Although methods for latent variable modeling that allow a joint analysis of measurement
and theory have become popular, they are not without difficulties. As these difficulties
have become more apparent, several researchers have recently called for a “two-step
approach” to latent variable modeling in which measurement is evaluated separately
from theory. This implies that programs for covariance structure analysis are not needed
because factor analysis and regressions would suffice for analysis. Before a return to
earlier practice using seemingly simpler analysis tools can be recommended, it seems
prudent to consider the assumptions underlying a two-step approach. At least four im-
plicit assumptions can be identified: (a) theory and measurement are independent, (b) re-
sults of factor analysis specifications can be generalized to other specifications, (c) the
estimators have desirable statistical properties, and (d) the statistical test in one step is
independent of the test in the other. The authors show that these assumptions cannot be
met in general and that some of them are logically inconsistent. Thus any wholesale
adoption of a two-step approach could have serious consequences.
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rograms for latent variable modeling such as LISREL

(Joreskog and S6rbom 1984), EQS (Bentler 1985), COSAN
(McDonald 1978), RAM (McArdle and McDonald 1984) and PLS
(Lohmoller 1984) have been widely used in behavioral research
during the past decade (Bentler 1986; Bollen 1989; Long 1983). For
example, Borgatta and Bohrnstedt (1988) reported that covariance
structure models have been used in 12.4% of articles published in
Sociological Methods & Research during its first 15-year period (from
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1972 to 1987).' Along with the widespread application of these pro-
grams, it has become common practice to analyze theoretical specifi-
cations as well as their measurement counterparts. In EQS, for example,
the analyst does not have to make a distinction between measurement
and structural (theory) parameters. In other words, these programs have
made it feasible to estimate both types of parameters either simultaneously
(via LISREL, COSAN, EQS, or RAM) or at least where information from
one set of parameters is considered in the estimation of the other set (PLS).

Before the advent of computerized programs for latent variable
models, social sciences followed a long-standing practice of trying to
establish acceptable measurement quality prior to using the measures
in a substantive context. To a large extent, such procedures are still
followed in test theory and general scale development and are also
typically suggested in textbooks on methodology in the social sciences
(e.g., Nunnally 1978). However, the increasing application of covari-
ance structure analysis has led many researchers to de facto merge
what used to be separate analyses of measurement and theory into a
single context (Bentler 1978; Borgatta and Bohrnstedt 1988).

The joint estimation of theoretical and measurement submodels is,
after all, what distinguishes the new programs of latent variable
modeling from the old order of factor analysis for measurement items
and thereafter some sort of regression analysis (including path analysis
and simultaneous equations) for the substantive relationships. Esti-
mation of measurement and structure within a single context has been
emphasized by Bentler (1978) in his paper “The interdependence of
theory, methodology, and empirical data,” which can be traced back
to Cronbach and Meehl (1955), who emphasized the importance of
making substantive theory relevant to the process of test construction.
It is also clear that simultaneous estimation can offer certain well-
known benefits in terms of statistical properties. Nevertheless, the
joint estimation of theory and measurement is not without difficulties
(e.g., Bentler and Chou 1987; Cliff 1983).

As these difficulties have become more apparent, several research-
ers are starting to question the joint analysis, proposing that we return
to a separation of measurement and theory.? For example, Anderson
and Gerbing (1988) suggested that, although it is possible to estimate
measurement and theoretical models simultaneously, it is not neces-
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sarily preferable to do so. Similarly, Lance, Cornwell, and Mulaik
(1988) argued for separation of theory and measurement. In the
context of detecting specification errors, Herting and Costner (1985)
suggested a two-step analysis procedure in which one starts with a
confirmatory factor analysis model and when the measurement model
has been respecified to achieve a satisfactory fit to the data, one moves
back to the original structural model and evaluates the overall fit. In
general, the following reasons are given for separating measurement
from theory.

First, interpretational confounding, a term coined by Burt (1973,
1976) and referred to by Anderson and Gerbing (1988) as well as
Lance et al. (1988), is said to occur “as the assignment of empirical
meaning to an unobserved variable which is other than the meaning
assigned to it by an individual a priori to estimating unknown param-
eters” (Burt 1976, p. 4). Interpretational confounding occurs when the
extent to which different forces determine the estimation of loadings
is not carefully assessed. There are two types of forces: an epistemic
force that relates theoretical constructs to observed measures, and a
structural force that represents relationships among theoretical con-
structs. In a typical covariance structure analysis, all the parameters
in the model, including the factor loadings that link an unobservable
variable to its indicators, are estimated to minimize the difference
between the observed and the expected covariance matrices. As inter-
preted by Anderson and Gerbing (1988), interpretational confounding
“is reflected by marked changes in the estimates of the pattern coeffi-
cients when alternate structural models are estimated” (p. 418).

Another argument for separate analysis is misspecification, be-
cause the effects of incorrect specification are not confined to the
misspecified portion of the model in case of simultaneous estimation.
As is well-known from econometrics (e.g., Johnston 1984), the effects
of misspecification (bias and inconsistency) are spread throughout the
system of equations. This is the primary argument advanced by Lance
et al. (1988).

