
34

A SOFTWARE DEVELOPER’S WORK
IS NEVER DONE

John Bigelow
Boise State University

Joe Garcia
Western Washington University

Dale Rude

University of Missouri

Andrea Warfield
University of Michigan

Have you ever toyed with the idea of taking a deep dive into the third age
by developing software to enhance current technologies for teaching OB?
Perhaps you’ve been dissuaded because of lack of technical knowledge, an
inability to program, you haven’t a clue as to what would be involved in
creating a top notch product, or you don’t know how your institution
would view such a project. Well, now perhaps you can put those fears and
apprehensions to rest. The authors of this article, all active members of the
Microcomputer Interest Group of the OBTC, share with you the realities of
software development in the field of organizational behavior with in-depth
descriptions of their own experiences as software developers.

Software development for teaching organizational behavior is at a very
primitive stage of development at this time. Because there are no established
overriding principles for such a venture, the authors offer four separate case
histories of their projects as a basis for deriving principles and guidelines for
future undertakings.
John Bigelow, a well-known name in both the Microcomputer Interest

Group and the OBTC, begins with a very general approach by addressing
various questions a novice may have regarding software development and
reviewing a number of computer projects he’s been involved in. He adds an
extra focus to his discussion on student, faculty and administrative response
to his projects.
The projects of Andrea Warfield and Dale Rude are in sharp contrast.

Warfield, who had scant technical or programming knowledge when she
began her project, compensated for that lack of knowledge by acquiring a
piece of software called an authoring system which enables one to use the

35

microcomputer as an instructional tool. Warfield describes her experience
in authoring a computer-based leadership training program based on
Robert Quinn’s Competing Values Leadership Model. Dale Rude, on the
other hand, who is perhaps the most technically oriented of all four
authors, programmed his own policy capturing software called the Decision
Analysis System. Rude points out that there are disadvantages as well as ad-
vantages to doing your own programming!

Finally, Joe Garcia goes one step beyond software development and
describes his project of developing an entire integrated package of an
organizational behavior text, instructors manual, and accompanying
microcomputer simulation. Garcia discusses both the dynamics of team-
work needed to create such a product as well as the new working relation-
ship with publishers when a software product is added to a text package.

John Bigelow, Boise State University

For the last four years I have spent a significant part of my professional
life developing software for use in my OB and Management classes. The
purpose of this paper is to share what I have learned during this process.
Others interested in engaging in software development may be interested in
this narrative, since it may help them bypass some of the time-consuming
trial-and-error learning which I underwent.
The process of software development might be thought of as the answer-

ing of a series of questions, something like the following:
(1) Should I invest time in software development?
(2) How can I get an idea for development?
(3) What resources can I call on in developing a program?
(4) How do students respond to software innovations?

(5) How does software development impact on my professional stand-
ing ?

In the following pages I will discuss each of these questions based on my
experience.

Should I Invest Time in Software Development?
I think that a number of personal and institutional factors need to be

present before engaging in software development makes sense. These are as
follows:
One is interested (not necessarily skilled) in the process of software

development. Development of software requires a fair amount of commit-
ment. Unless one finds this process interesting, one will probably not ex-
perience it as worth sticking to through completion. On the other hand, one
need not have a lot of experience or expertise in the area. Because I find

writing programs interesting, I have taken the time to obtain the necessary
hardware and software and have learned to program. Others may choose to

program in simpler languages or simply find someone else to do the pro-
gramming work. In addition I believe that there are a lot of possibilities for

36

microcomputer applications in the OB/Management area, but that there are
not a lot of professional software developers working in this area-and
those applications that do exist tend to be pricey. By developing my own
software I bypass the need for finding money for purchasing multiple
copies, and create software to my own specifications.

Sufficient computer resources are at least potentially available. Many
universities are still in the process of coming to grips with microcomputers
and their use. It may not make a lot of sense to develop a computer applica-
tion unless there are enough computers available to reasonably implement
the application. On the other hand, one might elect to do some software
development as a way of eliciting funds for the hardware. My work in soft-
ware evolved concurrently with a university-wide drive to implement
microcomputers and other new technologies into teaching. As a result there
are a number of microcomputer labs available to students using my soft-
ware.

There is a reasonably positive climate toward such activity in the college.
I think it’s important for there to be some institutional support for software
development. Of course, a university is not just one thing, and one may find
that different sectors (e.g., faculty, chair, dean, and president) may have
differing opinions. In my setting there is mixed support. At a higher level
(president, dean, and chair) involvement in developing uses for new

teaching technologies is viewed quite favorably. On the other hand, faculty
attitude is more ambivalent. Some faculty have little experience with
microcomputers and oppose investment in microcomputers because they
might draw funds from other more desirable channels. In addition, criteria
for promotion and tenure still do not place much prominence on classroom
innovation. The first step of promotion and tenure involves consideration
by a faculty group which would quite possibly include members who may
neither know much about or support the use of microcomputers, and may
not place much weight on the activities in any event.

