
127

Adaptive perturbation control with feedforward
compensation for robot manipulators*

C. S. George Lee
Department of Electrical Engineering

and Computer Science
The University of Michigan

Ann Arbor, Michigan 48109

Myung Jin Chung
Korea Advanced Institute
of Science and Technology
Seoul, Korea

C. S. GEORGE LEE is an assistant professor in electrical engineering
and computer science with the University of Michigan, Ann Arbor.
His current interests include robotics, sensor-based robots, integrated
computer manufacturing systems, and pattern analysis.
His previous positions include graduate research assistant in the Ad-
vanced Automation Research Laboratory at Purdue University, from
1974 to 1978; graduate teaching assistant in electrical engineering at
Purdue from 1976 to 1978; and visiting assistant professor in electrical
engineering, also at Purdue.

He received a BSEE (1973) and MSEE (1974) from Washington State
University, and a PhD degree (1978) from Purdue. He is a member
of Sigma Xi, Tau Beta Pi, the IEEE, the Society of Manufacturing
Engineers, and a distinguished visitor in the IEEE Computer Societys
Distinguished Visitor Program.

MYUNG JIN CHUNG received his BS degree (1973) in electrical
engineering from Seoul National University, Seoul, Korea; his MS
degree (1977) in electrical and computer engineering; and his PhD
degree (1983) in computer information and control engineering from
the University of Michigan, Ann Arbor.

From 1981 to 1983, he was a research assistant in the Center of Robotics
and Integrated Manufacturing at the University of Michigan.

Currently, he is an assistant professor and senior research scientist in
electrical engineering at the Korea Advanced Institute of Science and
Technology, Korea. His current interests are in the development of
design techniques for multivariable control systems, robotics and
automation.

ABSTRACT

An adaptive perturbation control can track a time-based joint
trajectory as closely as possible for all times over a wide range
of manipulator motion and payloads. The adaptive control is
based on the linearized perturbation equations in the vicinity

of a nominal trajectory. The highly coupled nonlinear dynamic
equations of a manipulator are expanded in the vicinity of a
nominal trajectory to obtain the perturbation equations. The
controlled system is characterized by feedforward and feedback
components which can be computed separately and simulta-
neously. Given the joint trajectory set points, the feedforward
component computes the corresponding nominal torques from
the Newton-Euler equations of motion to compensate for all the
interactions between joints. The feedback component, consisting
of recursive least square identification and an optimal adaptive
self-tuning control algorithm for the linearized system, computes
the perturbation torques which reduce the position and veloc-
ity errors of the manipulator along the nominal trajectory.
Because of the parallel structure, computations of the adaptive
control may be implemented in low-cost microprocessors. This
adaptive control strategy reduces the manipulator control prob-
lem from a nonlinear control to controlling a linear control
system about a desired trajectory. Computer simulation results
demonstrated its applicability to a three-joint PUMA robot arm.

Key words: robotics, robotic control, robot motion sim-
ulation, parameter identification, system
identification

INTRODUCTION

The purpose of manipulator control is to maintain a prescribed
motion for the manipulator along a desired time-based trajec-
tory by applying corrective compensation torques to the ac-
tuators to adjust for any deviations of the manipulator from the
trajectory. Recently, various control techniques have been
developed for this purpose and most of the control schemes
emphasize nonlinear compensations of the interaction forces
among the various joints and control the manipulator at the
joint levelz~’.9,’6,2z or the hand level. 14,20.21 These control algo-
rithms are inadequate because they neglect the changes of the
load in a task cycle. These changes in the payload of the con-
trolled system are significant enough to render conventional
feedback control strategies ineffective. The results are reduced
servo response speed and damping of the manipulator, which
limits the precision and speed of the end-effector. Any signifi-
cant performance gain in robot arm control requires the con-
sideration of adaptive control techniques.