Various forms of separate analysis, which have been suggested to
avoid these problems,’ will be collectively termed “two-step ap-
proaches,” because they consist of two separate steps: an examination
of the measurement portion isolated from the structural part, and a test
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of the substantive theory (e.g., Anderson and Gerbing 1988). The first
step of the two-step approach is typically a confirmatory factor anal-
ysis of all measured variables where the factors are allowed to inter-
correlate freely (e.g., Anderson and Gerbing 1988; Lance et al. 1988).
Once an acceptable measurement model is found from a series of
respecifications (as determined by covariance structure fit), attention
turns to the second step of estimating the theoretical model.

Although Burt (1973, 1976) was the first to suggest a two-step
analysis, his approach is very different from that of Anderson and
Gerbing (1988). In the first step of assessing measurement validity,
Burt (1976) proposed a separate factor analysis for each unobservable
variable, whereas Anderson and Gerbing (1988) suggest confirmatory
factor analyses for all latent variables. In the second step, Burt (1976)
fixed the measurement parameters to the values obtained in the first
step and estimated structural parameters only. In contrast, Anderson
and Gerbing (1988) reestimated the measurement parameters as well
as the structural parameters. Throughout this article, we will use
“confirmatory factor analysis” for Anderson and Gerbing’s approach
and “separate factor analysis” for Burt’s approach whenever a distinc-
tion needs to be made between them. However, a major point is that
there are a number of implicit assumptions with both approaches. This
is also true for the following statements by proponents of various
two-step approaches. In the next section, we will identify and discuss
these assumptions. ,

With respect to the advantage of the two-step approaches, Lance
et al. (1988) concluded that: “Distinct analysis of the measurement
and structural portions of latent variable or mixed manifest and latent
variable models are desirable because construct validities of manifest
measures are evaluated prior to evaluating hypotheses about relations
about constructs” (p. 185). One may wonder how it is possible to
evaluate construct validity of variables without reference to how they
relate as constructs, but Anderson and Gerbing (1988) followed the
same line of reasoning: “A researcher can build a measurement model
that has the best fit from a content and statistical standpoint, where
respecification may have been employed to accomplish this, and still
provide a statistical assessment of the adequacy of the theoretical
model of interest” (p. 419). They conclude with the following advice:
“Structural equation modeling, properly employed, offers great poten-
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tial for theory development and construct validation in the social
sciences. If substantive researchers employ the two-step approach
recommended in this article and remain cognizant of the basic princi-
ples of scientific inference that we have reviewed, the potential of
these confirmatory methods can be better realized in practice” (p. 422).

These are strong recommendations from methodologists with long
records of published papers in the area. Chances are that these recom-
mendations will be followed in substantive research. Nonetheless,
before returning to earlier forms of analysis and, in essence, discarding
the basic distinct feature of LISREL, EQS, RAM, COSAN, and PLS,
it seems prudent to consider the assumptions associated with a two-
step approach. To date, very little attention has been given to identi-
fying exactly what these assumptions are and examining the extent to
which they can be met. Consequently, this is what we will attempt to
do in this article. As will be discussed, we find that the assumptions
implicitly imposed under a two-step approach are difficult to meet.
Under some versions of the two-step approach, they are also logically
inconsistent and statistically questionable.

THE ASSUMPTIONS OF A TWO-STEP APPROACH

Any two-step approach to covariance structure modeling that at-
tempts to isolate measurement from the theoretical context (in which
it is to be employed) assumes that:

Al. Theory and measurement are independent of one another or can be
treated as such.

A2. Measurement validity established in the first step (via confirmatory
factor analysis or separate factor analysis) can be generalized to
other model specifications.

A3. The estimators of a two-step approach are (asymptotically) unbi-
ased, consistent, and efficient.

A4. The statistical test in one step is independent of the test in the other.

Although these assumptions are not mentioned by advocates of the
two-step approach, they are implicitly imposed when a two-step ap-
proach is used.
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How reasonable are these assumptions? This question is central to
ascertaining the soundness of two-step approaches. We will begin by
discussing each of the above assumptions in detail and providing
illustrations when appropriate. Let us start with the overriding assump-
tion of independence of theory and measurement (data).

Al. THEORY-MEASUREMENT INDEPENDENCE

A fundamental assumption of any two-step approach is that mea-
surement and substantive theory can be taken apart and treated sepa-
rately. The basic tenet is that the structural portion of the model can
be prevented from influencing the measurement properties (e.g., load-
ings). However, it is well known from philosophy of science that it is
not possible to provide theory-neutral observations against theories to
be tested (Passmore 1967; Pawson 1980). Theories in physics, for
example, are not discovered by inductively generalizing from data,
but by retroductively inferring probable hypotheses from conceptually
organized data (Hanson 1958). It is not possible to interpret an
observation independent of any consideration of theory.

There are many examples to illustrate why the separation of mea-
surement from substantive theory is an artificial exercise that is not
likely to enhance our knowledge about the phenomena under study.
This is so for all sciences. The implication of theory-data interdepend-
ence is not necessarily that observation changes “reality” (as in quan-
tum mechanics), but that the interpretation of an observation is always
done in the context of some theoretical framework. Thus different
theories may well provide different interpretations. Economic theory,
for example, often interprets consumer behavior observations differ-
ently from behavioral theory. Gestalt and perception psychology also
show that neutral observation is an illusion (see Sakahian 1982).
Indeed, all empirical analyses rest on some (implicit or explicit)
theoretical assumptions about phenomena and involve (implicit and/or
explicit) structural models. Thus theoretical specification should be
recognized as a necessary part of any research design, and such
theoretical content should be explicitly stated and evaluated (Blalock
1969; Horan 1989).