In deciding to engage in software development then, I realized that the
pros and cons were mixed. As (at that point) an untenured associate pro-
fessor, I realized that the impact of software development on my career was
ambiguous, In the final analysis I recognized that there was some risk in
spending time on software development, but that my own motivation,
values, and the potential benefits outweighed the risks.

How Can I Get an Idea for Development?

My own ideas for development have sprung from a conjunction of
reading about and trying others’ programs and thinking about what I can
do that would be educationally useful and facilitated by a computer pro-
gram. In addition, my thinking about computer uses has evolved through
the process of trying out computers in the classroom and inviting students
to contribute their ideas.
The idea for my first program came from reading about a program which

advised managers about how to carry out certain interactions. I thought,
&dquo;wouldn’t it be nice to have a program which led management students
through some contingency theories in a structured way?&dquo; This eventually

37

led to a program which incorporated some management theories and al-
lowed students to apply them via a set of questions.

I tried this program out as a basis for organizing a number of introduc-
tory management courses and found that the program was in essence too
&dquo;thin&dquo; - the ideas were dealt with in their most abstract forms with little
support for understanding or applying the concepts. My thinking shifted in
two ways. First I began to appreciate the importance of a &dquo;rich&dquo; interface
between student and computer, and second, I began to think about having
students develop the advisory system instead of simply being users. I began
to read about expert systems and tried out one (MicroExpert) in class. While
this was one of the few expert system shells which was suitable for class use
in my setting, its interface was too thin. Thus began my second project -
the development of &dquo;Advisor&dquo; - an expert system shell which was easy to
learn and had provisions for a &dquo;richer&dquo; interface. This project turned out
rather well, and I continue to use (and refine) it as the basis for a group
project in my management course.
A third project stemmed from my reading about a number of programs

which simply translated existing paper and pencil instruments to a com-
puterized form. The advantage was that it was more easily administered,
and the evaluation and some interpretation could be done automatically. I

began thinking about what kind of instrument would be useful in my
classes. There are a number of instruments used in my organizational
behavior course, but I decided it would be better to create my own, to avoid

copyright problems. I finally decided on a &dquo;management readiness&dquo;
preassessment instrument which would tell beginning management students
about what managing entailed, where their strengths and opportunities for
development lay, and what they might do to develop their management
readiness. This line of thinking led to development of a &dquo;Management
Readiness Tutor&dquo; which I’ve used as an early individual assignment in my
management course, and which I think might well be required of anyone
wanting to take a management major.
A fourth project evolved from my ad hoc efforts to use computer pro-

grams to manage class data. I realized that I tended to use simple grading
techniques simply because it was too tedious and inaccurate to carry out
more complicated grading procedures by hand. It dawned on me that if I
took the trouble to enter scores into the computer, I could do anything I
wanted. Recently I collected together some programs into a &dquo;Class Data

Manager&dquo; which allows entry and manipulation of class information in a
variety of ways. This has permitted me to do things with the data that would
otherwise be too tedious to do. These include: (1) sorting student scores in
various ways (e.g., by group, student alias, and class rank), (2) forming
groups on the basis of FIRO scores or heterogeneity, (3) finding ways to
recognize a variety of forms of student accomplishment, and (4) giving live
exams scored directly on the computer.

I’m aware of a number of applications which have already been con-
ceived of and are being worked on. These include: (1) programs which ad-
vise people about person-specific interactions, (2) interactive cases where
students are provided case information in increments and the case evolves

38

according to their decisions, (3) group problem diagnostics and advice, and
(4) expert systems which apply conceptual frameworks in the context of a
situation. I’m sure there are many potential applications which have not yet
been thought of.

I’m coming to realize that most of the applications I’ve thought of or
others have thought of are in the category of taking something already be-
ing done and using a computer to do it - hopefully better. If we think of
computer uses in class as a socio-technical intervention, we might also think
about how computers can transform the learning process into forms not yet
used or conceived of.

What Resources Can I Call on in Developing a Program?
Once the idea for a program has been germinated, it remains to translate

the idea into a workable reality. The process of doing this generally will in-
volve choosing what computer to develop and implement the software on,
what software medium to work through, obtaining of institutional support,
and trying out the software to see how it works.

Hardware. In general it’s a good idea to develop the program using the
computer on which it will be implemented. That is, if the school has IBM-
PCs, develop it on an IBM-PC. In some circles the philosophy is that the
program should be developed on a computer with greater capacity than the
target machine, the reasoning being that the computer has to handle both
the program itself and all the ancillary material such as an interpreter, com-
piler, etc. In my own experience it’s very rarely necessary to develop a pro-
gram on a computer other than the target one, and doing so creates a pretty
large chore of translating the program once it’s done. In my case, I develop
for the Macintosh and the IBM-PC. I develop on the Macintosh (my pre-
ferred computer) but may also shift to the IBM-PC and develop for awhile
too. Both are suitable developmental computers for my work.

