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ABSTRACT

Simulation has been used extensively as a tool for
the solution of vehicle-dynamics problems. To

handle nonlinear simulations of increasing size and
complexity, both digital and hybrid methods have
been used. As might be expected, purely digital
simulation often proves to be more convenient, while
hybrid proves to be more economical.

Methods have been developed to provide substantial
economies in the digital simulations. Savings by
roughly a factor of five may be realized by trans-
forming the wheel-spin integrations into a solvable
set of algebraic equations and by making use of some
well-known mechanical characteristics of vehicles to
simplify the integration procedure.

1 INTRODUCTION

The problems of vehicle handling appeared in the
literature as long ago as 1925, when the pioneering
analysis of Broulhiet1 was published. Subsequent
investigators developed linearized equations whose
solution would yield the trajectory of a vehicle
subject to time-varying steering or braking. More

recently, efforts have been made to analyze various
nonlinear aspects of the vehicle system, including,
most notably, nonlinear tire properties. Perhaps
the best source of an overview of this subject has
been given by Ellis.2

Since the equations of vehicle motion can become
quite difficult to handle in the general case, it is

not surprising that simulation has been a tool fre-

quently used by vehicle dynamicists. Perhaps the
best-known early computer simulation was developed
in 1961 by Ellis,3 who developed a three-degrees-of-
freedom analog-computer model for studying the lateral
motion of an articulated vehicle. Since that time,
the advent of more and more sophisticated computing
equipment has led to the possibility of simulations
of increasing complexity. Presently, many research
facilities make use of highly nonlinear passenger-car
simulations with at least fourteen degrees of free-
dom, including six degrees of freedom for the vehicle
body (the so-called sprung mass), a vertical or
"wheel hop" degree of freedom for each wheel (or
unsprung mass), and a spin degree of freedom for
each wheel. (See, for example, Speckhart.4)

LIST OF SYMBOLS

FX Longitudinal force at the tire-road interface

FY Lateral force at the tire-road interface

JS Spin moment of inertia of a wheel

N Normal force at the tire-road interface

RR Rolling radius

S Longitudinal slip
uw wheel-hub longitudinal velocity

uwd d/dt uw
&alpha; Tire sideslip angle

&mu;O Nominal coefficient of friction at the
tire-road interface

&Omega; Wheel-spin rate

The important sprung-mass motions tend to be in the
lowest frequency range. A simulation which only
includes sprung-mass motions may be programmed safely
with a maximum expected frequency of 2 Hz; thus,
when a vehicle model which is to include only sprung-
mass motions is to be integrated digitally, a time

step of .02 second or even larger is usually used.
The inclusion of the vertical degree of freedom for
the wheels is more demanding; one normally expects
the tire wheel-hop frequency to be about 10 Hz. If
the wheel-hop degree of freedom is included in the
model, an integration time step of .005 second may
be chosen. (See McHenry and Deley.5 Note also that
in some cases it may be possible to "get away" with
larger intervals, especially in a smooth-road maneuver
in which the wheel-hop mode of oscillation tends not
to be excited.)
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The spin degree of freedom for the wheels is more
difficult to categorize. While the spin rate may be
easily computed under some conditions,* the initiation
or cycling of brake torque (as in an antiskid system)
may lead to rapidly changing spin derivatives requir-
ing a digital time-step that is orders of magnitude
shorter than those required for the rest of the simu-
lation. Such a system of equations, of course, lends

itself to hybrid computation. The analog integration
of the wheel-spin equations poses no special problems,
and the complicated algebra required in the computa-
tion of the shear forces at the tire-road interface
can be done digitally.
There are, however, conditions when the user is con-
strained to use digital facilities. For example,
work was begun at the Highway Safety Research Insti-
tute (HSRI) in early 1971 with the goal of the crea-
tion of a digital simulation of the handling motions
of articulated vehicles. Digital simulation was
chosen for two reasons: (1) the final size of the

program was expected to severely tax available hybrid
facilities, and (2) the programs were to be delivered
to several companies for their own in-house use.
Since it was expected that the costs of exercising
this simulation could easily become prohibitive,
special methods were developed to make the digital
integration more economical. These methods, which
have increased our in-house computation speed by a
factor of nearly five, will be discussed in some
detail below.

