner. The sample multiplier is
one of three constants corresponding to the cases
when both partners have high rates of sexual activity,
when both have low rates of sexual activity, or when
the partners have dissimilar rates of sexual activity.

When a given partnership terminates, the intervals
during which each partner must wait before next
attempting to acquire a new partner are re-sampled in
order to reflect the loss of a concurrent partnership.
Partnerships may terminate as the result of a sched-
uled termination event or as the result of the death of
a partner.

4.3 Sexual Episodes, Contacts and HIV Transmission

Figure 3 illustrates the scheduling of sexual activity
and the conditional HIV transmission process within
the partnerships simulated by HIVSIM. A sexual epi-
sode occurs as soon as a partnership forms. At the end
of each episode, the number of days until the next
episode is determined and is a multiple of a sample
from a geometric distribution whose parameter de-
pends on each partner’s preferred sexual activity. The
multipliers correspond to the cases when both part-
ners have high rates of sexual contact, when both
have low rates of sexual contact and when they have
dissimilar rates of sexual contact. The means used in
the geometric distributions as well as the aforemen-
tioned multipliers are parameters of the model that
permit sexual activity rates to be biased as a function
of the “compatibility” of the partners’ preferences.
Partnerships involve one or more sexual episodes,
depending on their duration, and during each epi-
sode, partners have exactly one or two sexual con-
tacts. The type (anal or oral) of the first contact as well
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Initialization:
Seek times scheduled
for all individuals

!

Seeker randomly |
selects candidate |

Does
candidate
reject offered
partnership?

Yes

Is
partnership
randomly rejected,
given candidate’s
preferred sexual
activity and
role?

Yes

\ 4

Yes 1. Partnership does not form

Is
partnership

randomly rejected
given candidate’s
sexual activity

2.Randomly sample new seek time, s,
for seeker
3. Wait s days to seek again

rate?

Sexual episodes begin here.
See Figure 3.

1.Form partnership

2.Randomly sample pship duration, d

3.Randomly sample new seek times, 5, and s,
for each partner

4.Wait s; and s, time units (respectively) to seek.

Figure 2. The partnership formation process utilized by HIVSIM. Individuals in the population who have not reached their
personal maximum number of concurrent partners are scheduled to randomly seek a candidate partner from the simulated
mixing population. The potential partnership may be rejected on the basis of the candidate’s concurrency potential, the
sexual preference and role compatibility of the seeker and the candidate, or the sexual activity compatibility of the seeker
and the candidate. The randomly assigned duration of the partnership, if formed, can be made dependent on the partners’
concurrency potentials and sexual activity traits.

234 SIMULATION OCTOBER 1998



At Start of Each Partnership:
1.Randomly select sexual activity
2.Randomly select role for each partner
3.Perform sexual activity

IIS Randomly
exagt y one determine if
partner transmission
infected?

occurred

No Transmission

Transmission

1.Infect partner
2.Start disease progression

Randomly

determine if No 2nd Activity

a second sexual
activity will

2nd Activity

1.Randomly select 2nd sexual activity

2.Deterministically switch role for
each partner

3.Perform sexual activity

Is
exactly one
partner
infected?

Randomly
determine if
transmission
occurred

No Transmission

Transmission

1.Infect partner
2. Start disease progression

1.Sample new time, ¢, for next
sexual episode
2.Wait ¢ time units for next episode

Figure 3. The sexual activity and HIV transmission process utilized by HIVSIM.
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as the role (insertive or receptive) assumed by each
partner during the contact are randomly determined
and are conditional upon the combination of each
partner’s preferred sexual activity and sexual role. A
second contact occurs with a probability that is con-
stant over all time and all partnerships. If it is deter-
mined that a second contact will occur, then the type
of contact is randomly determined in the same way as
was done for the first contact. However, the roles each
partner assumes in the second contact are determinis-
tically exchanged with the roles they assumed in the
first contact.

If exactly one of the partners in a given partnership
is infected with HIV, then the opportunity for trans-
mission exists during each sexual contact. Consistent
with the epidemiological evidence, the probability that
an infected individual transmits the infection is de-
pendent upon:

1. The sexual activity in which they are engaged,
2. The role assumed during that activity, and
3. The time since his own infection.

The model assumes a single strain of HIV. The natural
history of HIV infection is modeled as a three-stage
process wherein infectiousness is highest during the
first stage, least in the clinically latent stage and inter-
mediate during the final stage that ends in death due
to AIDS-Related Complications. The lengths of stages
one, two and three in days are randomly sampled from
Erlang distributions with a shape parameter of two
and with means of two months, eight years and two
years, respectively [37].