It is generally agreed that measurement does not take place sepa-
rately from substantive theory, but rather is part of an interlocking of
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observations and ideas (Anderson 1970; Cliff 1972; Fornell 1989;
Guttman 1971; Luce 1972; Zinnes 1969; see also Duncan 1984 for an
eloquent discussion on the connection between theory and measure-
ment). Measurement properties do not have a status independent of a
supporting network of relations. Indeed, the most advanced methods
of measuring length rely on physical principles rather than merely
geometric ones. For example, it is proposed that the standard definition
of a meter be defined in terms of the assumed constancy in the period
and wavelength of a laser (Hall 1978).

Theory will always guide measurement; at the very least, it suggests
what to measure. But the interplay goes much deeper. As pointed out
by Achinstein (1968): (1) observation (measurement), if it is to be
relevant, must be interpreted; (2) that in terms of which interpretation
is made is always theory; and (3) the theory not only serves as a basis
of interpretation but also determines what is to be counted as an
observation, problem, method, solution, and so on. That is, measure-
ment without theory is analogous to an interpreter without language.
Yet this is what the two-step approach claims to do.

If we acknowledge that our measures are theory-laden (in one way
or another), we may begin to understand why Theory X produces
different measurement properties (e.g., loadings) than Theory Y. In
this light, it would not be useful to label this property “interpretational
confounding” and to pretend to get rid of it by a two-step approach.
Instead, we would probably be better off if the theory-data interde-
pendence were explicitly acknowledged and dealt with by the appro-
priate methodology.

An Illustration

It is easy to find examples in which measurement is interdepen-
dent with substantive theory. We will use a study by a proponent of a
two-step approach to show that if the theory proposed is altered, the
measurement model is affected. In other words, when the structural
model is changed, the parameters of the measurement model also
change.

Building on work from social exchange theory and channels of
distribution, Anderson and Narus (1984) presented a model of the
distributors’ perspective of the distributor-manufacturer working re-
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lationships, which is summarized in Figure 1A. Two constructs were
used as exogenous variables: outcomes given the comparison level
(O|CL) and outcomes given the comparison level for alternatives
(O|CL,). The endogenous variables were manufacturer control and
cooperation/satisfaction constructs. Underlying theories and descrip-
tion of measures will not be given here (see Anderson and Narus 1984).
The model in Figure 1A gives a satisfactory fit to the data: x*(74) =
89.15, p = .11 (AGFI = .894, RMR = .058).

Suppose we are interested in evaluating the two measures of O|CL:
X and X,. As seen in Figure 1A, the standardized factor loadings are
.47 (.18) and .82 (.29) for X; and X,, respectively (with the standard
errors in parentheses). Their associated reliabilities are .22 and .68.
What would be the effects of changing the theory in which these
measures are used? One way to demonstrate such effects is by positing
an alternative theory such that manufacturer control and cooperation/
satisfaction constructs are interchanged. This alternative theory is
illustrated in Figure 1B. Results show that the model fit is still
satisfactory: x*(74) = 87.81, p = .13 (AGFI = .897, RMR = .066).
However, the standardized loadings are now .66 (.18) and .59 (.16),
with the reliabilities of .43 and .34 for X and X, respectively.

Note that the factor loadings and reliabilities of measures X and
X, are substantially different from those obtained under the original
theory. For example, X would probably be considered a reliable
measure (.68) under the original theory, but of questionable reliability
(.34) under the alternative theory. Also, X, is more reliable than X
under the original theory, whereas X; is more reliable than X, under
the alternative theory. Consequently, this example illustrates that
measurement properties could vary with the theoretical context in
which the measures are employed.

A2. MEASUREMENT VALIDITY FROM THE FIRST STEP CAN BE GENERALIZED

Confirmatory Factor Analysis

Confirmatory factor analysis is most frequently employed for ex-
amining measurement properties in the first step of the two-step
approach (e.g., Anderson and Gerbing 1988; Lance et al. 1988).*
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A. Anderson and Narus' (1984) Model

B. An Alternative Model

Coop/
Satisfaction

X5

X6 Y3

Figure 1: An Illustration of Theory-Measurement Interdependence

NOTE: O|CL, = outcome given the comparison level for alternatives; O|CL = outcome given
the comparison level
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However, unless separation of theory from data is admissible, there is
a major problem in applying it. One could perhaps reason in the
following manner. We know that the assumption of theory-data inde-
pendence is false, but for purposes of simplification, let us proceed as
if we could isolate data from theory. That is, we follow the advice of
the proponents for a two-step approach and use confirmatory factor
analysis of manifest variables. The criterion for evaluating such a
confirmatory factor analysis model can be expressed as:

Pad = Pag Peex Perd

where a is any indicator of a latent variable &, and d is any indicator
of another latent variable £* (Anderson and Gerbing 1988, p. 415).
This equation shows that the fit of the model depends not only on the
correlations between a latent variable and its indicators, but also on
correlations between latent variables and between a latent variable and
indicators of other latent variables.

If the assessment of measurement quality is independent of any
substantive theory governing the relationships among the latent vari-
ables, we may also define quality in terms of measurement error: the
difference between a recorded value and the corresponding true value.
It is then logically implied that the existence of measurement error in
a variable x is epistemologically independent of the presence of
measurement error in another variable y, defined independently of x
(Hoppe 1980). However, as can be seen from the above equation,
confirmatory factor analysis is not consistent with this. The measure-
ment quality of a variable (assessed with the magnitude of measure-
ment error) may become mathematically dependent on the measure-
ment of other variables included in the analysis. If we have truly
isolated the evaluation of measurement from the evaluation of theory,
one must ask: How is it possible that the quality of measure x is
dependent on the quality of measure y? There is something amiss in
logic here.