Initially, a new method for handling the spin degree
of freedom of the wheels will be considered. As a

prelude to this discussion, we shall consider briefly
the mechanics of the tire-road interface and point
out some methods previously used to deal with the
wheel-spin problem.
2 THE SHEAR FORCES AT THE TIRE-ROAD INTERFACE

It seems obvious that, since the vehicle trajectory
is almost entirely dependent on forces applied to
the vehicle from the road, the representation of the
tire-road interface is of primary interest in vehicle
simulation. We will restrict our attention here to
smooth road maneuvers in which the normal force on
the tire may be expected to be a straightforward
function of the vertical position of the tire, and
examine briefly the character of the shear forces.
A schematic diagram of the relevant kinematics and
some experimental data are given in Figures 1, 2,
and 3.

Figure la - A rolling tire with applied brake torque

In Figure la is shown a tire rolling in planar
motion, while some curves relating the ratio of
longitudinal force to normal force FX/N and longi-
tudinal slip S are given in Figure lb. The longi-
tudinal slip S is defined as follows:

*A trivial but not uncommon example occurs when the
wheels remain locked due to excessive brake torque,
resulting in identically zero wheel-spin rate.

tOn an IBM 360/67 through the Michigan Terminal System.

S RR - Q (2.1)S = 1 - 
uw 

(2.1) ’

where RR is the rolling radius, 0 is the spin velocity,
and uw is the longitudinal translational velocity of
the wheel center.

The so-called u-slip curves shown in Figure 1b are

typical of measurements of braking forces produced
by an automobile tire on a dry surface. In most

cases, it is reasonable to expect that the part of
the curve characterizing the very-low-slip region
will be characterized by a nearly vertical linear
characteristic which shows only nominal changes with
normal load and vehicle speed. The rest of the curve,
however, may be expected to be a function of both
normal load N and hub speed uw.

Figure lb - Empirical &dquo;u-slip&dquo; curves
for a passenger car tire

In Figure 2a a sketch of a tire rolling with angular
velocity and sideslip angle a is given. Under the

free-rolling condition

the lateral force FY may readily be measured. These
measurements may be given in carpet-plot form as
shown for a new 10.00-20/F truck tire in Figure 2b.
Again, the lower portions of the curves tend to be
linear, although in this case, the slope changes
quite markedly with normal load.

If, as in any maneuver involving braking and turning,
longitudinal slip and sideslip angle are simultane-
ously nonzero, complex interrelationships govern the
generation of FX and FY. A sample of such an inter-
relationship is given in Figure 3. It is clear from
this figure, in which empirical data measured for a
passenger-car tire is given, that the generation of
braking forces seriously impedes the generation of
lateral forces. This fact is at the heart of many
vehicle stability problems.
3 SOME MODELING TECHNIQUES AND THEIR RESULTS
All vehicle-handling simulations must make an attempt
to model the phenomena discussed above. Simplifica-
tions may, of course, be made; certain problems may
be considered even though the relationships depicted
in the figures may be modeled in a quite elementary
fashion. Consider, for example, the diagram of the
rolling tire given in Figure la. Neglecting any
yaw-plane dynamics, the equations of motion of the
wheel may be written
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Figure 2a - Longitudinal and lateral forces
at the tire-road interface

where

JS is the polar moment of inertia,

TT is the applied brake torque.

The dot indicates differentiation with respect to
time.

In many early simulations, Equation 3.1 has been
simplified by the assumption that the JS·~ term is
negligible. This results in

where the nominal friction coefficient p is chosen

with appropriate empirical data in mind.o

Since the rotational terms are in fact negligible
under some conditions, this approximation may in
some cases lead to meaningful results. Further,
the fact that the wheel-spin degree of freedom has
been neglected does not preclude the study of vehicle
handling. Possibly the best known method for the
inclusion of the effect of longitudinal slip on the
generation of lateral force without explicitly con-
sidering wheel rotation is the &dquo;friction circle&dquo;*

concept. This method will be summarized briefly here:

a) The brake force FX(t) is an input function to
the simulation, limited only by the product of
the nominal coefficient of friction and the
normal force as in Equation 3.2b.

b) In the absence of brake forces, the lateral-
force characteristics are computed as a cubic
function of sideslip angle a.

where 

’

a is the sideslip angle of &dquo;saturation&dquo; of the
sTde force (taken by Ellis3 to be 12°).

To approximate the effect of longitudinal slip on
side-force generation, FY is limited by the boundary
of the friction circle.