4.4 Vaccination

The simulation model provides a mechanism by which
both the contagiousness and susceptibility effects of a
vaccine can independently influence HIV transmission
probabilities in order to allow assessments of vaccine
efficacy statistics. This mechanism functions as follows.
When calculating the transmission probability during a
sexual contact as is described in Section 4.3, if the in-
fected partner has been vaccinated, then the probabil-
ity is multiplied by 1 — VE,. If the uninfected partner
has been vaccinated, then the transmission probability
is multiplied by 1 — VE,. If both partners have been
vaccinated, then the transmission probability is multi-
plied by both 1 - VE; and 1 - VE;. Each vaccinated
individual’s values for VEg and VE; can be randomly
determined, thereby modeling the variability of vac-
cine effects among individuals. HIVSIM is capable of
generating heterogeneous vaccine effects for both VEg
and VE; in a manner consistent with a frailty mixture
model, combining the possibility of complete vaccine
failure in some proportion of vaccinated individuals
and a Beta distribution of partial effect in the remain-
der [51, 52]. In a fraction of the study population, the
vaccine has no effect and thus VEg = VE; = 0. In the
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remaining fraction of the study population, VEg and
VE; are sampled from a Beta distribution.

4.5 Vaccine Trial Enrollment

In order to assess statistical measures of vaccine effi-
cacy, the model must contain the notion of a vaccine
trial. The model implemented by HIVSIM allows one
to specify the desired size and “profile” of the study
group, the fraction of the group that is vaccinated and
the time at which the study begins (and vaccination
occurs). The profile of the group is specified in terms
of the fraction of the group having a high or low rate
of sexual contact for each of the possible values of
maximum concurrent partnerships. If an insufficient
number of individuals exist to satisfy a given crite-
rion, then individuals are randomly sampled from the
population until the desired group size is achieved.
The ability to preferentially recruit members into the
vaccine trials who have specific traits regarding
sexual activity rates and/or partnership concurrency
potential was included in order to allow future inves-
tigations of optimal study group profiles.

It should be noted that it is assumed that each trial
participant provides complete and accurate partner-
ship information and that all partners can be located.
In the real world this may not be the case. One way to
evaluate the effect of imperfect partnership informa-
tion on the RPT design would be to selectively censor
partnership information. The current set of simulation
runs and the analysis presented here only provide an
upper bound on the statistical power of the RPT design.

4.6 Implementation Details

HIVSIM is written in C++ and builds upon the SIMEX
simulation library produced by the National Micro-
population Simulation Resource Center at the Univer-
sity of Minnesota. SIMEX provides a number of C++
classes to aid in the construction of discrete-event
simulations, such as those for event queue manage-
ment, random number generation and data acquisition.
Simulations were run on Hewlett-Packard worksta-
tions running the HP /UX operating system; however,
the simulation code has been ported to other variants
of UNIX, including those that run on PC architectures.
HIVSIM produces several data output files. Some
of these files allow the complete re-creation of the
simulation state at the end of a run, while other files
simulate the collection of data from individuals and
their partnerships. The data collection files record
person-specific and partnership-specific information.
The person-specific file contains one data observation
for each individual in the population with variables
corresponding to the attributes associated with the
individual, critical event times experienced by the
individual during the simulation period, and summa-
rized data regarding the partnerships and sexual
behavior of the individual. The partnership-specific



file contains one data observation for each partnership
that occurred during the simulation run with the vari-
ables corresponding to characteristics of the individu-
als in the partnership, critical event times experienced
during the partnership and detailed data regarding the
sexual activity and HIV transmission experienced dur-
ing the partnership. The combination of the informa-
tion contained in these two files is used to compute all
of the information required by the RPT study design.
These two files are read into a statistical analysis soft-
ware package, SAS V6.12 [53] and analyzed using SAS
program code and macros developed to calculate the
required vaccine efficacy estimates.