The two-step approach assumes that data can be separated from
theory but fails to establish the quality of measurement of a variable
independent of other variables. One implication of this is that assess-
ment of measurement quality for a particular variable may vary with
the exclusion and inclusion of other variables in the system. If the
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quality of measurement of variable x is, in part, determined by the
quality of measurement of variable y, what is it that can explain this
dependence if not the theory? That is, confirmatory factor analysis
does incorporate substantive theory in the evaluation of measurement.
At the minimum, the theory implies which variables are relevant for
the phenomenon under study, because the set of variables chosen for
analysis will affect the quality of measurement of a particular variable.

Confirmatory factor analysis is often interpreted as a “measure-
ment” model void of theory about the latent variable relationships
(Anderson and Gerbing 1988). However, a specific theory is never-
theless implicitly embedded in such confirmatory factor analysis, as
will be illustrated later. The fact that the theory is loosely or implicitly
specified does not eliminate its existence or role in affecting measure-
ment properties in analysis; neither does the fact that there are no
degrees of freedom associated with the latent variable relationships
with respect to the covariance structure. Having no overidentifying
restrictions for the “structural portion” of the confirmatory factor
analysis does not mean that a substantive theory is not represented by
the model. It only means that the theory, as is the case with theories
tested by multiple regression, cannot be evaluated in terms of its
covariance structure.

An Illustration

Suppose we are interested in testing the theory of reasoned action
(e.g., Ajzen and Fishbein 1980) with covariance structure analysis.
Figure 2A illustrates the key relationships predicted by the model,
which is henceforth referred to as Model 1. That is, behavioral inten-
tions (BI) mediate all the effects of attitudes toward an act (Aact) and
subjective norms (SN) on behavior (B). Note that no direct paths from
Aact or SN to B are posited by the theory. In other words, intentions
are sufficient to predict behavior.

If one follows a two-step approach, one may start by evaluating
measures with the confirmatory factor analysis. The confirmatory
factor analysis model is given in Figure 2B, and this model will be
referred to as Model 2. In this confirmatory analysis model, the four
factors are free to correlate (e.g., Anderson and Gerbing 1988). It is
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A. The Fishbein Model

B. Confirmatory Factor Analysis “Measurement” Model

s 6’\

C. An Equivalent Model with Theory and Measurement

Figure 2: An Illustration of a Theory Embedded in Confirmatory Factor Analysis
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often claimed that this type of confirmatory factor analysis tests
measurement properties only —no substantive theory is supposed to
be involved (e.g., Anderson and Narus 1984). However, the so-called
“measurement model” in Figure 2B (i.e., Model 2) is, in fact, equiva-
lent to an alternative theoretical model (i.e., Model 3) in Figure 2C
that posits the direct paths from Aact and SN to B as well (Bagozzi
and Yi 1989; Bentler and Speckart 1979, 1981). That is, all the
parameters of one model are functions of the parameters of the other
(see the appendix for proof of equivalence between Models 2 and 3).
Because the two models are equivalent, they will produce the identical
covariance matrices and the same fit to the data (see Bentler 1978).

Therefore, in assessing the confirmatory factor analysis model
(Model 2), one is testing: (a) theory (that all the variables are directly and
indirectly associated), and (b) measurement. However, this is equiv-
alent to testing implicitly an alternative theoretical model (Model 3).
In other words, a substantive theory is implicitly specified in confir-
matory factor analysis. Consequently, a major problem with the two-
step approach is that it does not do what it purports to do. It does not
test “measurement” independent of “theory.” Furthermore, it intro-
duces ambiguity into the interpretation of results because the substan-
tive theory governing the structure of relationships is not made explicit.
A confirmatory factor analysis model is not simply a measurement
model because measurement is evaluated in the context of a certain
substantive theory. In fact, what is being tested are both measurement
and a theory that is not only implicit but also (in this case) different
from the researcher’s original hypothesis. In addition, the two-step
approach introduces ambiguity into the interpretation of results be-
cause the substantive theory governing the structure of relationships
is not made explicit. It is often argued that structural models should
be made explicit, because empirical results are necessarily affected by
theoretical specifications (Horan 1989).

This leads to another problem of the two-step approach with con-
firmatory factor analysis. Because the analysis implicitly imposes a
structure that may be different from that of the original theory, it yields
an evaluation of measures in the “wrong” context (see Figure 2). In
fact, the two-step approach consists of both validating measures in
the context of one theory (i.e., a theory different from the theory of
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interest) and employing these “validated” measures in the context of
another theory (the substantive theory posited by the researcher). It is
difficult to understand why measures should be validated in the
“wrong” context before they are employed in the “right” context.
Rather, measurement validation should be done in a theoretical context
to which it belongs. Otherwise, one is likely to draw inappropriate
conclusions.

Suppose, for example, that a poor fit is obtained from a confirma-
tory factor analysis model. The analyst may either (a) conclude that
the measures are not valid and discard them, or (b) attempt to improve
the fit by modifying the measures (through respecification, exclusions,
or inclusions of measures). In the first case, measures that might have
been appropriate in the context of the original theory may be falsely
discarded, resulting in a Type I error. In the latter case, measures are
being improved in a context different from the one in which they
eventually will be used. Hence the results may not be very relevant
for the subsequent analysis of the original theory.