Software. Once a machine has been chosen, it’s possible to think about
the medium through which software will be expressed. In my case the
medium is MicroSoft BASIC and Modula-2, since both are implemented on
the Macintosh and the IBM-PC. &dquo;C&dquo; is the preferred language of most pro-
fessional developers, but Pascal also has a following. For those who are not
interested in learning a computer language, there are a number of options.
One is to use a visual flow chart-oriented language which requires little pro-
gramming ability. Another may be to use an authoring system, such as
Quest, IMSATT, or Genesis. Many of these systems are designed to be used
by people with little or no previous experience. Finally, it’s possible simply
to join up with an experienced programmer who can work with one in
translating ideas into programs.

Institutional Support and Time. Having established the means, the only
remaining question is to establish the institutional context in which the work
is done. Developing a program of any sophistication requires a fair amount
of time (I have always underestimated the amount of time required to
develop a piece of software. I continue to underestimate even knowing this),
which needs to be established in one way or another. Sometimes it’s possible
to do developmental work during the summer. My school has a fund for

39

such work, and has been flexible in granting funds for projects rather dif-
ferent from those envisaged for the grant. However, I have also felt it
necessary to modify my proposals so as to fit the overall parameters of the
grant. This has usually meant not only developing a program, but also
figuring out some basis for writing a presentable paper about the program
or some aspect of it. I developed my first &dquo;advisory&dquo; program and the
Management Readiness Tutor as summer grant projects.

If grant money or other support is not available, it may be possible simply
to fit the project in during the semester. Since the work takes time which
might be used for other scholarly activity, it might be desirable to think
about not onlv developing the program, but also how to use it as the basis
for a paper for conference presentation. I developed the Advisor and Class
Data Manager during school years.

Class Trials. Once the software is in a reasonable state of readiness

(realize that live software is always in a state of development) one can then
think about how to try it out in class. I find that it’s best to start with a ten-
tative use of the software in conjunction with student assessments before in-
corporating software extensively in the class. I think this is a good idea with
any piece of software, developed or purchased. In this way the program can
be debugged and student reactions can be obtained before the fate of a
course becomes at stake. I first implemented Advisor as an optional group
project. My first use of Management Readiness Tutor was as an optional
extra credit project involving using and assessing the program. Following a
positive response, I made it the basis of an assigned individual paper. In my
early use of Class Data Manager action exam, I kept at hand a pencil and
paper version as a backup. In essence, I see the process of implementing
software in the class as an incremental one, starting with light or optional
use, moving to heavier use, and always with provisions for feedback and
idea generation. Even after two years of regular class use, student groups
are still providing me with new ideas for how to improve the system and
finding new ways to crash the program.

How Do Students Respond to Software Innovations?

I have experienced two dimensions to student responses to software as a
part of the class. The first dimension is a reaction to the computer itself.
When I first started using computer assignments, microcomputers them-
selves were a novelty. Many students had never before used a microcom-
puter and didn’t have a clue as to how to orient themselves to the machine.
In those days, &dquo;computer-phobia&dquo; and &dquo;computer literacy&dquo; were terms in
good currency. This aspect of computer response has changed rapidly over
the last four years. Now courses are available on how to use microcom-

puters and microcomputers are used routinely in a number of courses. I still
find a significant proportion of students who don’t know where the &dquo;on&dquo;
switch is or how to insert a disk, but there are usually other students nearby
who can help them, and even inexperienced students seem to accept the
microcomputer as a legitimate instrument of class learning. The student
culture has adapted rapidly to microcomputers.
The second dimension of student response is reaction to the programs

40

themselves. Here I find that students often don’t appreciate the program as
I do. Where I think it’s great to have an application which does what this
program does, students seem generally matter-of-fact. Most seem to expect
high quality performance, bug-free operation, and a user-friendly interface
as a matter of course. If the program does what it’s supposed to do in a
fairly trouble-free way and students see the program’s contribution as
worthwhile, they’ll accept the program as a valid part of the class. They
generally don’t seem to rate higher for all that effort in development and in-
novation in computer use - and they do seem to rate down if the idea or the
program doesn’t work as hoped.
The message here seems to be that while software innovations can con-

tribute to learning, one should not engage in software development in hopes
of raising one’s student ratings. A careful implementation of innovative
software in the classroom probably won’t hurt one’s ratings, but probably
won’t raise them either.

How does Software Development Impact on My Professional Standing?
As a tenure track instructor, I knew that a comitment to software

development would also have an impact on my professional development. I
knew that ultimately I would be assessed not only on teaching, but also on
other criteria as well, such as my professional activities and publication
record. Recognizing this, I have attempted to propose conference sessions
based on my papers and write articles based on my programs and what I
have learned about computer use in learning.

Recently, I successfully went through the promotion and tenuring pro-
cess. My sense is that my work in program development was not a help at
the faculty committee level. I think this was in part due to mixed faculty at-
titudes and in part due to formal criteria which doesn’t say much about
software or teaching innovation. In terms of getting a positive response at
this level, I could have better spent my time working on other measures of
classroom accomplishment and on more traditional forms of academic
writing. On the other hand, I think that my work helped at higher levels,
where development and innovation and new teaching technologies seemed
to be more appreciated.