*This work was supported in part by the National Science Foundation under
Grant ECS-81-06954. Any opinions, findings, and conclusions or recommen-
dations expressed in this article are those of the authors and do not necessar-
ily reflect the views of the funding agency.
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Recently, various adaptive control algorithms4,9,,0,&dquo; have been
proposed. Dubowsky’ proposed a model referenced adaptive
control, which uses a linear second-order time invariant dif-
ferential equation as the referenced model for each degree of
freedom of the robot arm. The manipulator is controlled by
adjusting the position and velocity feedback gains to follow the
model. A steepest descent method is used to update the feed-
back gains. Koivo’ proposed an adaptive self-tuning controller
using an autoregressive model to fit the input-output data from
the manipulator. Both control algorithms assume that the in-
teraction forces among the joints are negligible.
An adaptive perturbation control strategy can track a desired
time-based manipulator trajectory as closely as possible for all
times over a wide range of manipulator motion and payloads
in joint-variable coordinates. The proposed adaptive control dif-
fers from the above adaptive controls by taking all the interac-
tions among the various joints into consideration. The adap-
tive control is based on the linearized perturbation equations
in the vicinity of a nominal trajectory. The highly coupled
nonlinear dynamic equations of a manipulator are linearized
about the planned manipulator trajectory to obtain the linear-
ized perturbation system. The desired trajectory is specified by
an interpolated and smoothed joint trajectory whose angular
position, angular velocity, and angular acceleration are known
at every sampling instant. The controlled system is character-
ized by feedforward and feedback components which can be
computed separately and simultaneously. Using the Newton-
Euler equations of motion as an inverse dynamics of the
manipulator, the feedforward component computes the nom-
inal torques which compensate for all the interaction forces

among the various joints along the nominal trajectory. The feed-
back component computes the perturbation torques which
reduce the position and velocity errors of the manipulator to
zero along the nominal trajectory. An efficient recursive real-
time least square identification scheme is used to identify the
system parameters in the perturbation equations. An optimal
adaptive self-tuning control is then designed to control the
linearized perturbation system about the nominal trajectory.
The parameters and the feedback gains of the linearized system
are updated and adjusted in each sampling period to obtain
the necessary control effort. The total torques applied to the
joint actuators then consist of the nominal torques computed
from the Newton-Euler equations of motion and the perturba-
tion torques computed from the optimal adaptive self-tuning
control of the linearized system. A computer simulation study
was conducted to evaluate the performance of the proposed
adaptive control for a three-joint robot arm.

ROBOT ARM DYNAMICS

A priori information needed for developing the adaptive con-
trol strategy is an appropriate dynamic model describing the
dynamic behavior of the manipulator. The dynamics of an
n-joint manipulator can be derived either by Lagrange-
Euler/,9,17 Newton-Euler,l,n,15 recursive Lagrangian,b or general-
ized d’Alembert formulations.&dquo; The resulting equations of mo-
tion are highly nonlinear and consist of inertia loading, cou-
pling reaction forces (Coriolis and centrifugal) among the
various joints, and gravity loading effects. In general, the

Lagrange-Euler equations of motion of an n-joint manipulator,
excluding the actuator dynamics, gear friction and backlash,
are a set of second-order coupled nonlinear differential equa-
tions and can be expressed in vector matrix notation as in
Reference 9,

where T(t) is an n x 1 applied torque vector to joint actuators,
q is the angular positions, q is the angular velocities, q(t) is an
n x 1 acceleration vector, c(q) is an n x 1 gravitational force vec-
tor, h(q,q) is an n x 1 Coriolis and centrifugal force vector and
D(q) is an n xn acceleration-related matrix.