Suppose, on the other hand, that one obtained a satisfactory fit in
confirmatory factor analysis. One may now conclude that the mea-
sures are satisfactory. However, it is still possible that these measures
may turn out to be poor in the context of the theory of interest. Let us
illustrate the case where a validation of measures via confirmatory
factor analysis leads to a rejection of the measures, but when the same
measures are used in conjunction with a substantive model, the overall
result is acceptable.

Suppose one is interested in testing the Fishbein model of behav-
ioral intentions, as shown in Figure 2A. Assume that each construct is
measured with three indicators, except for behavior (B), which has
two indicators. The observed moment matrix for this example is
shown in Table 1. A two-step approach suggests that one should test
the measurement first by confirmatory factor analysis. If the measures
of the four constructs (Aact, SN, BI, and B) are validated with a con-
firmatory factor analysis model, the results are: x*(38) = 50.84, p =
.08. Suppose we use a rule of thumb, p > .10. This model would be
rejected, and one might conclude that the measures are poor. One may
then either discard these measures or attempt to modify them (e.g.,
either by adding or deleting items).
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However, when measurement and theory are tested jointly, the
following results are obtained: x*(40) = 50.84, p > .11. Using the same
rule of thumb, this suggests that the measures are satisfactory in the
context of the theory. As a consequence, one might have drawn the
incorrect conclusion that measures are unacceptable. In this particular
example, the difference in fit between the confirmatory factor analysis
model and the original model is not that large. However, the difference
could be much more substantial in other contexts, especially when the
number of latent variables becomes large enough that confirmatory
factor analysis introduces many irrelevant parameters into the original
model (see our discussion of A3 later in the article).

Separate Factor Analyses

As mentioned earlier, Burt (1976) proposed separate factor analysis
for each latent variable to assess measurement validity.’ Note that one
does not investigate the measurement properties of a construct in the
context of other constructs in this approach. The quality of measure-
ment for a given construct does not depend on other constructs or the
relationships among them because each is validated separately.

Whereas this approach is logically consistent in the sense that only
one set of measurement loadings is estimated and that these loadings
cannot be affected by other constructs, it is also prone to yielding
misleading conclusions about measurement and theory. For example,
separate factor analyses can point to errors in the specification of
substantive theory when, in fact, the theory is correct. Conversely, this
type of analysis can also lead the analyst to conclude that the measure-
ment portion of the model is acceptable when actually it is not.

An Illustration

Suppose the model in Figure 3A represents a correct model. The
model specifies two causally related constructs (A and B). A latent
variable B, measured with four indicators Y,-Y,, is determined by
another latent variable A indicated by four items X,-X,. Assuming no
sampling errors, the observed covariance matrix will be reproduced
exactly with the true parameter values shown in Figure 3A. That is,
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TABLE 2: Covariance Matrix for the Model in Figure 3A

Y, 1345

Y, 0447 0668

Y, 0521 0313 0.965

Y, 059 0358 0417 0.877

X, 0350 0210 0245 0280 1.00

X, 0175 0105 0122 0140 0250 0.525

X; 0210 0126 0.147 0.168 0300 0150 0.680

X, 0245 0147 0171 0.196 0350 0175 0210 0.645

each element in the sample moment matrix can be expressed as a
function of the factor loadings and the paths. The resulting covari-
ance matrix is given in Table 2. A sample size of 200 has been assumed
for this example. Obviously the fit is perfect (x*[19] = 0.00, p = 1.00,
AGFI = 1.00, RMR = 0.00) because the model specification is correct
and no sampling errors are assumed.

Let us now create misspecifications to demonstrate the limitations
of a two-step approach with separate factor analyses. In Figure 3B, the
measurement models are now misspecified by interchanging one
indicator of each construct (i.e., X, and Y,). Let us now follow Burt’s
two-step approach by examining measurement first and theory subse-
quently. The results of separate factor analysis models for each con-
struct, as shown in Figure 3B, suggest a perfect fit for both constructs
(x*[2] = 0.00, p = 1.00, AGFI = 1.00, RMR = 0.00), even though the
model is misspecified. Given such findings, one may conclude that
the measures are perfect, when in fact they are not. Thus separate
factor analysis may fail to detect specification error in measurement
and fail to reject misspecified items (e.g., X,). However, given perfect
fits for measurement models, the two-step approach would suggest
that the next step of theory testing be taken by assessing the overall
model shown in Figure 3C. When the model is estimated with the
factor loadings and error variances fixed at the values obtained from
the first step, as Burt (1976) suggested, this model gives an unsatis-
factory fit to the data: x*(33) = 70.05, p = .00 (AGFI = .06, RMR = .08).
Even when the model is estimated with free measurement parame-
ters, one gets similar results: x*(19) = 53.51, p = .00 (AGFI = .83,
RMR = .06). These results indicate the rejection of the full model in
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A. A Correct Model

4
.4

’
.6
x2(19)=0.00 p=1.00

B. Separate Factor Analyses for Misspecifed Measurement Models (First Step)

x%2)=0.00 p=1.00 x%2)=000 p=1.00

C. A Misspecified Measurement/Theory Model (Second Step)

x2(19) = 53.51 p=0.00

Figure 3: An Illustration of the Failure to Detect Misspecification in Measurement



Fornell, Yi / LATENT VARIABLE MODELING 309

Figure 3C. Given perfect fits for measurement models in the first step,
the two-step approach would suggest that the theory is incorrect.

