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ABSTRACT

A model was developed for calculating the motion of dilute suspensions of
rigid, slender particles in a uniformly sheared viscous liquid, taking into ac-
count interactions between particles. The model was applied to the plane
Couette flow problem in which particles are suspended in a liquid moving
parallel to a plane with a uniform, shearing motion. The results of the model
were compared to existing data, and good agreement was found between the
calculated and experimental results. Using the model, results were also ob-
tained which illustrate the major effects of particle-particle interactions on
the angular motion of the particles.

INTRODUCTION

Numerous investigators have addressed the problem of the motion of par-
ticles suspended in a flowing liquid (e.g. see the summaries [1-3]). How-
ever, the existing analytical results pertain only to single particles. Analytical
results are as yet unavailable for flows in which particles interact with each
other. The objective of this investigation was, therefore, to develop a model
which describes the motion of slender particles suspended in a sheared, viscous
fluid, taking into account particle-particle interactions.

The basic concepts of the model are described first. The model is then ap-
plied to the problem of dilute suspensions of slender particles suspended in a
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fluid moving parallel to a plane with a uniform shearing motion (Couette
flow). This problem was selected for detailed analysis because data exist which
can be used for comparison with results of the model.

THE PROBLEM

The following problem was investigated. Particles are suspended randomly
in a Newtonian liquid. The flow field of interest is large in comparison with the
particle size and interactions between particles and the walls bounding the
fluid are neglected. The viscosity of the liquid is high, so that the inertia forces
acting on the particles are negligible compared to the viscous forces. The par-
ticles have the same density as the liquid. The concentration of the particles is
low, so that a) the mean velocity field of the liquid is not influenced by the
presence of the particles, b) the viscosity of the particle-liquid mixture is the
same as the liquid viscosity, and c) only two particles may interact at any given
time. The particles are rigid rods, their shapes being approximated by prolate
spheroids. The aspect ratio of each particle is

Ye =

a
5 (1)
where a and b are the lengths of the major and minor axes, respectively. The
particles are not necessarily of the same size. The aspect ratio may be different
for different particles, but for each particle the condition r, >> 1 must be met.
At time t = 0 a known velocity gradient is imposed on the liquid. This
velocity gradient is uniform and constant throughout flow field of interest

Gy = Ou; nst Q
2 = —= = CO .
4y ax,- )
where i and j represent coordinate directions (Fig. 1). The components of the
mean flow velocity u; vary with position in the following manner.

3 au,-
up= X =X 3)

j=1 9Xj

The shear stress resulting from the flow causes the particles to undergo
translational and rotational movements. The problem is to determine the posi-
tions of each particle and the average orientation of all particles as functions
of time. The average orientation may be expressed by the mean projections of
the particles on the x,, X;, X, axes (Fig. 1)

M=

X1 = sin 6] Cos ¢l

1
Nj
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1 N
X, = — 2, sinfsing @)

j=1

=

iM=

]lV cosf;

The translational velocity of each particle is assumed to be the same as the
fluid velocity at the location coinciding with the center of mass of the particle.
Particle-particle interactions are assumed to alter only the angular motion of
the particle but not its translational motion. Hence, by knowing the fluid
velocity, the translational motion and the position of each particle can readily
be calculated. Thus, the problem is to determine the average angular motion of
the particles, expressed in terms of the mean axial projections (egs. 4).

THE MODEL

In the model proposed here the motion of each particle is followed. At any
given instant a particle must either be in ‘‘collision’’ with one other particle or
is moving without interference from any other particle. The collision condition
is defined subsequently. The angular motion (angular velocity w and angular
position ¢ and 0, Fig. 1) of each particle is then calculated according to one of
two procedures.

Figure 1. Coordinate system used in the calculations.
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(i) In the absence of ‘‘collision’’ the instantaneous angular motion of each
particle is calculated using Jeffery’s results [4] summarized in the appen-
dix.

(ii) When two particles ‘‘collide’’ the angular velocity and orientation of
each particle after the collision are calculated on the basis of two assump-
tions regarding the velocities at the points of contact (A or B, Fig. 2). The
contact point is defined as the intersection of the line coinciding with the
major axis (line 1, or 1) and the line perpendicular to both 1, and 1 (line
L). The ““contact line’’ L is the shortest line between 1, and 1.