Thus, the effects of sideslip angle on the brake
forces are neglected, and the effects of longitudinal
slip on side force are simulated only when the side
force as computed in (3.3) violates inequality (3.4).
In spite of these approximations, this tire model

may predict the trends of vehicle motion quite suc-
cessfully. A recent development, however, has
necessitated the detailed consideration of the
wheel-rotation rate. Certain sections of Motor
Vehicle Safety Standard 121, effective in September
1974, will require that:

a) Commercial vehicles have the capability to pro-
duce a steady-state deceleration of more than
17 feet/second2 from 60 mph to a stop without
prolonged wheel lockup on a surface character-
ized by skid number 75. (The skid number is
equal to one hundred times the ratio of locked
wheel brake force to normal load of a standard

passenger car tire when tested at a specified
load and velocity. See Reference 6 for details.)
During this stop the vehicle must be kept in a
twelve-foot lane.

b) Commercial vehicles have the capability to pro-
duce a steady-state deceleration of more than
8 feet/second2 from 20 mph to a stop without
prolonged wheel lockup on a surface character-
ized by skid number 30. During this stop the
vehicle must be kept in a twelve-foot lane.

Since commercial vehicles are commonly subject to
wide extremes of payload, and since substantial
utilization of available friction is required on
both wet and dry surfaces, vehicle manufacturers
are now giving serious consideration to the use of
antiskid brakes to prevent prolonged wheel lockup.
There is a variety of antiskid designs which will
prevent wheel lockup during braking by automatic

Figure 2b - Lateral forqe versus sideslip angle
at various normal loads

*The friction circle was later modified to be a
&dquo;friction ellipse.&dquo; (See, for example, Ellis.2)
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Figure 3 - Lateral force and longitudinal force
vs. slip at various sideslip angles

regulation of pressure within the braking system.
However, the device controlling the pressure invar-
iably uses the wheel speed Q or its time derivatives
as control variables; thus the simulation of vehicles
with antiskid brakes requires a spin degree of free-
dom for the wheels. This requirement poses severe
problems in digital simulation. While a reasonable

time-step for digital integration of the vehicle
motion might be about 0.005 second (thus accommodat-
ing the 10-Hz wheel-hop frequency), the step required
for the wheel rotation is many times smaller, with
time steps of 0.0001 second not unusual. Thus, to

make computations as economical as possible, many
investigators5,7,8 were led to hold all kinematic
variables (except wheel-spin rate) as well as the

input brake torque and sideslip angle a constant
during a short wheel-rotation integration time-step,
and update them on a schedule determined by the
integration time-step of the main body of the simu-
lation. While such a method certainly leads to
reasonable results, the increased computational ex-
pense over models with nonrotational wheels is

obviously very significant, in some cases by as much
as a factor of four.

The methods discussed below use the previously devel-
oped idea of updating certain variables for use in
the wheel-spin calculations only on completion of
the interval of integration appropriate for the
vehicle motion. However, it will be shown that this

may be done in a manner which allows generation of
solvable differential equations of wheel rotation.
In this way, the added costs of integration of the
wheel rotation are virtually eliminated.

Figure 4 - A p-slip curve

4 THE ROTATIONAL DEGREE OF FREEDOM

It is our purpose in this section to consider the

spin motion of the wheel without allowing variation
in kinematic variables such as the normal force N
and the brake torque T. Although the existence of
a vehicle longitudinal acceleration uwd is admitted,
the time range of validity of the following analysis
must be short enough to allow uu to be reasonably
approximated by a constant. Thus the differentiation
of the longitudinal slip S with respect to time yields

The combination of (4.1) and (3.1) leads to

Let SZERO be the value of S at t=to for a p-slip
curve in the form shown in Figure 4. At S = SZERO,

Expanding the p-slip relationship in a Taylor series
about S = SZERO,

+ higher-order terms

Neglecting the higher-order terms, FX may be written

where

Combining Equations 4.5 and 4.2 yields

where

The solution to Equation 4.7 is

Equation 4.13 may be solved for S by updating SZERO,
F, and Q at the beginning of each integration time
step, and the brake forces may then be found from
the p-slip relationship.

This method is general in the sense that any con-
tinuously differentiable p-slip relationship is
admissible. Further, it should be noted that the
initial assumptions of constant normal force and
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brake torquet during the time step must be reasonable
if the integration time step is reasonable; these
variables are also used in the calculation of the

sprung- and unsprung-mass derivatives, which are
assumed constant during the time step.