Notice that we have a correct theory (i.e., A causing B) but faulty
measures (i.e., Y, for A and X, for B) in this example. However,
following the two-step approach via separate factor analyses leads to
the erroneous conclusion that the measures are perfect but the theory
is incorrect.®

There are also practical difficulties in applying separate factor
analyses to measurement validation. If separate factor analyses are to
be used for measure validation, each construct must have at least four
measures. When there are fewer than three measures, the measurement
model is not identified. If a construct has three measures, the factor
analysis model for the construct is just identified (df = 0) and a
statistical test is not possible (Bentler 1978). Although it is advanta-
geous to have multiple measures of any latent variable, obtaining four
or more measures of each latent variable is not always possible.

Good measures typically should be highly correlated not only with
other measures of the same construct but also with measures of other
related constructs (i.e., nomological validity). In separate factor anal-
ysis, one is evaluating measures in a vacuum by examining measures
of each construct separately. However, measures that appear satisfac-
tory in isolation may be poor in the context of a theory (e.g., measures
may not be predictive of related constructs). Separate factor analyses
evaluate measures by using within-construct covariances only. The
information from across-construct covariances is ignored.

A3. ESTIMATORS ARE (ASYMPTOTICALLY)
UNBIASED, CONSISTENT, AND EFFICIENT

Another presumable assumption (or, at least, desirable condition)
implicit in the two-step approach is that the estimators obtained have
desirable statistical properties. However, as we will soon show, the
two-step approach fails on this score as well.

Let us first examine the statistical problems with a two-step ap-
proach using separate factor analyses. Because separate factor models
limit the analysis to a portion of the system of equations, certain
relevant variables and relationships may be omitted. A brief illustra-
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tion can be given in this respect. Suppose a correct model is specified
in Figure 4A. We have two latent variables, A and B, that are correlated
with each other. Construct A and B share one measure, X,, in addition
to three unique measures. Let A and B be standardized to a variance
at unity and a mean of zero. If we use factor analysis to validate each
construct with a two-step approach, two separate factor analyses will
be performed, as illustrated in Figure 4B. Then,

True Measurement Model: X, =MA+MB + g,
Separate Factor Analysis Model: X, =A,*A +¢,.

If we multiply these two equations by A and take expectations, we get

COV (A, X4) = }\'4 + A.s ¢AB
Cov (A, X,) =A%

Thus, A* = Ay + Ag Ppp.

Note that A * differs from A, by a factor of Ay ¢,p. That is, an
estimator of A,* from a separate factor analysis will be biased except
when A; or §,5 is zero. Similarly, it can be shown that Ag* is different
from Ag; that is, Ag* = Ag + A, dup.

Thus the separate factor analysis model can yield biased estimates
of loadings and thus induce misleading conclusions about reliabilities
of the measures. The estimators will be biased more severely when
the theoretical relationships among the constructs (e.g., $,5) are strong
and when loadings omitted by conducting separate factor analysis
(e.g., Ag) are large.

Separate factor analysis also yields less efficient estimators than
does a joint estimation procedure. Using a two-construct model in
Figure 3 as an example, there are three submatrices in the observed
moment matrix: Sxx, Syy, and Syx. In a joint estimation of theory and
measurement, as in LISREL, the estimation of loadings uses the
information about the variances and covariances among all variables.
For example, we know that

Syx = A, (I-B)" T®A,

where A, and A, are loadings for measures of latent variables (Joreskog
and Sorbom 1984, I. 8). Note that the estimates of the loadings for X;s
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A. A Correct Model

¢AB

B. Separate Factor Analysis Models

x4| [xs| [x6] [x7
SR

Figure 4: An Illustration of Biases in Estimators From Separate Factor Analysis
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and Y;s are functions of Syx (as well as Sxx and Syy) in a joint
(full-information) estimation. But the separate factor analysis uses
only a submatrix of the observed moment matrix. Specifically, it uses
only Sxx and Syy in estimating the loadings for X;s and Ys, respec-
tively, ignoring the covariance information Syx. By not using a sub-
stantial portion of information, the separate factor analysis procedure
will yield less efficient estimators.

The two-step approach using confirmatory factor analysis of all
factors suffers from inefficiency as well. Here, all factors are specified
to correlate freely, which is equivalent to adding unnecessary param-
eters in one’s model. For example, confirmatory factor analysis intro-
duces two additional paths in the model of Figure 2. This is analogous
to one type of specification error called adding irrelevant predictors
in the econometric literature. It is well known in the context of a
single-equation regression model that adding irrelevant parameters
yields less efficient estimators by increasing standard errors (Johnston
1984). However, the same problem can occur for a simultaneous
equation model when irrelevant parameters are added.

In the context of latent variable modeling, Bentler and Mooijaart
(1989) have shown that when there are two competing nested models,
the more parsimonious model yields an estimator of the common
parameters that has smaller sampling variance. That is, the covari-
ance matrix of the estimators under the more parsimonious model is
always smaller than that under the less parsimonious one. Bentler and
Mooijaart (1989) concluded that “From a statistical viewpoint, it is
apparent that the more parsimonious model will be associated with
parameter estimates that are more precise than estimates of the same
parameters obtainable under a more general model that contains
superfluous parameters” (p. 317).