The velocity components normal to the contact line remain unchanged dur-
ing the collision

Vna = Vna and Vap = Vg (5)

The prime indicates velocities after the collision.

After collision the velocity components parallel to the contact line are the
same for both particles and have the value equal to the average of the two nor-
mal velocity components just prior to the collision

14 1 ! 1
Yea =Yg = Vp =75 (Ypa *+ V) (6)
Expressions suitable for calculating the positions of the contact points, the

angular velocities, and the angular positions of the particles are given in the
appendix.

Center of Mass . - Center of Mass

Figure 2. Geometry during collision of particle A and particle B.
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In order to establish whether or not two particles are colliding, a ‘‘probability
of collision’” P, is defined

am

Pe = Gata)

(M

where o« and m are constants and s is the distance between the centers of masses
of the two particles under consideration. Two particles are taken to be col-
liding (and their angular motions are calculated according to step ii above)
when the probability P is greater than some random number R

P, > R — collision (8)

Two particles are taken to be moving independently (and their angular mo-
tions are calculated by Jeffery’s results, step i) when the probability P_is less
than some random number R

P, < R - no collision 9)

The constants @« and m may depend on the aspect ratio. The values of these
constants must be determined by matching the results of the model to data. An
estimate of the value of m can be made by observing that—according to
Jeffery’s results—the disturbance in the mean velocity field due to the presence
of a particle |Ay|/|u| decays inversely with the cube of the distance from the
particle. With the value m = 3 the probability of collision P, also decreases in
inverse proportion to the cube of the distance. Accordingly, eq (7) becomes

Ol3

Fe = Gla + @y

(10)

METHOD OF SOLUTION

The model described above, together with the expressions given in the ap-
pendix, can be used to calculate the motion of the particles. Solutions must be
obtained by numerical methods. To facilitate the calculations the liquid region
of interest is enclosed by a control volume (Fig. 3). Number of particles are in-
serted into the control volume in a random manner. The size of each particle
must be specified. The dimensions of every particle may be the same or may be
different. In practical situations the aspect ratios of the particles frequently
vary about a mean T, in a Gaussian manner. In this case the probability
distribution of r, may be expressed as [5].

(re - 7e)2

w2+ i oa [ 557]

By specifying the standard deviation o, the mean valueT,, and the total number
of particles N, Box-Muller’s transformation [6] can be used to obtain r, values

(1
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Figure 3. Plane Couette flow problem and control volume used in the calculations.

for each particle so that the above distribution (eq 11) is satisfied. Prepro-
grammed computer subroutines are available for such calculations.

The initial position of the center of mass xem and the initial orientation (¢$, 6)
of each particle may be selected with the aid of random numbers (R;-R;)

cm - cm cm
X1 S H{Ry, x" =H,R,, X3 = H3R;

_ . (12)
¢=2nR,, 0 =cos™ (1 -2Rs)
where H,, H;, and H; are the dimensions of the control volume. The velocities,
positions, and orientations of every particle are then calculated at subsequent
small time intervals using eqs (A.7)-(A.14) for particles moving freely, and eqs
(A.2)-(A.6) for particles undergoing collisions.
For a particle moving freely the motion of the particle depends on the initial
(t < 0) orientation of the particle. This initial orientation is specified by the
““orbit constant’’ C. The value of C is calculated for each particle [7].

_ tan@ (r? cos2g + sinp)'/?
Te

c (13)
C is then taken to remain constant until a collision occurs. After collision a
new value of C is calculated for each of the two colliding particles.

The collision condition for each particle is determined by calculating the col-
lision probability P (eq 10) between the particle under consideration and the
particle nearest to it, and by comparing this probability to a random number
(egs 8 and 9). Because of the assumption of a dilute suspension collision of a
particle with any particle other than its nearest partner is neglected.

The mean axial projections are calculated at each time step using eq (4).

Because of their translational motion particles may move out of the control
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volume. To maintain a constant particle concentration (i.e. a constant number
of particles in the control volume) a new particle is introduced for each leaving
particle. The x, and x, coordinates of each new particle is again selected ran-
domly with the aid of random numbers. The x, coordinates are selected to cor-
respond to the distance travelled by the leaving particle beyond the control
volume.