Conclusion

I have discussed the processes and issues involved in software develop-
ment, and the impact of my choice to engage in it. Institutionally the results
seem somewhat discouraging. It’s not a way to get student ratings, it’s not a
substitute for other scholarly activities, and its impact on the promotion
and tenure process is mixed.
At the risk of engaging in cognitive dissonance, however, I think the

overall ledger balances out more on the positive side. I could have chosen to
spend my time in activities calculated to score higher on the promotion and
tenure scale. Had I done so, I don’t think I would have the energy and en-
thusiasm which I currently experience for my work. I engaged in software
development because it was where my interests lay and because I felt that it

41

had value. As a result, I have been spending time doing the things which I
experience as interesting, exciting, and worthwhile. Although the activities
probably did not jibe as well with promotion and tenure criteria, I did

negotiate the process successfully - and have enjoyed the process much
more than I would have otherwise.

Andrea Warfield, University of Michigan

The seed for my project of developing a computer-based management
training module was planted in 1984 when I was traveling through England
doing research on the impact of the microcomputer on English culture. I
was working with writers of training programs at Ferranti, a company in
Manchester, England which does computer-based training for the British
military. The authors were interested in my recent experiences as a writer of
Thoughtware computer based management training programs. I was ex-

plaining to them how I would design screen content in my office in

Michigan, send my designs off to the programmers in Florida, and work
with the programmers by phone on developing the computer modules.
One of the writers said, &dquo;You ought to get an authoring system. You

could bypass Thoughtware programmers if you had an authoring system.&dquo;
&dquo;What’s an authoring system?&dquo; I asked. &dquo;An authoring system is to a
trainer or educator what a word processor is to a writer. It is a system which
allows an ’author’ to develop original training modules by enabling him/her
to design screens in graphics or text mode, branch those screens so that they
are highly interactive, and transfer the screens to a ’driver’ - a computer-
based training module which is easily driven by learner response. You
should get one,&dquo; he said persuasively. &dquo;You Yanks are always looking for
the pot of gold at the end of the rainbow. So that’s it, get an authoring
system. You’ll have your pot of gold.&dquo;

Well, this was something I couldn’t just walk away from and forget, so as
soon as I returned to the States, I asked our librarians to research authoring
systems. In 1984, we found very few companies who produced authoring
systems. By 1986, the number had grown to about twenty companies
throughout the United States, and I acquired an authoring system to use for
one year through the Higher Education Management Institute (HEMI), a
broker of software to higher education. The authoring system I have been
working with over the last year is Knowledge Support System Author
developed by Comware Inc. in Cincinnati, Ohio. Often developers of such
software will allow educators to use their systems for course development.
It’s great for the educators because they learn how to author a computer
based module, and it’s great for the software developers because they get
exposure of their system by learners completing the computer based course.

I acquired the system in April of 1986, and after three days of training,
was anxious to develop my own course. The next step was to find an ap-
propriate topic. Robert Quinn and I had been discussing the possibility of
putting his leadership model on computer. After learning more about his
model at the 1986 Organizational Behavior Teacher’s Conference, I realized
that it was the perfect content for computer based training. Now that I had

42

a profound technology and a profound concept, I was ready to start work.

Launching the Project

My original plan was to do all the work myself. Now that I look back, I
realize how dramatically unrealistic that was. It is impossible for one person
to develop a good computer-based management training program because
you need so many different kinds of expertise. Fortunately, enough people
were interested in working on the project that a team quickly formed to
launch the program.
My role was the project director. I have very little technical expertise, and

the talents I needed for the project were the capacity to bring together peo-
ple with a wide variety of abilities and interests, keep channels of com-
munication open so that we could all understand the perspective of each
member of the team, and keep the team motivated in pioneering this proj-
ect. There were two programmers on the team, both of whom had excellent
technical expertise: Bill Rush, electrical engineer at Ferris State University
and Carol Gustafsen from Michigan State University. David Hessler, Pro-
fessor of Instructional Design at University of Michigan, oversaw the in-
structional design of the module. Richard Kline, faculty member at the art
department of Central Michigan University was the art director. Clark
DeHaven, Director of Executive Training Programs at Michigan State
University, served as director of content design, the person responsible for
ensuring that the module was effective in management training. Christine
Barajas, Kathy Peterson, and Cheryl Tinskey were students who took in-
dependent studies and did the actual authoring.

Process
.

Our first step was to organize the entire project by breaking it into logical
components and setting bench marks for the completion of significant
tasks. The first major task was to redesign the content of Quinn’s
manuscript from a print-based to a computer-based format; the next was to
do the actual authoring; and the final challenge was to test the module on
management trainees.

