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Recently a new numerical method for simulation of com-
plex dynamical systems has been proposed by M. E.

Fowler.l,2 There is no question that for some problems,
e.g., single-loop servo-systems with simple nonlinearities
or slowly varying gains, the method is a good procedure
for developing difference equations which generate solu-
tions of adequate accuracy at high speed on the digital
computer. However, it is misleading to imply that the
method is of general applicability and will replace, be-
cause of tremendous speed advantage, the well established
classical methods (Runge-Kutta, Adams-Moulton, etc.),
which have a firm basis, both in the manner of their mathe-
matical development and their long history of successful
use. This assertion will be supported by the rather general
remarks of the next three paragraphs and by the more
detailed analysis which follows in the subsequent para-
graphs.

First of all the required root locus matching, even when
computer assisted, involves a lengthy (z-transform) analy-
sis of the system to be simulated by a skilled practitioner
of the method. This is in opposition to classical methods
in which one goes directly from the differential equations
of the system to the computer program. Certainly, in some
cases the resulting system analysis may be a useful by-
product, but more generally it does not take a satisfactory
form to answer the usual engineering questions.
Another difficulty in the method is its application to

differential equations which are coupled in such a com-
plex way (example-equations of motion for a space ve-
hicle) that it is not obvious how to form the loops for
root-locus analysis. The forming of the loops is certainly
not unique and the solution accuracy obtained will de-
pend in an obscure way on the choice made. In strongly
coupled equations it is even doubtful that the method
will prove workable.

Suppose that it is possible to form the loops required
in the method. There still is no assurance that the method
can be made to work in all instances. It may be impossible
to construct root-locus diagrams which match over the
required gain range. Even if they do match it is not cer-
tain that when time-varying gains (or nonlinearities, see
reference 2) are inserted the simulation will be accurate.
The method is based on the z-transform and Laplace
transform which are valid in the context considered when

the systems are linear and time-invariant (n.b., equation
(11) in reference 1 is not valid unless C(t) is constant).
There are numerous examples of time-varying linear sys-
tems where such &dquo;quasistatic&dquo; analysis fails. For example
it is possible to construct a system which is stable for any
constant gain C such that .5:::; C :::; 1., but is unstable
when C is made to vary in the same range. But even if the
method is applied to linear time in variant systems it has
serious limitations. Let us point these out by examining
closely a first order system.

Suppose we try to solve

where x(t) is the system response and r(t) is the input
function. Table I shows four different difference equation
representations for (1) where T is the integration interval,
n is an integer, rn = r(nT), and xn approximates x(nT).

Table I - Difference equation representations of first order
differential equation

Representations A and B are obtained by direct applica-
tion of the relatively crude Euler and Heun integration
methods.3 Representation C has been obtained by writing
the solution of (1) in the form

and letting xn = x(nT) with r(t) replaced by a stepwise
approximation (i.e., r(t) ~ rn, nT <_ t < T + nT). Repre-
sentation D also follows from (2) but with r(t) replaced by
a continuous piecewise linear approximation [r(t) ~ rn
+ T-l(r.+, - rn) (t - nT), nT _< t _< T + nT]. These last
two representations are of the type discussed by Fowler.l
When generalized to vector-matrix notation this method
of derivation gives a systematic, computationally oriented
procedure for determining the difference equations (cor-
responding to C and D) for a linear time-invariant system
of any order. Also shown in table I are the transfer func-
tions H*(z) corresponding to the four representations.
That is, if X*(z) and R*(z) are z-transforms~ of the data se-
quences {xn} and {rn} and the systems are initially at rest
(xo = 0), then

For the unforced case, rn = 0, no 0, the solutions of
A, B, C, and D can be expressed [xo = x(o) as
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Ideally, of course, k == -1. As expected ~l = -1 for C
and D. For the other two cases it is easy to show

representation A:

representation B:

Table II - Errors in step and ramp response

Table II I - Fractional error in complex gain for r(t) = ejt

Thus there is no error for the Fowler representations,
while the Euler and Heun methods give errors in the

exponential constant which are of the order of T and T2,
respectively.
The apparent advantage of representations C and D

disappears, however, when input forcing is considered.
It is true that C(D) will give zero error if the input is a

step (ramp) starting at t = nT, n = integer. This is obvious
from the way in which representations C and D were de-
rived. However, if the step (ramp) input is not applied
precisely at t = nT, n = integer, a large error may be

produced. This effect appears in figure 8 and table I of
reference 1. If the step input were applied at t = -.0199
or t= -.0001 the same solution would be obtained from
the difference equation representation. However, the
actual solution of the differential equation (labeled &dquo;exact
solution&dquo; in figure 8 and table I of reference 1) would
then be advanced or delayed by .0099 seconds. On the
leading edge of the response (for C = 35) where the slope
is great this can result in a solution error of approximately
.2 units, which is about 15 times the worst error observed
in table I of reference 1.
Now consider a similar comparison for representations

A, B, C, and D of (1). It is assumed hereafter that the

system (1) and its representations A, B, C, and D are at
rest before the inputs are applied. For a unit step input
occurring at t = -T+ (just after t = -T) it follows that
rn = 0, n < 0 and rn = 1, no 0. Substituting this in A, B,
C, and D and using en = x(nT) - xn for the error, where

x(t) = 1 - e- (’+7) is the solution of (1) for t > -T, the
results in rows 1, 2, 3, and 4 of table II are obtained.
Power series in T are used to express en so that the effect
of changes in the interval size is more easily ascertained.
It is clear that solution errors are comparable in all four

representations! Rows 5 and 6 of table 11 show a similar

comparison between representations B and D for a unit
ramp input starting t = -T+. Again the classical approach
unit ramp input starting t = -T+. Again the classical

approach and Fowler’s approach yield comparable per-
formance (note that the fractional errors in the solution
are large since

It is interesting to note that equally poor (errors same
order in T) solution accuracy is obtained for the above

inputs if a fourth order Runge-Kuta formula is used. This
is because the full accuracy of the Runge-Kutta formula is
not available unless (d4/dt4)r(t) is continuous,3 which is

clearly not the case. With step inputs the Euler formula
does about as well as any of the more involved integration
formulas. This shows that one must be careful to choose
a valid classical formula when comparisons of computing
speed are made for discontinuous inputs.
To show that accuracy comparisons of the above type

are not dependent on inputs which are discontinuous or
have discontinuous derivatives of some order, consider a
sinusoidal input r(t) = éJJt where m = 1, the break fre-

quency of the first order system. The complex gain of
the system (1) is (jw ~-- 1)-1. The corresponding gains for
the discrete representations A, B, C, and D are found from
H*(e&dquo;&dquo;T) (see reference 3). Table III gives

which can be interpreted as the fractional error in the

complex gain. The entries shown in table III are the lead-

ing terms in power series in T. Thus the Euler method A

gives an error comparable to C and the Heun method B
gives an error comparable to D! The error associated with
D is not nearly so small as the error produced by a fourth
order Runge-Kutta formula for which it can be shown that
E is the order of T4.
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