(xzcm)L

—_) Hg andx3°m =H3R (14)
H,

Xf™ = Hy VR, x5 = (o™ - 1
where I indicates the integer part of the term in paranthesis and (x,m), is the
coordinate of the leaving particle. For convenience, the orientation of the new
particle is assumed to be the same as that of the particle which left the control
volume.

RESULTS

Using the model described previously, mean axial projections were calcu-
lated for particles suspended in plane Couette flow. The mean flow velocity, u,
was parallel to the x, axis and the velocity gradient (G., = G) was in the x,x,
plane (Fig. 3). A cube shaped control volume was used in the calculations.
Sample calculations were performed with different numbers of particles in the
control volume. It was found that the results did not change significantly when
100 or more particles were used. Therefore, all subsequent calculations were
performed with 100 particles. The size of the control volume was then chosen
to yield the required particle concentration.

Two sets of calculations were performed. First, results were generated for
comparison with data. Second, results were obtained which illustrate the main
effects of particle-particle interactions on the average orientation of the par-
ticles.

At a given time t, the average particle orientation depends on the velocity
gradient G, the particle concentration n, the particle length a, and the aspect
ratio r.. The aspect ratio may be specified either by giving r, for each particle
or, for Gaussian size distribution (eq 11), by specifying the mean T, and the
standard deviation o.

In the first series of calculations results were obtained with.G = 0.5 s,
n = 20, 50 and 100 cm3, a = 0.72 mm, T, = 11.6, and o = 3.6 percent.
These values correspond to the conditions which existed in Okagawa and
Mason’s experiments [8].

The mean projections on the x, axis as functions of time are shown in Fig. 4.
In this, and in all subsequent figures, time is expressed in dimensionless form
t/T, where T is the period of rotation of a single particle [4].

27 1
= — + -
T=7 (et =) (15)
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Figure 4. Comparisons between calculated and measured mean axial projections for different par-
ticle concentrations. (G = 0.5s-1,7, = 11.6, 0 = 3.6%, a = 0.72mm, a = 0.5)

In Fig. 4 the data of Okagawa and Mason are compared to the results of the
model computed with a = 0.5. The excellent agreement between the results of
the model and the data creates confidence in the validity of the model.

Anczurowski, Cox & Mason [9] also obtained data for particles with a mean
aspect ratio of 14.2. Anczurowski and his coworkers reported mean axial pro-
jections at four different times. These four data points are shown in Fig. 5.
Results of the model (obtained again with @ = 0.5) are also included in this
figure. At t/T = 3 there is good agreement between the result of the model
and the data. This agreement further supports the model, and suggests that the
constant a is insensitive to the value of T, at least in the T, range of about 10 to
15.

According to the model, the mean axial projections should remain constant
after their steady state values are reached. On the other hand, the values of X,
X,, and X;, measured by Anczurowski et al changed after the oscillations were
damped out (Fig. 5). The precise reason for these changes is unknown. The
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Figure 5. Comparison between calculated and measured mean axial projections. (G = 0.5 s-,
T, =14.2,0 = 85%, a = 0.362 mm, n = 500 cm’3, a = 0.5)

gradual changes in the mean axial projections may have been caused by a) non-
Newtonian effects [10] or b) “‘long range’’ disturbances in the primary flow
due to the particles.

Okagawa & Mason [8] also reported data for particles with a mean aspect
ratio of 3.96. In these experiments, initially (t = 0) the major axes of every
particle were supposed to be parallel to the x, axes. Since the imposed velocity
gradient G was in the x,x, plane, there should have been no collisions between
the particles and the major axes of the particles should have remained in the
XX, plane. However, in the experiments, particles collided and their axes did
not remain in the x,x, plane. The reason for this may have been that either the
particles were not placed exactly in the plane of shear, or the particles were not
slender or perfectly symmetric. Thus, unfortunately, these data are not suitable
for comparison with the model.