In redesigning the content from print to computer-based material, we
added an important new dimension: the use of color to indicate various sec-
tions of the training program. One of the advantages of computer over
print-based training is that engages many of the senses. The use of color not
only enlivens the material but serves as new symbols for important con-
cepts. Using color as an organizing tool, we transferred the print based
material to story boards-boards containing pictures of a series of screens
which were individually designed to display the appropriate material from
the manuscript.

This first, and very significant, task set a strong foundation for the actual
authoring of the course. Students worked with the story boards and
manuscript and authored the actual computer screens. We met periodically
to review the designs and make any changes that were necessary. While the
design of the story boards took approximately two months, the authoring

43

took about eight months. We completed 620 screens and are currently
working on more.

It is very important to note that a significant portion of the module was
done in BASIC or Pascal programs and integrated into the course. An im-
portant quality of computer-based training is that it is interactive. When the
authoring system did not allow for as much interaction as we wanted in a
particular section, we programmed that section and integrated it into the
program. Another use of programmed sections was for instrumentation. A
dramatic example of the superiority of computer- over print-based manage-
ment training is the quick scoring of instruments which are laborious and
time consuming when done by hand. Pascal was used for instruments which
required complex scoring of instruments.

I wish I could say that the story ended happily with the module testing
beautifully with the management trainees and that I had indeed found my
pot of gold at the end of the rainbow. But that is not the case...yet. I, like
John Bigelow, underestimate the time it takes to complete a software
project even when I know that I tend to underestimate it. At this writing,
about 80 percent of the course is done. The remaining 20 percent will consist
of the more interactive exercises and tests throughout the course to assess
the learner’s progress. And that, of course, will simply be the first edition.
Software is constantly being refined and updated. It is literally never done.

Resources

The greatest resource needed for the development of good software is
talented people with a commitment to see the project through. The deter-
mination to create a product from the ground up with little guidance in
dealing with the countless intricacies which inevitably occur call for char-
acteristics such as zeal, perseverance, tenacity and patience. Because of the
pathbreaking nature of such an attempt, clear communication is vital

among team members. In addition, computers, a good authoring system,
and at least one team member with technical expertise is needed.

Impact
The development of computer training modules like these offers new and

exciting challenges to teachers of organizational behavior and innovative
learning opportunities for students. To design the content of an effective
computerized training module, the teacher must work with new assump-
tions regarding instructional design. For example, classroom instruction is
linear in that a course is launched at a starting point at the beginning of a
term, proceeds in a logical fashion, and is completed at a concluding point
when the term has ended. Computer instruction does not follow this pro-
cess. Instead, course content can be accessed at any point and is highly in-
dividualized as to how much time the learner spends in any one section.

Content presentation on a microcomputer is not as straightforward as in
a text. To avoid the biggest criticism of computer-assisted learning, which is
that it is simply page turning, screens must be designed with movement,
depth and precise timing. This calls for talents and skills which are closer to

44

those of a director than a writer.
The use of color, movement, sound, interactive exercises, immediate

scoring, and feedback creates a vivid multidimensional experience for the
student. A well designed computer-based course will engage all of the senses
of the learner.

In short, the potential for using the microcomputer as an instructional
tool for the teaching of Organizational Behavior as well as other disciplines
and fields is exciting, challenging and limitless.

Dale Rude, University of Missouri

The Decision Analysis System is a collection of programs which support
policy capturing (Slovic & Lichtenstein, 1971). Policy capturing is a

regression-based approach to modeling human judgement. Instead of ask-
ing decision makers how they make judgements, judgements are collected
from each decision maker and regressed upon key decision variables. The
decision makers receive feedback concerning (1) how consistent they were in
applying their decision strategies, (2) which decision variables they used, (3)
in what manner the decision variables were used (direct, inverse, etc.) and
(4) the relative importance of each decision variables 1

Inception and Launch of the Project
As a student in a managerial information processing class, I was im-

pressed with the power and utility of the lens model theoretical framework
and its policy capturing methodology. As I talked with my fellow students, I
learned that many of them neither fully comprehended nor appreciated
policy capturing and the lens model. After musing over this, I decided that,
for most students, experiencing a policy capturing application was neces-
sary for understanding the lens model and policy capturing and that once
understood, appreciation might then follow. Thus, I began looking for a
computer program which would enable students to experience policy cap-
turing by entering judgements and receiving detailed individualized feed-
back.

My search revealed that a FORTRAN program called Policy had been
developed by Kenneth Hammond and his associates at the University of
Colorado. Available through a time sharing computer service for $16.00 per
hour, it was too expensive to be practical for class use. After searching in
vain for other programs, I began development of my own program.

Process

Development of the Decision Analysis System has proceeded in three
separate phases and has resulted in three distinct versions of the programs.
Phase I began shortly after the completion of the class, required about two
months of development time, and produced a basic judgement collection
program and a simple SAS batch program for analyzing judgements and
providing individualized feedback. Students entered their judgements into
an HP 1000 computer and received feedback consisting of a correlation

45

matrix (containing the correlation between their judgements and the

criterion) and a regression equation resulting from the regression of their
judgements onto the decision variables which they had been given. The task
consisted of estimating the change in CEO salary using data concerning the
CEO’s previous salary and company’s performance. The need for a new
task and revised feedback became clear when my students complained
about the statistical feedback and the impossibility of making accurate
judgements concerning a criterion which they knew little or nothing about.