The above dynamic equations of motion for an n-joint manip-
ulator are highly nonlinear and the interaction torques/forces
depend on the manipulators physical parameters, instantaneous
joint configuration, and the load it is carrying. Because of its
explicit matrix structure, this formulation is appealing from a
control viewpoint in that it gives a set of state equations suitable
for control analysis and design as in Eq. 11. This form allows
one to design a control law that compensates all the nonlinear
effects easily. Computationally, however, these equations of mo-
tion are extremely inefficient in computing the joint torques
for real-time control as compared with other formulations.&dquo;

As an alternative to deriving more efficient equations of mo-
tion, various forms of Newton-Euler equations of motion have
been proposed.1,13,15 An approach which has the advantage of
computing the applied joint torques efficiently per trajectory
set point is developed by Luh, Walker, and Paul.’3 The deriva-
tion was based mainly on the &dquo;moving coordinate systems&dquo; and
d’Alembert Principle. This formulation yields a set of forward
and backward recursive equations which can be applied to the
manipulator links sequentially. The forward recursion propa-
gates kinematics information (such as angular velocities, angular
accelerations, and linear accelerations of the center of mass)
of each link from the base reference frame (inertial frame) to
the end-effector. The backward recursion transforms the forces
that exert on each link from the end-effector of the manipulator
to the base reference frame; the applied joint torques are com-
puted from these forces. Because of the nature of the Newton-
Euler formulation and its method of systematically computing
the applied joint torques, the computations of the joint torques
are much simpler. The computation time of the applied torques
is found linearly proportional to the number of joints of the
robot arm and independent of the robot arm configurations.
This enables the implementation of a simple real-time control
algorithm for a robot arm in the joint-variable space. The Luh’s
Newton-Euler equations of motion for manipulators having all
rotary joints are listed below for convenience.

forward equations: for i = 1, 2, ... ,n

Backward equations: for i = n, ... ,1 I

where za = (0,0,1)T and the &dquo;usual&dquo; initial conditions are

coo = 0, vo = gz,,, coo = O,g = 9.8062m/sz, and (+i and nn+, are
external force and moment exerted on the hand, respectively.

The variables used in the Newton-Euler equations of motion
are defined as:

co; = the angular velocity of link i with respect to the ith coor-
dinate system
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co; = the angular acceleration of link i with respect to the ith
coordinate system

P:-~ = the origin of the ith coordinate system from the i-lth
coordinate system with respect to the ith coordinate
system

ri = the center of mass of link i with respect to the ith coor-
dinate system

v; = the linear acceleration of link i with respect to the ith
coordinate system

ai = the linear acceleration of the center of mass of link i
with respect to the ith coordinate system

R:-1 = the rotation matrix that maps position vectors from the
ith coordinate system to the i-ith coordinate system

Ii = the inertia tensor about center of mass of link i with
respect to the ith coordinate system

fi = the force exerted on link i by link i-1 with respect to
the ith coordinate system

ni = the moment exerted on link i by link i-1 with respect
to the ith coordinate system

Ti = the torque exerted on link i.

Two robot arm dynamic models have been discussed. The
Lagrange-Euler equations provide a set of system equations
suitable for control analysis and design. They are very ineffi-
cient for computing the joint torques from a given trajectory
set point (qd(t), qd(t), ë¡d(t)) (i.e., solving the inverse dynamics
problem). The computation time of the joint torques from
Eq. 1 is of order 0 (n4). For a six-joint PUMA (PUMA is a trade-
mark of Unimation Inc.) manipulator, this amounts to about
5,916 multiplications and 4,840 additions to compute the joint
torques per trajectory set point.&dquo; In direct contrast is the
recursive Newton-Euler equations of motion which are highly
efficient in computing the joint torques per trajectory set point.
The above Newton-Euler equations involve about 678 multi-
plications and 597 additions for a six-joint PUMA manipulator
per trajectory set point.
We shall make use of the characteristics of these dynamic
models in developing the proposed adaptive perturbation con-
trol strategy. The Newton-Euler equations of motion will be used
as an inverse dynamics of the manipulator to generate the open-
loop nominal joint torques along a planned trajectory and the
Lagrange-Euler equations of motion will be used to derive the
linearized perturbation equations of motion for the adaptive
system about the planned trajectory.