Note that one’s theoretical model is nested within a confirmatory
factor analysis model which posits that all latent constructs covary
with each other (see Figure 2). Suppose we have m constructs and n
structural parameters in the original model. Then, by estimating the
loadings via confirmatory factor analysis, the number of irrelevant
parameters added to the model will be

m(m -1

) -n.
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To the extent that the confirmatory factor analysis introduces addi-
tional parameters, the estimators will become less precise. Therefore,
the theoretically derived original model should be favored over the
confirmatory factor analysis model in terms of precision in estimation.

A4. TESTS ARE INDEPENDENT

To the extent that statistical significance tests are used, covariance
structure analysis is basically a method for confirmatory analysis. That
is, the statistical theory used in covariance structure analysis is based
on the premise that the model itself has been specified completely prior
to any analysis of data (Bentler and Chou 1987). However, two-step
approaches are exploratory in nature. The first step usually includes a
trimming of measures such that data fit is improved. If one alters the
model as a consequence of unacceptable fit to data (by dropping or
adding measures), the analysis is no longer “confirmatory.” Once one
starts adjusting a model in the light of data (here, measurement part),
the model loses its status as a hypothesis (Cliff 1983). When such
data-driven model modification is done, the probability values given
for the statistics may be incorrect and the “true model” may not be
found (Bentler and Chou 1987; MacCallum 1986). In the absence of
strong a priori rationale, such analysis would become a boundless
exercise in empiricism that contributes little toward scientific progress
(Fornell 1983).

Although empirical model modification may produce a model with
a better fit to sample data, the analyst has no evidence that the fit is
also improved with respect to the population. Any empirical search
for model-data fit affects the probability levels of all subsequent tests
based on the same data. This is what happens in the two-step approach:
The same data set that has been used for deciding which measures to
include is used again for testing the theoretical relations among the
variables. Conducting such a sequence of model modifications may
capitalize on chance and increase the risk of making a Type II error
(Bentler 1978; Kaplan 1989). Cross-validation should be conducted
whenever an initial model is modified on the basis of the data (Cliff
1983; Cudeck and Browne 1983).

Proponents of the two-step approach (Anderson and Gerbing 1988)
defend their reliance on statistical testing by referring to Steiger,
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Shapiro, and Browne (1985), who show that sequential chi-square
difference tests are asymptotically independent. Such chi-square dif-
ference tests would be appropriate when all models in the sequence
are hypothesized a priori, but not when some of the models are
developed after looking at the data. Furthermore, as mentioned by
Steiger et al. (1985), sequential chi-square statistics calculated for
nested models on the same data are still correlated. Therefore, the
chi-square test for the final model (chosen through respecifications)
would not be independent of the previous chi-square tests on the same
data. A search process within the same data tends to yield inflated fits
for modified models, increasing the probability of a Type II error. The
implication is that the statistical tests for models that have gone
through a series of empirical modifications cannot be interpreted as
traditional inferential statistics.

The two-step approach has another problem associated with the
chi-square test from both statistical and logical viewpoints. Let us
examine this problem with the example given in Figure 2. The two-
step approach would involve testing Model 3 of Figure 2C in the first
step and then testing Model 1 of Figure 2A in the second step. The test
statistic from Model 3 will follow a chi-square distribution, assuming
that Model 3 is true. If Model 3 is correct, however, the test statistic re-
sulting from Model 1 will follow a noncentral ¢’ distribution (Satorra
and Saris 1985). That is, the chi-square value for Model 1 is, in fact,
the noncentrality parameter of the noncentral x’ distribution under the
alternative model (Model 3). In general, the chi-square test is based
on the assumption that a given model is correct. So, by interpreting
the chi-square value from Model 1 as a x’ statistic, a researcher
implicitly assumes that a different model (Model 1) is correct, which
contradicts the previous assumption that Model 3 is correct. The logic
is difficult to follow, because either Model 1 or Model 3 is correct, but
not both.

DISCUSSION

Even though methods are now available for the joint analysis of
measurement and theory, several researchers have recently recom-
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mended a return to the old tradition of establishing measurement
validity before the measures are used in a substantive context. Cer-
tainly, much empirical work is performed in this way, and, before the
advent of programs such as LISREL, RAM, EQS, COSAN, and PLS,
it was very difficult to carry out a joint analysis of measurement and
theory. Before any wholesale recommendation can be made for return-
ing to seemingly simpler and separate forms of analysis, however, one
would first have to identify the assumptions associated with this
approach and evaluate the extent to which they can be met.

There are at least four categories of assumptions behind a two-step
approach. It is assumed that (a) theory and data are independent, (b)
results of factor analysis specifications can be generalized to other
model specifications, (c) the estimators have desirable statistical prop-
erties, and (d) the statistical test in the second step can be treated as
independent of the first. It was found that it is difficult to meet these
assumptions.

Measurement and theory are not independent, no matter what
method is used to separate the two. Measurement and theory are in-
extricably linked because theoretical concepts are defined not merely
in terms of their empirical conditions (measurement) but also in terms
of the theoretical context in which they occur (Hanson 1958; Kuhn
1970). As a consequence, measurement validity is always examined
in the context of some substantive theory whether or not the analyst
wants this to be the case. That is, even if a two-step approach is used,
measurement is evaluated within some substantive theoretical frame-
work. Attempts to artificially separate measurement from theory are
likely to produce misleading conclusions. We provided several ex-
amples to illustrate this. From a purely technical point of view, sam-
pling error and less-than-perfect model specification will always result
in measurement-theory interdependence with respect to covariance
structure analysis (Kumar and Dillon 1987).