Phase II began shortly after I started a new position at the University of
Missouri. I invited one of my new colleagues to join me in this development
effort. We chose a new language, interactive SAS, but retained the CEO
change in salary task. Eight months later it was operational. The program
would collect judgements and produce immediate feedback; however, the
cost was about $25 per person, an impractical expense. Thus, it was time to
begin anew with Phase III.
By now, IBM PCs were available and were chosen to be the computing

machinery for Phase III. APL was chosen for the programming language
and proved to be a very useful and powerful tool. After four more years of
development Phase III and the Decision Analysis System are now complete.
An inexperienced user can easily create the decision environment of choice,
collect judgements from decision makers and provide readily understood
feedback.
The major resources required were time, computing equipment, and soft-

ware. Over two person-years (at least one of which is mine) have been ex-
pended in development of the software.

Unanticipated Issues and Problems

Three unanticipated issues and problems-the seductiveness of program-
ming, the cost of licensing, and the time and effort required for preparing
the system for others’ use and documenting the system-have complicated
development of the Decision Analysis System.
The seductiveness of programming was a problem. In Phase III, I per-

formed over two thirds of the programming myself-the rest being done by
my research assistants. My devotion to programming delayed other impor-
tant activities such as preparing my dissertation for submission to a journal.
I find programming to be intrinsically rewarding because of its structure,
quick feedback regarding success or failure, and its challenging yet solvable
problems. In addition, my commitment to the project rose as my investment
in it increased. Thus, if entertained by programming as I am, it’s important
to carefully control one’s programming involvement or to find someone else
to do it for you.
The cost of licensing should be an important decision variable in the

choice of a development language. By the time we considered licensing our
software for distribution, we were struck with APL because of our heavy in-
vestment in the programmed code. Unlike many other languages which can
be distributed in compiled form for free and without registering each ap-
plication with the software company, each application of APL which we
distribute must be registered and a fee paid for it. Two fee options are

46

currently available: (1) $100 per application, or (2) 10 percent of net sales
after payment of a nonrefundable $2,000 deposit.
A third unexpected issue has been the time and effort required for writing

documentation and for transforming a working program held together by
baling wire into one an unfamiliar person can easily use. Every input step
must be carefully explained and completely error trapped. All procedures
and the underlying logic and structure behind each step should be clearly
and unambiguously described.

The Impact

The Decision Analysis System is a very useful tool for teaching and
research. It is a superb teaching exercise which provides the experiential in-
troduction to the lens model and policy capturing which I had sought from
the beginning. Typically the class sessions in which we process policy cap-
turing results are the best of the semester.
The System is a very useful tool for researching decision making. One can

easily devise decision environments and collect data. The quick and easily
understood feedback makes it easy to study the effects of policy capturing
feedback upon decision makers.

Personal benefits to me from development include an in-depth under-
standing of policy capturing and many ideas for future research projects.
Transforming a research methodology into a software tool for teaching and
research requires complete understanding of the procedure and the ques-
tioning of existing findings and perspectives. The process has revealed in-
adequacies of the policy capturing procedure for future inquiry and
methodological development.

Joe Garcia, Western Washington University

In this section, I will describe my experience in collaborating and manag-
ing a project to develop microcomputer-based simulation for integration
with an organizational behavior text (Garcia & Lewis, 1986; Garcia, Lewis
& Fiedler, 1986). Let it be known from the beginning that I am not and
never expect to be a computer programmer. Let it also be known that an
understanding of organizational behavior and what our team wanted as a
final product for the classroom was critical to the success of the project.
And finally, let it be known that having a computer programmer who is
familiar and comfortable with instructional design and classroom re-

quirements is a great asset.

Inception
The purpose of our project was to attempt to marry experiential learning

with knowledge of organizational behavior research content. To this end we
designed a product which was divided into two primary components: The
first was composed of five chapters on topics important to organizational
behavior, i.e., motivation, communication, decision making, leadership
and training and development. The second was a microcomputer-based

47

simulation of a mining organization with a four quarter life in a competitive
futuristic setting. This simulation requires student teams to make manage-
ment decisions based on the chapter topics and significant quantitative
business concerns, i.e., pay, bonus, training expenditures, etc.
The role of the computer in the simulation is one of support in the form

of processing data and generating feedback to students and the instructor.
Students never directly interact with the computer. They simple see com-
puter reports of various types. Instead, the instructor or teaching assistant
uses the microcomputer to set up the simulation, input data, and generate
feedback.
The initiative for the project came from Chad Lewis who had worked

with Phil Lewis, a computer programmer and educational consultant
(Lewis, Lewis & Gale, 1985; Lewis & Lewis, 1984; Lewis, 1983) in suc-
cessfully developing microcomputer simulations for general business and
marketing courses. The Lewis’ expertise in software design and develop-
ment literally got our program rolling. We began with a proposal for a
product which would integrate software with student and instructor paper-
ware for Introduction to Organizational Behavior class materials. The pro-
posal laid out detailed responsibilities for writing, coding, and testing the
product. We then contacted several book publishers to find if there was any
interest in supporting our proposal. We were pleased to find positive
responses, and we finally signed with Allyn & Bacon, Inc.