5. Simulation Experiment Example
5.1 Vaccine Study Simulation Process Overview

Prior to commencing a vaccine trial experiment, a part-
nership stabilization period must be run in order to
allow a stable partnership contact pattern to develop.
After the partnerships have been allowed to form,
terminate and re-form for a prolonged period of time,
the partnership contact patterns settle into a stable
state consistent with the mixing propensities specified
in the simulation parameters. Once this stabilization
has occurred, all simulation repetitions for an experi-
ment are started from the same initial partnership
formation state. At the start of each simulation repeti-
tion, a number of individuals are randomly selected
from the population and are infected. Immediately
thereafter a simulated vaccine trial is initiated by:

1. The random selection of vaccine trial participants
within the population, and

2. Their randomization to the vaccine or placebo
arms of the vaccine trial.

Sexual mixing and the HIV transmission process con-
tinue throughout the simulated vaccine trial period,
and at the end of the specified period the vaccine effi-
cacy measurements from the trial are calculated and
recorded. These steps involved in conducting a simula-
tion experiment with HIVSIM are summarized below.

1. Run a partnership stabilization (i.e., burn-in ) period.
2. Introduce infection into the population.

3. Start the vaccine trial.
4

. Resume sexual mixing (with HIV transmission and
HIV vaccine effects).

IS

End the vaccine trial.
6. Tabulate the estimates of VEg, VE,; and VE.

5.2 Empirical Power Comparison between the RPT and
Standard Trial Design

A simulation experiment comparing the empirical
power of the RPT design described in Section 3 and
the standard vaccine design is provided as an example
of how HIVSIM is used to evaluate the characteristics

of the HIV vaccine trial designs. This example simula-
tion experiment compares the statistical power of the
RPT and the standard design when the vaccine effect
on susceptibility is low and the vaccine effect on in-
fectiousness is high.

One hundred repetitions of the simulated vaccine
trials were conducted with VEg set to .25 and VE; set to
.90. The simulated data from both the standard vaccine
trial design and the RPT design were collected from
each repetition in the simulation experiment. The ex-
periment also included 200 repetitions of a vaccine
trial where the vaccine had no effect (VEg=0, VE; = 0)
in order to generate a null distribution for the purpose
of making an empirical power comparison of the two
study designs. Identical simulation parameters were
used for all replications used in this experiment, with
the exception of the null distribution runs where VEg
and VE; were set to zero. Some of the simulation pa-
rameter settings for this experiment are as follows:

¢ The vaccine trial study period was two years.
* The population consisted of 4,400 individuals.

* 75% of the population was monogamous and 25%
of the population had a concurrency potential of
two partnerships.

* The average partnership duration between pairs of
monogamous partners was 145 days.

* The average time to seek out new partners for
monogamous individuals was 60 days.

Table 1 provides the per-sex act transmission prob-
abilities used in the experiment.

The simulated vaccine trials were conducted in a
mixing population of 4,400 individuals. The individu-
als could either be exclusively monogamous or could
have up to two concurrent sexual partners. After as-
signment of the individual sexual preferences and
sexual activity traits, the partnership stabilization pe-
riod was run until the contact matrices for these char-
acteristics stabilized. Once stabilization was reached,
a simulation start-up file was generated which allowed
all of the repetitions used in this experiment to begin
from the same mixing population partnership con-
figuration. At the start of each simulation repetition,
400 individuals were randomly selected from the
mixing population and infected with HIV. In order to

Table 1.. RPT simulation experiment design
transmission probability parameters

Per-Sex Act Primary  Clinical ARC/

Trans. Probs.  Infection Latency AlIDS
Anal Insertive 0.25 0.125 0.05
Anal Receptive 0.0438 0.0022 0.0088
Oral Insertive 0.0063 0.0022 0.0088
Oral Receptive 0.0063 0.0003 0.0013
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simulate the process of conducting the vaccine trial
in a population with a well-established HIV epidemic,
the infected individuals were started at different
stages of HIV infection; 8% of the population was
started in the primary stage, 76% in the secondary
stage and the remaining 16% was started in the
ARC/AIDS stage.

Following the introduction of HIV into the mixing
population, 600 vaccine trial participants were enrolled
and half were randomized to placebo, while the other
half were randomized to vaccine. Sexual mixing and
HIV transmission continued for a two-year vaccine
trial period during each simulated repetition. At the
end of the simulated vaccine trials, VEg was calculated
for the standard vaccine trial design and VEg, VE, and
VE were calculated for the RPT design. These steps
are summarized below.

1. Set the vaccine trial study period to two years.

2. Randomly assign the number of potential concur-
rent sexual partners to one or two.

3. Randomly assign sexual preferences to one of
{ Anal, Oral, Insertive, Receptive }.

4. Randomly assign sex-act frequency to be either
high or low.

5. Run a partnership stabilization period.

6. Introduce 400 infected individuals into the popu-

lation of which 8% are in primary infection, 76%
are in clinical latency and 16% have ARC/AIDS.