ADAPTIVE PERTURBATION CONTROL
FORMULATION

The proposed adaptive perturbation control is based on the
linearized perturbation equations about the referenced trajec-
tory. Defining a 2n-dimensional state vector for the system as

and an n-dimensional input vector as

Equation 1 can be expressed in state space representation as:

where f(-) : R’&dquo; x R&dquo; - R’&dquo; and continuously differentiable, and
n is the number of degree of freedom of the manipulator.

Since D(q) is always nonsingular, the above equation can be
expressed explicitly as

xJt) = Ux) = X:~.. ~L) ,~_.

where fi.,,,(x) is the ith component of -D-’(q)[h(q,q) + c(q)] and
b.+n(x) is the ith row of the matrix D-’(q).

With this formulation, the control problem is to find a feed-
back control law u(t) = g(x(t)) such that the closed loop con-
trol system i(t) = f(x(t),g(x(t))) is asymptotically stable and tracks
a desired trajectory as closely as possible over a wide range
of payloads for all times.

Perturbation equations of motion

Suppose that the nominal states x~ (t) of the system (Eq. 11) are
known from the planned trajectory, and the corresponding
nominal torques u&dquo;(t) are also known from the computations
of the joint torques using the Newton-Euler equations of mo-
tion. Then both x~(t> and u&dquo;(t) satisfy Eq. 11,

Using the Taylor series expansion on Eq. 11 about the nominal
trajectory and subtracting Eq. 13 from it, the associated linear-
ized perturbation model for this control system can be obtained:

where V,,f 1,, and V,,f 1,, are the Jacobian matrices of f(x(t), u(t))
evaluated at xn(t) and u,(t), respectively, dx(t) = x(t) - xn(t),
6u(t) = u(t) - un(t), and d(t) is included to account for the bias
and modeling errors of the system.

The system parameters, A(t) and B(t), of Eq. 15 depend on the
instantaneous manipulator position and velocity along the
nominal trajectory and are thus slowly varying in time. Because
of the complexity of the manipulator equations of motion, it
is extremely difficult to find the elements of A(t) and B(t) ex-
plicitly. However, the design of a feedback control law for the
perturbation equations requires that the system parameters of
Eq. 15 be known at all times. Thus parameter identification
techniques must be used to identify the unknown elements in
A(t) and B(t).

As a result of this formulation, the manipulator control problem
is reduced to determining du(t) which drives dx(t) to zero at
all times along the nominal trajectory. The overall controlled
system is thus characterized by feedforward and feedback com-
ponents. Given the planned trajectory set points (qd(t), q
qd(t)), the feedforward component computes the correspon-
ding nominal torques u&dquo;(t) from the Newton-Euler equations
of motion. The feedback component computes the correspon-
ding perturbation torques du(t) which provide control efforts
to compensate for small deviations from the nominal trajec-
tory. The computation of the perturbation torques is based on
the optimal control solution derived in the next section. The
main advantages of this formulation are twofold. First, it reduces
a nonlinear control problem to a linear control problem about
a nominal trajectory, and second the computations of the
nominal and perturbation torques Can be performed separately
and simultaneously. Because of the parallel computational
structure, the proposed adaptive control can be easily im-
plemented using present day low-cost microprocessors.
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Parameter identification of the linearized

perturbation system
For implementation on digital computers, Eq. 15 needs to be
discretized to obtain appropriate discrete linear equations for
parameter identification:

where T is the sampling period, u(kT) is an n-dimensional

piecewise constant control input vector of u(t) over the time
interval between any two consecutive sampling instants for
kT < t < (k + 1)T, and x(kT) is a 2n-dimensional perturbed state
vector which is given by:

and r(kT,to) is the state-transition matrix of the system in Eq. 15,
and w(kT) is a 2n-dimensional bias vector to account for model-
ing error,

F(kT) and G(kT) are, respectively, 2n x2n and 2n xn matrices
and are given by

and

With this model, a total of 6n2 parameters in the F(kT) and G(kT)
matrices need to be identified. Without confusion, we shall drop
the sampling period T from the rest of the equations for clarity
and simplicity.