Launching the Project

Beginning a project such as ours required that we immediately address
three important issues: (1) product quality, (2) marketing strategy, and (3)
support for resources required to complete the project.
Our design emphasized quality by stressing the link between student

learning in the text with the software-based simulation. We created these
links by including features such as tying student feedback reports to page
numbers in the student manual so that simulation performance feedback
was specific and easy to obtain. To ensure face validity, we built an
algorithm which allowed student teams who performed best on the manage-
ment decisions, reflecting knowledge of subject matter and good business
decisions, to generate the highest profits.
Our intended audience was students in introduction to organizational

behavior courses and their instructors. After examining our own abilities to
distribute and market our product, it became obvious that we needed help.
We had no financial support or direct way of distributing our product to
teachers of OB. Our only viable option, as we perceived it, was to approach
the textbook publishing industry. After all, we felt, why reinvent the wheel?
The industry has an active marketing and sales force which could help us
reach our market.
The issue of support was in part addressed by our solution to the

marketing issue. Once again we turned to the publishing industry, which is
motivated by the opportunity to sell products and make a profit. We were
fortunate to find interest from several publishers to share in the risk of sup-
porting and developing the product. Our success in obtaining support was

48

due to three factors: (1) our record of completed projects, (2) the concept of
building an integrated package, and (3) an opportunity for a publisher to be
among the first to move microcomputer technology into OB textbook offer-
ings.

The Process

We developed our product in parallel fashion: The major responsibility
for writing the organizational behavior topic materials and instructor’s
manual fell on my shoulders; Chad Lewis was primarily responsible for
developing the simulation materials; and Fred Fiedler served as our con-
science and editor. We hired Phil Lewis as our programmer, first on a con-
tract basis and later as partner on the team.
The software was written in BASIC for IBM and Apple II microcom-

puters since they are the two most widely available in education settings.
The actual software development of subroutines and other technical details
was the sole responsibility of the programmer. We simply specified to him
our needs in terms of inputs, outputs and our algorithm as we envisioned it.
As the program developed, team members tested the algorithm output to be
sure it was generating the patterns of data we had in mind. The screen
designs were generated by the programmer such that all screens which had a
physical referent, (e.g., student decision forms and team management
reports) mirrored the referent. Designing the user-friendly instructions in-
cluded taking the screen dumps and arranging them in the sequence that a
typical user would use the program, thus creating a &dquo;walk&dquo; through the
program guided by the screens with explanations in the instructor’s manual.
The program itself is menu driven.
Another important activity was the creation of a scenario bank or set of

management situations for the simulation that drew on the text material. As
with many test generation programs, our scenarios had to meet the length
restrictions determined by the amount of memory available on diskette and
RAM. Because the scenarios would be tied to the student manual, we could
not begin generating scenarios until the topic section was already or nearly
written. An important consequence of the text and software integration was
that software completion was delayed until the pages were determined for
the student manual. This was especially critical in scheduling production
because page numbers from the student manual had to be assigned to the
items in the scenario bank. As mentioned above, these management feed-
back reports would indicate to students where an explanation of the ra-
tionale for a scenario could be found in the student manual.

Testing the software and the simulation were two separate activities. We
ran the program numerous times to find out if there were keystroke se-
quences that would crash the program. Copies of the software were then
sent to the publisher to be tested and were also informally tested in-house.
Unfortunately, we never had a full beta test (i.e., a test conducted by a
disinterested party) of the software. I attribute our failure to have a beta test
to the relative inexperience of the publisher with software development and
our assumption that the publisher would be familiar with test procedures.
Fortunately, our fears about hidden bugs in the program were never real-
ized.

49

We conducted classroom tests of the simulation as the page proofs for the
manuals were being reviewed. Using duplicates of the manuscript and near-
ly completed copies of the program disk, our students helped us learn more
about the simulation and how to use it in the classroom. Our experience in
the classroom led us to the conclusion that there were no fatal errors in the
materials. It is regrettable, however, that we were so far into the production
process that the fine tuning of the written materials could be made only for
the instructor’s manual.

Resources

Like many other projects which have time and quality constraints, we
found that maintaining good communication between the team members
and our editor and hard work were our most valuable resources. The col-
laborative nature of the project necessitated frequent communication. In
concrete terms, phone bills, postage and other incidentals were more than I
care to remember; however, we were able to obtain support for these ac-
tivities as part of our role as teachers and course developers.
To support our equipment and time, we were able to obtain a fairly large

advance from our publisher. Without this support, we would have been
unable to pay for our programmer’s time, purchase a utilities program to
enhance the simulation program, and contract out two of the chapters in the
student manual to free ourselves to devote more time to the integration of
the overall project. This advance, of course, barely covered the authors’
time, but that is often true of textbook writing as well.