7. Start the HIV vaccine trial.

8. Enroll 600 mixing population members in the
vaccine trial.

9. Randomize the vaccine trial members to placebo
or vaccine.

10. Resume sexual mixing (with HIV transmission
and HIV vaccine effects).

11. End the vaccine trial and estimate VEg, VE; and
VEg.

5.3 Simulation Experiment Results—Empirical Power
Comparison between RPT and Standard Trial Designs

The following information relevant to vaccine trial
planning was obtained from the simulated vaccine
trials. The average annual incidence in the simulated
mixing population during the vaccine study period
was 3.5%. The average per-partnership transmission
probability was 5%. Within the vaccine study popula-
tion, there were an average of 31 infected study trial
subjects generated in each simulation repetition. Dur-
ing the two-year study period, each infected vaccine
study participant had an average of 5.4 partnerships
in which they could have possibly infected the other
partner. :
The relative statistical power of the standard vac-
cine trial design and the RPT design were compared.
Figures 4 and 5 illustrate this comparison. The stan-
dard design is capable of producing estimates only for
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Figure 4. VEg empirical statistical power demonstration as calculated in both standard and RPT designs.
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Figure 5. VE; empirical power demonstration for the RPT design.
Note that VER cannot be calculated in the standard design.

VEg. In Figure 4, the null distribution for VEg is pre-
sented on the same horizontal scale as the distribution
of VEg when VEg was set to .25. As would occur in any
real-world vaccine trials, the random events related to
partnership formation and HIV transmission cause the
realized VEg estimates from each simulation to form a
distribution of VEg estimates centered on the actual
vaccine effects possessed by the vaccines. Because of
the low VEg in this case, the two distributions overlap
considerably. The vertical line in Figure 4 indicates the
rejection region on the null distribution for an alpha
level of .05. The corresponding area to the right of this
line on the VEg =.25 distribution includes only 11% of
the simulated vaccine trials, indicating that the statis-
tical power would be particularly poor under these
circumstances. The RPT design would obtain exactly
the same estimate for VEg as realized by the standard
trial design. In 89% of the simulated vaccine trials,
both the standard design and the RPT design would
have rejected the vaccine due to the poor VEg effects
of the vaccine.

In contrast to the standard design, the RPT design is
capable of producing estimates of VE; and VEg. Figure 5
presents the distributions for VE obtained by the RPT
design. In this case, there is very little overlap between
the null distribution and the distribution of the VER as
set by the simulation parameters (VEg = .925). The em-
pirical power of the RPT design to detect the VEg
effect in this case was 95%. Under the simulated

conditions, the RPT design was clearly demonstrated
to have more statistical power to detect the complete
vaccine effects than the standard vaccine trial design.
Use of the standard design under these circumstances
would have frequently rejected vaccines which were
capable of halting epidemic HIV transmission dynam-
ics by reducing the basic reproduction number of the
HIV epidemic to below one. The RPT design rarely
rejected vaccines capable of halting epidemic trans-
mission dynamics under these same circumstances
because of its ability to measure infectiousness effects.

6. Conclusions

This paper described the development of a discrete-
event simulation for the purpose of evaluating the RPT
vaccine trial design and the associated statistical meth-
ods for calculating vaccine effects. The HIVSIM DES
simulation program allowed detailed experiments to
be simulated with different vaccine trial designs. Simu-
lated data were collected and analyzed as they would
have been under the proposed standard and RPT vac-
cine trial designs. The RPT design proposed here was
demonstrated to have superior statistical power for
vaccines with low susceptibility effects and strong
infectiousness effects.

In addition, DES allowed the RPT design’s statisti-
cal power to be quantified for situations exhibiting
complex dynamics. It is not clear that this could be so
readily accomplished using standard compartmental
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model analysis or Monte Carlo sampling of indepen-
dent partnership and transmission events. This experi-
ment demonstrates the utility of using DES to generate
data for the evaluation of epidemiologic study designs
and statistical methods in circumstances where com-
plex transmission system dynamics are being modeled.
Because this area is not well addressed in epidemio-
logic science at present, it is anticipated that the use of
DES to generate data for the evaluation of infectious
disease study designs and statistical methods could
become a much more extensively utilized method in
infectious disease epidemiology.
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