The model is now used to illustrate the effects of collisions on the angular
motion of the particles. A single particle suspended in unform flow rotates
continuously in a periodic manner. Such a periodic motion is predicted by
Jeffery’s theory (eqs A.3-A.6), and has been demonstrated by experiments [7,
11-14]. The period of one complete rotation T is given by eq (14). The angular
velocity of the particle is not constant, but changes as the angle ¢ increases.
Because of this non-uniform angular velocity, the mean axial projections of a
large number of non-interacting particles (all particles having the same dimen-
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Figure 6. Mean axial projections as functions of time. Top: Large number of uniform size
(o = 0%) non-interacting particles. Initial particle orientation is random. Middle: Non-
interacting particles having different sizes. (o = 3.6%) Bottom: Interacting particles all having
the same dimensions. (n = 50 cm3, @ = 0.5) ForallcasesG = 0.5s,,7, = 11.6,a = 0.72 mm.

sion) also vary periodically, as illustrated in Fig. 6. The period of oscillation is
the same as the period of oscillation of a single particle. The amplitude of
oscillations is approximately half the particle length and is constant. Since the
mean axial projections are based on unit particle length (eq 4), the amplitude
of oscillation of X, is approximately 1/2. The exact value of the amplitude
depends on the aspect ratio.

The oscillations in X, become damped when particles interact with each
other and when the aspect ratios of the particles are different. Such damping
has been demonstrated experimentally [8] and is also predicted by the model,
as illustrated by the typical results in Fig. 6. The oscillations die out (and the
mean axial projections reach a steady state value) after a few rotations, in con-
trast to the undamped osciallations of non-interacting, uniform size particles.

It is interesting to note that the period of oscillation is practically unaffected
by collisions or by differences in particle size (Fig. 6). On the other hand the
rate of decay of the oscillations depends on both of these factors. The oscilla-
tions decay faster as the concentration (and consequently the number of colli-
sions) increases (Fig. 7), as the particles become longer (Fig. 8), and as the dif-
ferences in the aspect ratios of the particles (represented by the standard devia-
tion) become larger (Fig. 9). The results in Fig. 10 further illustrate the effects
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Figure 7. The effect of particle concentration on the amplitude of oscillation in the presence of
particle-particle interactions. All particles have the same dimensions. (r, = 11.6, G = 0.5 51,
a= 072mm, a = 0.5)

A,
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Figure 8. The effect of particle length on the amplitude of oscillation in the presence of particle-
particle interaction. Every particle has the same ratio T, = 11.6. (G = 0.5 s/, n =50 cm-3,
a = 0.5) A, is defined in Fig. 7.
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Figure 9. Changes in the amplitude of oscillation for a collection of non-interacting particles hav-
ing different aspect ratio about the mean, (eq. 11). (r, = 11.6, G = 0.5 571
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Figure 10. The amplitude of oscillation with and without taking into account particle-particle in-

teractions.
Particle-particle interactions included in the calculations.
---------- no particle-particle interactions.
(r,=11.6,G =055, a=072mm n = 50cm’ a = 0.5)
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of both collisions and o on the rate of change in the amplitude of oscillations.
The amplitude decays much faster when collisions occur than in the absence of
particle-particle interactions. In Fig. 7-10 only the X, amplitude decays are
shown. The amplitudes of X, and X; decay in similar manner.

The steady state values of the mean axial projections of interacting particles

N

= 1

X = o3 (P (16)
k=1

are related to the time averaged orientation of a single particle.

1 T
<Xp> = = f X;(t)dt (17)

The relationship between these two parameters could best be demonstrated by
calculating )—(i" and < X; > and by comparing their values. Unfortunately, X,
depends on the initial orientation (i.e. on the orbit constant, eq 13) of the par-
ticle. Thus < X; > does not have a unique value, and a direct comparison can-
not be made between X* and < X; >. However, an indirect comparison can be
made by comparing the number averaged steady state value of the angle ¢* for
all those particles which have ¢* values between 0 and n/2

— 1

N
¢ =N E ®; (18)

to the time averaged value of <¢> of a single particle

| T/
<¢p>= ﬂ '[O odt (19)

where, for a single particle, ¢ is [4]
2mt
¢ = arctan [7, tan (7 )] (20)

Equations (19) and (20) show that <¢> depends only on r,. The nature of
this dependence is shown in Fig. 11 where the values of <¢>, calculated by eqs
(19-20), are given. The number of averaged steady state values of the angle
(calculated by eq 18) are also included in this figure. As can be seen, for dilute
suspensions such as considered here, <¢> and ¢* agree closely, implying that
the steady state values of the number averaged orientations of interacting par-
ticles are related to the time averaged orientation of a single particle.
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Figure 11. Comparison between the time averaged value of ¢ for a single particle <$¢> and the
number of averaged steady state value of $ for interacting particles ¢ . (G = 0.5 51

Finally, it is noted that the motion of the particles may also be expressed by
projections of the particles on the x;xX., XX, and x,x; planes.