In terms of equipment, we all owned compatible microcomputers. This
speeded up our revision and editing process. Our programmer had both an
Apple and IBM to use for creating the two versions of the simulation. At
our institutions, both types of computers were available for testing the
simulation which was particularly helpful.
Our scarcest resource was time. We underestimated the length of time it

would take to complete the project. Weaving together the software, student
manual and instructor’s manual was a detailed and time consuming process.
While we met our project milestones and completed the project according to
schedule, it was very trying. A conservative estimate is that the project re-
quired 2 person-years.

Impact of the Project
The impact of our project will be determined by how it will be recognized

by our peers, publishers, and students. I feel one of our major successes is
that it is viewed as a textbook with an integrated computer-assisted simula-
tion. This is important for us in that we hoped to enhance, not replace,
traditional teaching technologies with the microcomputer.
A nontrivial benefit of the textbook view of the product is that producing

a textbook is understood by tenure and promotion committees. Lack of any
formal review process is a problem these committees have in judging in-
structional software produced independently by an individual. The integra-
tion of software with a published text overcomes this problem. In this case,

so

university tenure and promotion committees can rest assured that since the
project was published by a textbook company, it is subject to the usual
review and scrutiny accorded any other product backed by that publisher.
While this process is not equivalent to reviews conducted for scholarly jour-
nals, it has recognizable merit, especially in universities with a strong com-
mitment to teaching.

There were other effects of our decision to work with a publisher. Owner-
ship of the product was handled as authorship of a book. While it may not
have had the most optimal results in terms of personal profits, it was a prac-
tical, straightforward and predictable way to handle ownership. For exam-
ple, the licensing and use of utility programs in our product was covered by
the advance we received form the publisher as well as permission to use
copyrighted materials in a text. As in textbook publishing, the marketing
and distribution of the product remained under the practical control of the
publisher and the sales force. Our interest in proper marketing and protec-
tion from pirating was promoted through the sharing of risk with the
publisher (e.g., compensation through sales royalties).
We did discover that, at least when we began our project, many

publishers were naive regarding software development procedures, except
perhaps for computerized test banks. For example, initially they had a poor
understanding of the technical quality requirements for releasing software.
As a result, we all have developed a better appreciation of the development
cycle of integrated learning products.
Another important lesson for us was that this type of project required

more time than anticipated because each of the components had to be
linked together. In scheduling this project, we would have been well served
with a separate category called integration. For example, we clearly did not
anticipate how much time our programmer would spend adding code at the
end of the project.
A concluding point is that we were able to demonstrate that subject mat-

ter experts, teachers of organizational behavior, can successfully col-
laborate with computer specialists to create instructional software for OB.
By having a clear idea of what we wanted to accomplish, and being willing
to work with our technical expert, we were able to translate our concepts in-
to reality. I hope that this experience encourages some of you to try out
your ideas on how computers can improve teaching organizational behavior
in spite of any inhibitions you may have due to lack of interest in or
knowledge of computer programming.

Conclusion

It is clear that you don’t have to be a &dquo;techy&dquo; to develop good OB soft-
ware. However, you definitely must have a technical expert close at hand
and ideally on your project team. Instead, the challenging problems in soft-
ware development are human as well as technical. How do you keep chan-
nels of communication open among team members? How do you express
OB concepts to technical people and vice versa? How do you keep team
members motivated in spite of the countless obstacles and intricacies of

51

software development? What is the response of organizational members to
your work, i.e., students, faculty, administrators? Who is the audience for
your product? And even though technical equipment is an essential
resource, the bottom line basic resource which all authors emphasized was
time. All authors seem to warn that, even though they’ve told you how
much time software development takes, you’ll still underestimate your
time...you’ll never beat the clock by developing software.

Note

’The Selection Decision Exercise is a sample application which is very useful for teaching
about the lens model and policy capturing and is available from the author at no charge.

References

Garcia, J.E., & Lewis, C.T. (1986). Instructor’s manual for: People, management, and pro-
ductivity. Newton, MA: Allyn & Bacon, Inc.

Garcia, J.E., Lewis, C.T., & Fiedler, F.E. (1986). People, management and productivity.
Newton, MA: Allyn & Bacon, Inc.

Lewis, C.T., & Lewis, P.C. (1983). Enterprise sandwich shops. New York, NY: McGraw-
Hill, Inc.

Lewis, C.T., & Lewis, P.C. (1985). Marketing peanut butter. New York, NY: McGraw-
Hill, Inc.

Slovic, P., & Lichtenstein, S. Comparison of bayesian and regression approaches to the study
of information processing in judgement. Organizational Behavior and Human Perfor-
mance. 6, 649-744.