It is also shown that parameter estimates cannot automatically be
generalized from one model specification to another. At the very least,
the consequences of the differences in specification must be consid-
ered. If the factor model is a correct specification, the structural model
may not also be correct. Consequently, model specifications in any
two-step approach are less than ideal. Generally, they exhibit bias and
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inconsistency as well as inefficiency. Steiger et al.’s (1985) findings
that sequential chi-square difference tests of the covariance fit are
independent do not provide a license for adjusting a model in light of
the same data against which it is being tested. Not only will this make
standard statistical inference difficult but it may also cause bias in
estimates (Larson and Bancroft 1963; Selvin and Stuart 1966).

On the other hand, one cannot overlook the difficulties with a
one-step approach. It requires that a researcher have an explicit theory
before measurement validation. But when one does not have a sub-
stantive theory, such as in pretests, scale development, in the early
stages of confirmatory studies, or in construct validation studies as an
end, atwo-step approach might be justified (cf. Bagozzi 1983). In such
cases, the results should be interpreted as exploratory with the under-
standing that they may not generalize to other contexts. A one-step
approach (especially with simultaneous estimation) may also be dif-
ficult to apply in the case of severe misspecification because the errors
are spread throughout the parameter system.

It is important to realize that the issue of a one- versus a two-step
approach is much broader than the choice of statistical estimation
method. Regardless of what form of estimation is used, the estimation
method does not distinguish between a measurement model and a
structural model. The question is: Should information about one part
of the system be ignored even though its inclusion might change the
way we view the system as a whole? If the answer is no, the question
with respect to latent variable modeling becomes: How do we best
incorporate this information? This is a matter of estimation (which
depends on many factors not discussed here).

However, we are not claiming that a one-step approach is superior
to a two-step approach. It is important to have a balanced perspective
on the issue of measurement validation and theory testing by under-
standing the relative strengths and weaknesses of a one-step and a
two-step approach. Because the difficulties with a one-step approach
are well documented in the literature, they have not been mentioned.
On the other hand, the literature has not discussed the assumptions
associated with the alternative approach. We believe that the choice
between a one-step versus a two-step approach must be governed by
the extent to which one can live with the assumptions of the latter as
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the price of overcoming the difficulties in applying the former. Con-
sequently, we have attempted to pinpoint the implicit assumptions
underlying the two-step approach, examine the extent to which the

assumptions can be met, and illustrate the consequences of violating
assumptions.

APPENDIX

This appendix shows that the two models in Figures 2B and 2C are equivalent.
For simplicity, let us denote Aact, SN, BI, and Bby A, S, I, and B. Assuming that they
are standardized, we can denote the intercorrelations among four latent variables in
Figure 2B with ¢ag, G, Pap> Psi Psp, and ¢5, Where g refers to the correlation
between A and B. Similarly, the model in Figure 2C can be represented with the
parameters of ¢* o, Y11, Y12> Y1» Y2» and B; for example, y,; designates the path from A
to I. Then we have the following equations.

Pas = 0*as
a1 = Y11 + ¥120% as
®aB = Y21 + Y11B + (Y22 + Y12B)d*as
st = Y12 + Yu®*as
$sB = Y22 + Y12B + (Y21 + Y11B)d* s
$i8 = B + YirYa1 + Y12¥22 + Y110 * as (Y22 + Y128) + Y120 * as(¥21 + Y11 B)

All the parameters in the model in Figure 2B are functions of the parameters of
the model in Figure 2C. Therefore, the two models are equivalent.

NOTES

1. Special issues are omitted in calculating the percentage because the publication of a
special issue may overrepresent an area. When articles published in special issues are included,
the percentage becomes 9.7%.

2. We will use the term “measurement” to describe the set of epistemic relationships between
manifest indicators and latent variables, and the term “theory” or “structure” to describe any
kind of relationship, whether a causal relation or covariation, among latent variables.

3. There are many other important problems in latent variable modeling, such as improper
solutions empirical underidentification and use of categorical variables (e.g., Bollen, 1987;
Muthen and Kaplan, 1985; Rindskopf, 1984). However, these are not considered here because
they are the problems common to both one-step and two-step approaches.

4. We use the term “confirmatory factor analysis” model to include not only the relationships
of the indicators to their underlying factors but also the intercorrelations of the factors with one
another, which is consistent with the recommendation by Anderson and Gerbing (1988). This is
also called a “group-factor” model by Rindskopf and Rose (1988).
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5. Separate factor analysis has also been referred to as “within-block factor analysis” (Burt,
1976).

6. We have also examined the possibility that the pattern of normalized residuals would show
the nature of misspecification. In the first step, all the normalized residuals were zero. When we
looked at the normalized residuals for each factor in the second step, none of them were large.
Specifically, within-construct normalized residuals ranged from -0.011 to +0.005 among the
four indicators for Construct B (i.e., Yy, X, Y3, and Y,), and from —.003 to .000 for the four
indicators of Construct A (i.e., X;, X5, X3, and Y,). These results suggest that the measurement
part of the model is correct. On the other hand, six across-construct normalized residuals were
large. These results altogether seemed to suggest that the theoretical part is wrong, whereas the
measurement part is correct. Thus the pattern of normalized residuals could still be misleading
as to the nature of misspecification.
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