1 N
leg = = z sinf;
N 5
. 1 X
X X; = N S (cos?0; + sin0; sin8,)/? (21)
i=1
1 X
X, X; = ~ Z (cos?8; + sin?6; cos?6,)'/?

~.
n
—

Typical results illustrating planar projections are presented in Fig. 12.
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APPENDIX

The expressions used in calculating the angular motion of the particles are
summarized below.

No collisions. The components of the angular velocity of a single ellipsoidal
particle in uniformly sheared flow are [4]

_1(3Us 3y,
CTONR, T 9k,

1 AU, AU,
= pr —— - 22 — Al
“2 a2 + b2 ( aX3 4 axl )
1 aul all2
S L
“s a* + b? ( 0%, 0%,

The above expressions are for a cartesian coordinate system attached to the
particle with the coordinate axes coinciding with the axes of the particle. In
order to obtain the angular velocity as a function of position and time, the
rotating coordinate system (X)) must be transformed to a stationary system. In
general, the calculations can oniy be performed by numerical methods.
Closed form solutions can be obtained for particles in plane Couette flow [4]

d¢ . .

o ¢ = 71 (r? cos?¢ + sin2¢) A2
o . -1

6 5o Glem D onng A3

dt 4r2+ 1)

Integration of the above two equations yield

tang = r, tan (277”) A4
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Cr,

tanf = A5
: (r2 cos?¢ + sin¢)1/2
where
27 1
= — + — A.6
d G (re e >

The value of the integration constant C (‘‘orbit constant’’) can be determined
from the known initial values of ¢ and 8. The value of C is assumed to remain
the same as the particle moves [15].

Particles Colliding. The angular velocity and the orientations of a particle
after a collision are calculated as follows.

(i) Just prior to collision the positions of the centers of masses and the
orientations of the major axes of the two colliding particles are
known. From this information the position of the contact line L and
the positions of the contact points C, and C, (Fig. 2) are determined.

(ii) The velocity of each contact point before the collision is calculated

Ve=Vpt+twXr A7

where V. is the translational velocity of the center of mass (and is
equal to the instantaneous local fluid velocity), w, is the angular
velocity, and r is the vector connecting the center of mass and the con-
tact point.

(iii) V. is decomposed into two components, one being normal and the
other one parallel to the contact line L (Fig. 13)

Ye=VatVp A8

(iv) The normal and parallel velocity components after collision are deter-
mined

Vida =WVada (Vs =(Vals A9

(Vpha = s = T8 = 5 1(Ve)a + (V3] A.10

The subscripts A and B denote the two colliding particles, the prime
represents velocities after collision.
(v) The velocities of the contact points after collision are evaluated
Vi=VutVp A1l

(vi) The contribution of the translational velocity is subtracted from V'
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Figure 13. Vectors representing the motion of the contact point before (Fig. a) and after (Fig. b, c,

d) the collision.

Yi=Yi- Vi A12
and V' is decomposed into two components S’_/, and _\:{’s, where V',
and V'  are normal and parallel to the major axis, respectively (Fig.
13).

(vil) The angular velocities of the particles after collision are obtained
from the expressions

N d(p’ 1 ' : '
¢ = —dt = ‘;‘ ("' Vrl Sln¢ + Vr2 COS¢)
A13
. de' 1 pw :
§' = o (V;, sinf cosp + V7, sinf sing - V., cos6)

V', V', and V' are the components of _\:’", in the x,, x, and x,
directions. The orientations of the particles after collision are

¢'=¢+¢'Atand0' =0+ §'At A.14

where At is the time step used in the calculations.
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