Various identification algorithms, such as the methods of least
squares, maximum-likelihood, instrumental variable, cross-

correlation, and stochastic approximation, etc., have been ap-
plied successfully to the parameter identification problem.’
Due to its simplicity and ease of applying, a recursive real-time
least square parameter identification scheme is selected for

identifying the system parameters in F(k) and G(k). In the pa-
rameter identification scheme, we make the following assump-
tions : (1) The parameters of the system are slowly time-varying,
but the variation speed is slower than the adaptation speed;
(2) Measurement noise is negligible; and (3) The state variables
x(k) of Eq. 16 are measurable. The first assumption was justified
from our simulation and the same findings were reported in
Reference 8. The second assumption was made to simplify the
identification scheme and it needs to be verified epxerimen-
tally. The last assumption was based on the fact that the state
variable x(k) can be measured from the optical encoder em-
bedded in each joint motor.

In order to apply the recursive least square identification algo-
rithm to Eq. 16, we need to rearrange the system equations in
a form that is suitable for parameter identification. Defining and
putting the ith row of the unknown parameters of the system
at the kth instant of time in a (3n + 1)-dimensional vector, we
have

or expressed in matrix form as

where p = 2n. Similarly, defining the outputs and inputs of the
perturbation system (Eq. 16) at the kth instant of time in a
(3n+1)-dimensional vector as

and the states at the kth instant of time in a 2n-dimensional
vector as

the corresponding system equation expressed in Eq. 16 can be
written as

With this formulation, we would like to identify the parameters
in each column of E)(k) based on the measurement vector z(k).
In order to examine the &dquo;goodness&dquo; of the least square estima-
tion algorithm, a 2n-dimensional error vector e, often called
residual, is included to account for the modeling error and noise
in Fn_ 1n:

where hat is used to indicate the estimate of the parameters
9;(k).

The basic least square parameter estimation assumes that the
unknown parameters are constant values and the solution is
based on batch processing N sets of measurement data, which
are weighted equally, to estimate the unknown paremeters. Un-
fortunately this algorithm cannot be applied to the time-varying
parameters. Furthermore, the solution requires matrix inversion
which is computational intensive. in order to reduce the
number of numerical computations and to track the time-
varying parameters 0(k) at each sampling period, a sequential
least square identification scheme which updates the unknown
parameters at each sampling period based on the new set of
measurements at each sampling interval provides an efficient
algorithmic solution to the identification problem. Such a recur-
sive real-time least squares parameter identification algorithm
can be found by minimizing an exponentially weighted error
criterion which has an effect of placing more weights on the
squared errors of the more recent measurements,s

where the error vector is weighted as

and N > 3n + 1 is the number of measurements used to

estimate the parameters Oi(N). Minimizing the error criterion
in Eq. 27 with respect to the unknown parameters vector Oi and
utilizing the matrix inverse temma/ a recursive real-time least
square identification scheme can be obtained for 6;C~ after sim-
ple algebraic manipulations’:
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where P(k) = e[Z(k)ZT(k)r1 is a (3n+l)x(3n+l) symmetric posi-
tive definite matrix, and Z(k) = [z(1),z(2), ... ,z(k)] is the
measurement matrix up to the kth sampling instant. If the er-
rors e;(k) are identically distributed and independent with zero
mean and variance a’, then P(k) can be interpreted as the co-
variance matrix of the estimate if Q is chosen as a’.