5 ECONOMICS BASED ON INTEGRATION TECHNIQUE
With the wheel-rotation differential equations writ-
ten in the form suggested in the previous section,
no integration of the spin degree of freedom is
required, and the solution for the brake force be-
comes an algebraic calculation only. Thus the
vehicle dynamics problem may again be considered in
two separate frequency bands--the motions of the
sprung mass, which tend to be in the range of 1 Hz,
and the wheel-hop motions, which tend to be in the
range of 10 Hz.

As one might expect, digital integration of equations
of the type considered here requires that CPU time
will largely be spent in calculating time derivatives
rather than in the integration process. This happens
because the forces are not straightforward functions
of the state variables. Further, the calculation of
the wheel-hop derivatives tends to be a much more

straightforward proposition than the calculation of
the sprung-mass derivatives. Thus, the bulk of the

computation time at each step is spent dealing with
the slowly varying sprung-mass motions, while the
time step must be chosen to accommodate the more
rapid wheel-hop motions.

One solution to this seeming paradox is to consider
the wheel-hop equations of motion and sprung-mass
equations of motion separately, each with its own
time step. This, of course, requires extensive
bookkeeping, much in the manner of the usual methods
of numerically integrating the spin degree of freedom
separately from the rest of the vehicle motions. A
much simpler, but nevertheless effective, technique
based on a modification of Hamming’s Predictor-
Corrector method as found in HPCG, an IBM-produced
digital integration subroutine,9 is given below.
The following methodology is used in HPCG:

a) Given the dependent variables Y(t) and their
time derivatives DERY(t), the Y(t+At) are

computed.

b) DERY(t+4t) are calculated based on the Y(t+At).

c) Based on Y(t), Y(t+At), and DERY(t+At), the
Y(t+At) are &dquo;corrected.&dquo;

d) The corrected Y(t+At) are used to recalculate

DERY(t+At).

~It is assumed here that the antiskid system cycles
at 10 Hz or less. This is entirely reasonable for
air brake systems and for vacuum-assisted hydraulic
systems.

It is in steps (b) and (d) that the vast majority of
the computations are performed, since in each of
these steps the time derivatives must be calculated.
Substantial savings may be made by observing that the
sprung-mass derivatives, since their frequency band
is far below those for which the time step At was

chosen, will not require correction in step (d).

Figure 5 - A flow chart for modified HPCG

This technique, which is illustrated in Figure 5, has
proven very satisfactory in the simulation of even the
most violent maneuvers, showing virtually no differ-
ence from calculations in which HPCG is used in its

original form. This has led to savings in the HSRI
vehicle simulation of the order of 80%.

6 CONCLUSIONS

Savings of approximately a factor of five in CPU
time have been realized in a large-scale passenger-
car simulation by casting the wheel spin calculations
into a form subject to algebraic solution rather than
digital integration and by using Hamming’s Predictor
Corrector Method to modify the integration subroutine.

ACKNOWLEDGEMENT

This research was supported by the Motor Vehicle
Manufacturers Association. The author would also
like to express his appreciation to Dr. Bruce Bowman of
HSRI for particularly helpful contributions regarding
the modification of the HPCG integration package.

REFERENCES

1 BROULHEIT G
Suspension of Automobile Steering Mechanism:
Shimmy and Tramp
Bulletin 78 Soci&eacute;t&eacute; des Ing&eacute;nieurs Civils de
France 1925

2 ELLIS J R
Vehicle Dynamics
Business Books Ltd London 1969

3 ELLIS J
The Dynamics of Vehicles During Braking
Symposium Control of Vehicles Automobile
Division London:Inst Mech Engrs 1963 pp 20-29

4 SPECKHART F H
A Computer Simulation for Three-Dimensional
Vehicle Dynamics
SAE Paper Number 730526 May 1973

5 McHENRY R DELEYS N

Vehicle Dynamics in Single Vehicle Accidents -
Validation and Extensions of a Computer
Simulation
Cornell Aeronautical Laboratory, Inc
Report No VJ-2251-V-3 December 1968

6 ASTM Standard E 274-70

7 KRAUTER A WILSON R
Simulation of Tractor-Semitrailer Handling
SAE 720922 1972

8 NICHOLAS N COMSTOCK T

Predicting Directional Behavior of Tractor-
Semitrailers When Wheel Anti-Skid Brake Systems
Are Used
ASME 72-WA/ANT-16 1972

9 System/360 Scientific Subroutine Package
Version III Programmers Manual