The above recursive equations indicate that the estimate of the
parameters 6,C~+1~t the k+lth sampling period is equal to the
previous estimate 0,(~) corrected by the term proportional to
[x;(k+1) -zT(k)9;(k)]. The zT(k)9a(k) is the prediction of the
valuex;(k+1) based on the estimate of the parameters 6;(k) and
the measurement vector z(k). The components of the vector
y(k)P(k)z(k) are weighting factors which indicate how the cor-
rections and the previous estimate should be weighted to ob-
tain the new estimate 6i(k+l). The parameter Q is a weighting
factor and is commonly used for tracking slowly time-varying
parameters by exponentially forgetting the &dquo;aged&dquo;
measurements. If Q « 1, a large weighting factor is placed on
the more recent sampled data by rapidly weighing out previous
samples. If e « 1, accuracy in tracking the time-varying
parameters will be lost due to the truncation of measured data
sequence. We can compromise between fast adaptation capa-
bilities and loss of accuracy in parameter identification by ad-
justing the weighting factor e. In most applications for tracking
slowly time-varying prameters, Q is usually chosen to be

0.93 < Q < 1.0. The estimate of the parameters will be used
to determine the optimal control solution for the perturbation
system in the next section.

Finally, the above identification scheme (Eqs. 29-31) can be
started by choosing the initial values of P(0) to be

P(0) = a ’3n+1 (32)

where a is a very large positive scalar and hn+1 is a (3n+l)x(3n+1)
identity matrix. The initial estimate of the unknown parameters
F(k) and G(k) can be approximated by the following equations:

where T is the sampling period.

Control of the linearized perturbation system
With the determination of the parameters in F(k) and G(k),
proper control laws can be designed to obtain the required cor-
rection torques to reduce the position and velocity errors of
the manipulator along a nominal trajectory. This can be done
by finding an optimal control, u*(k), which minimizes the per-
formance index, J(k), while satisfying the constraints of Eq. 16:

where Q is a pxp semipositive definite weighting matrix and
R is an nxn positive definite weighting matrix. The one-step per-
formance index in Eq. 34 indicates that the objective of the op-
timal control is to drive the position and velocity errors of the
manipulator to zero along the nominal trajectory in a coor-
dinated position and rate control per interval step, while at the
same time, a cost is attached to the use of control efforts. The
optimal control solution which minimizes the functional in

Eq. 34 subject to the constraints of Eq. 16 is well-known and
is found to be3,18

where F(k), G(k), and w(k) are the system parameters obtained
from the identification algorithm (Eqs. 29-31) at the kth sam-
pling instant.

The above identification and control algorithms in Eqs. 29-31
and Eq. 35 do not require complex computations. In Eq. 31,
(z’(k)P(k)z(k) + e) gives a scalar value which simplifies its in-

version. Although the weighting factor Q can be adjusted for
each ith parameter vector 9,(k) as desired, this requires excessive
computations in the P(k+1) matrix. For real-time robot arm con-
trol, such adjustment is not desirable. P(k+1) is computed only
once at each sampling time using the same weighting factor
Q. Moreover, since P(k) is a symmetric positive definite matrix,
only the upper diagonal matrix of P(k) needs to be computed.
The combined identification and control algorithm can be com-
puted in 0(n’) time. The computational requirements of the
proposed adaptive control are tabulated in Table 1. The pro-
posed adaptive control block diagram is shown in Figure 1.

Table 1. Computanons ot the adaptive controller.

COMPUTER SIMULATION: A THREE-JOINT
PUMA ROBOT ARM

A computer simulation study was conducted on a VAX-11/780
computer to evaluate and compare the performance of the pro-
posed adaptive control strategy in the joint-variable space with
the computed torque technique’6 for various loading condi-
tions along a given trajectory for a three-joint PUMA manipu-
lator. The computed torque technique is basically a simple pro-
portional plus derivative control (PD controller) with constant
feedback gains and the controller has a structure of

T(t) = D(q)[qd(t) + KJqd(t) - q(t) + Kp(qd(t) - q(t))]
+ h(q,q) + c(q) (36)

where Kv and K, are, respectively, n xn velocity and position
feedback gain matrices. They are set to 120[(n-m)/(rad/s)])16
and {100[(n-m)/(rad)]})6, respectively, to achieve near critically-
damped response of each joint. Although a better performance
could be achieved by varying these gains, we kept them con-
stant because the internal control of the PUMA robot arm has
fixed constant feedback gains.
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Figure 1. The proposed adaptive control system.

The state equations of the three-joint PUMA robot arm can be
obtained by simple manipulations of Lagrange-Euler equations
of motion. Defining the state variables, x;, and the inputs, ui, as

the state equations for the three-joint PUMA robot can be ob-
tained as in Eq. 12. Applying the Taylor series expansion to
linearize the state equations about the nominal trajectory, the
perturbation equations obtained can be transformed to discrete
perturbation equations of motion as in Eq. 16.

The manipulator is simulated to move from an initial position
q.n.~=(0°45°,45°)~ to a final position q,&dquo;~,=(90°,-45°,135°)T.
The required time for this motion is set to one second. A 4-3-4
joint-interpolated trajectory’5 has been preplanned for this
motion. From this motion trajectory, it can be easily seen from
the kinematics of the manipulator that link two and link three
of the arm will be fully stretched at 0.5 seconds. At this posi-
tion, q(0.5) = (45°, 0i 90°)T, the joint torques due to gravity
loading on the links and the absolute values of joint velocity
of the arm have maximum values. The accelerations are

changed sharply from maximum values to minimum values or
vice versa.

The initial values of the unknown system parameters F(k) and
G(k) are determined from Eq. 33 at q(O) = (0 i 45 45°)~:

The weighting matrices, Q and R, in Eq. 35 are selected, re-

spectively, as

where In is an n xn identity matrix. The weighting factor, Q, is
set to 0.95 to provide proper tracking of the slowly time-varying
parameters.

With reference to the robot arm dynamic equations, the

physical geometric parameters of the robot, such as the loca-
tion of center of mass of each link and inertia tensor matrix
of each link, are obtained from calculations based on the

physical structure of the PUMA robot. We also assume that the
robot arm does not know the weight of the object that it is car-

rying. The coefficients of the state equations are updated in

every sampling period based on the actual joint values obtained
from integrating the Lagrange-Euler equations of motion. The
numerical integration routine is based on Runge-Kutta-Gill
fourth-order method with variable step size. The sampling time
and the integration step size were chosen to be 10 ms and
2.5 ms, respectively. When the robot is simulated to pick up
an object, the inertia matrix of the last link in the Lagrange-
Euler equations of motion is modified appropriately to reflect
the loading effect; while the inertia matrix of each link in the
Newton-Euler equations of motion remains unchanged. A flow
chart of computer simulation of the proposed adaptive con-
trol strategy is shown in Figure 2.

The performances of the PD and adaptive controllers are com-
pared and evaluated for three different loading conditions and
the results are tabulated in Table 2: Case (a) no-load and 10%
error in inertia tensor matrix, Case (b) one-half of the maximum
load and 10% error in inertia tensor matrix, and Case (c) max-
imum load (5 lb.) and 10% error in inertia tensor matrix. In each
case, a 10% error in inertia matrices means ±10% error about
its measured inertial values. For all the above cases, the adap-
tive controller shows better performance than the PD controller
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both in trajectory tracking and the final position errors. Plots
of angular position errors for the above three cases for the adap-
tive control are shown in Figures 3-5.

Figure 2. Flow chart showing simulation of the adaptive control strategy.

Given the F(0) and G(O) matrices in Eq. 37, the performance
of the adaptive controller is quite sensitive to the initial values
in the P(0) matrix and less sensitive to the Q and R weighting
matrices. This result is expected as the P(k) matrix has the same
effect as the error covariance matrix in stochastic identifica-
tion with zero mean modeling error, if the weighting factor e
is chosen appropriately. In general, the convergence of the
parameter identification and hence the performance of the
adaptive controller depends on the proper selection of the P(0)
matrix. The initial large values of the P(0) matrix usually give
better convergence. The values of the Q matrix did not affect
the performance of the controller very much; however, a small
value of the R matrix did give a better tracking result. For the
simulation, two typical initial values of the P(0) matrix are
chosen:

Figure 3. Joint one position error under various loads P(0) = P2(0).

Table 2. Comparisons of the PD and adaptive controllers.
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Figure 4. Joint two positions error under various loads P(0) = P2 (0).

I ,

-.---

Figure 5. Joint three position error under various loads P(0) = PZ(0).

Plots showing the convergence of the angular positions of joint
three in Case (c) due to the effect of P(0) can be seen in Fig-
ures 6-8. In these figures, the angular position errors using the
PZ(0) matrix converged much faster than the Pl(0) matrix for
Case (c). Using the same initial values in the F(0),G(0),Q,R,P1 (0)
and PZ(0) matrices, a second trajectory with the same initial
positions, but different final position, revealed the same findings.
The applied torques computed from the PD and adaptive con-
trollers for Case (c) are shown in Figure 9.

Figure 6. Case (c) (maximum load (5 lb) and a 10% error in inertia tensor): joint
one position error using both controllers.

I I

Figure 7. Case (c) (maximum load (5 lb) and a 10% error in inertia tensor): joint
two position error using both controllers.

The proposed adaptive control in joint-variable coordinates can
be implemented in a PDP-11/45 computer for real-time con-
trol of a three-joint PUMA robot arm. Based on the manufac-
turers specification sheet of a PDP-11/45 computer, an ADDF
(floating point addition) instruction requires 5.17 ps and a MULF
(floating point multiply) instruction requires 7.17 ~s. If we assume
that for each ADDF and MULF instruction, we need to fetch
data from the core memory twice and the memory cycle time
is 450 ns, then the proposed adaptive control requires approx-
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Figure 8. Case (c) (maximum load (5 lb) and a 10% error in inertia tensor): joint
three position error using both controllers.

imately 7.5 ms to compute the necessary joint torques to servo
the first three joints of a PUMA robot arm for a trajectory set
point.

~ 
CONCLUSIONS

An adaptive perturbation control strategy which tracks a desired
time-based trajectory as closely as possible for all times over
a wide range of manipulator motion and payloads in joint-
variable coordinates has been presented. The adaptive control
is based on the perturbation equations of the manipulator
system along a nominal trajectory. A computer simulation study
was conducted to evaluate the performance of a three-joint
PUMA robot arm. From the simulation study, the adaptive con-
trol was found to perform better for various loading conditions
than the proportional plus derivative controller both in trajec-
tory tracking and final position error.

In summary, the adaptive control system is characterized by
feedforward and feedback components. The feedforward com-
ponent computes the nominal torques u&dquo;(t) from the Newton-
Euler equations of motion using the joint information from the
trajectory planning program. This computation can be com-
pleted in 0(n) time. The feedback component consisting of
recursive least square identification and an optimal adaptive
self-tuning control algorithm for the linearized system computes
the perturbation torques in 0(n’) time. Since the computations
of the nominal and perturbation torques can be performed in
parallel, the computations of the adaptive control may be im-
plemented in low-cost microprocessors. The computations of
the adaptive control for a three-joint PUMA robot arm can be
completed within 10 ms using a PDP-11/45 computer. The
analysis and computer simulation of the proposed adaptive
control strategy presented an ideal system study; physical imple-
mentation of the proposed adaptive control may require fur-
ther investigation on the effects of gear friction, backlash, con-
trol device dynamics, and flexible link structure to the controller.

Figure 9. Case (c) (maximum load (5 lb) and a 10% error in mertia tensor): ap-
plied torques computed from the PD and adaptive controllers.
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