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Abstract: Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer
that can be processed into three-dimensional (3D) scaffolds for tissue engineering. We
investigated the effect of designed porosity on the mechanical properties, permeability, and
degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive
data were fitted to a one-dimensional (1D) nonlinear elastic model, and solid tensile data were
fitted to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on
scaffolds to assess the biocompatibility of POC. Increased porosity was associated with
increased degradation rate, increased permeability, and decreased mechanical stiffness, which
also became less nonlinear. Scaffold characterization in this article will provide design
guidance for POC scaffolds to meet the mechanical and biological parameters needed for
engineering soft tissues such as cartilage. ' 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part B:

Appl Biomater 93B: 141–149, 2010
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INTRODUCTION

Tissue engineering requires the use of three-dimensional

scaffolds as a template on which cells differentiate, prolif-

erate, and grow new tissues. Optimal scaffolds should be

biocompatible, biodegradable, permeable, reproducible,

noncytotoxic, and capable of serving as a temporary sup-

port for the cells with elastic properties similar to native

tissue, which will allow eventual replacement by tissue ma-

trix.1 The choice of scaffold material and architecture will

determine the effective scaffold mechanical and mass trans-

port properties that can significantly influence tissue regen-

eration. Particularly, for cartilage regeneration, many

researchers have tried to develop novel materials that are

elastomeric yet mechanically tough. Recently, novel elasto-

meric materials such as poly(1,8-octanediol-co-citrate)
(POC),2–5 poly(glycerol sebacate) (PGS),6–11 and polycap-

rolactone fumarate (PCLF)12 have been developed and

shown to have potential for soft tissue applications. Among

them, POC has been shown to be a good candidate for car-

tilage tissue engineering13 because of its biocompatibility,

biodegradability, and compressive properties. Cartilage

applications require a 3D designed porous architecture with

well characterized mechanical and mass transport proper-

ties. Even though Kang et al.13 has shown that POC has

potential as a base material for cartilage, the influence of

designed POC scaffold porosity on mechanical, mass trans-

port, and degradation properties has not been elucidated.

Scaffold architecture and mechanical and degradation

properties are intimately coupled. Scaffold pore architecture

in addition to base POC material properties are the two

determinants of effective POC scaffold mechanical proper-

ties. Furthermore, since POC is mainly degraded by the hy-

drolysis of its ester linkages,2,3 scaffold architecture

significantly affects scaffold degradation by directing fluid

diffusion. To characterize the coupling of architecture and

materials with mechanical, mass transport and degradation

properties, we fabricated 3D scaffolds with varying poros-

ities, characterizing the resulting mechanical, permeability,

and degradation properties of different designs. Scaffold

architecture is defined to include pore shape, pore size, and
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pore interconnectivity. To solely examine the effects of po-

rosity on scaffold property changes in this article, pore

shape and pore size were kept constant.

MATERIALS AND METHODS

Synthesis of Prepoly(1,8 Octanediol-co-Citrate)

All chemicals were purchased from Sigma-Aldrich (Mil-

waukee, WI). Poly(1,8 octanediol-co-citrate) prepolymer

(pPOC) was synthesized following protocols described by

Yang et al.2,3,5, with some curing process modifications.

Briefly, equimolar amounts of citric acid and 1,8-octanediol

were added to a 500-mL three-necked, round-bottom flask

fitted with an inlet and outlet adapter. The mixture was

melted at 160–1658C for 15–20 min under a flow of nitro-

gen gas while stirring. The temperature of the system was

subsequently lowered to 1408C for 45 min with constant

stirring to create a prepolymer.

Scaffold Design and Fabrication

Previously developed image-based design processes and

software were used to design 3D POC scaffold architec-

tures.5,14–16 Porous POC scaffolds (6.35 mm diameter, 4.0

mm height, 900 lm interconnected cylindrical pores, poros-

ity 5 32, 44, and 62%) were designed using custom IDL

programs (RSI, Boulder, CO). The details of POC solid

and scaffold fabrications were previously reported by Kim

et al.5 In brief, wax molds with 3D-image-based design

architecture were built by a Solidscape Patternmaster2

machine and inversely solid free-form fabricated hydroxy-

apatite (HA) molds were prepared before curing pPOC into

architecture scaffolds.17 Wax molds that embody the

designed 3D architecture are fabricated first. However, as

the wax molds melt POC curing temperatures, secondary

HA were created from the wax molds as the HA easily

withstands the pPOC curing temperatures that reach more

than 1008C. pPOC was poured into the wells of a Teflon

mold, and HA molds were embedded within the pPOC.

The pPOC/HA/Teflon mold unit was postpolymerized at

1008C for 1 day followed by curing at 1008C for 3 days

more with vacuum (220 in Hg). The HA mold was

removed using a decalcifying reagent (RDO, APEX Engi-

neering Products Corp, Plainfield, IL) followed by incuba-

tion in water (Milli-Q water purification system, Billerica,

MA) for 24 h to obtain the final porous POC scaffolds

(Figure 1). Figure 2 summarizes the complete procedure

from design through fabrication and evaluation.

Mechanical Tests

For scaffold unconfined compression tests, seven porous

scaffolds from each design were tested in compression

(Alliance RT/30 electromechanical test frame, 50 N load

cell with 0.5% error range, MTS Systems Corp., MN) and

TestWorks4 software (MTS Systems Corp., MN) were used

to collect data during compression testing. MATLAB (The

MathWorks Inc., MA) software was used to fit a nonlinear

elasticity model, T 5 A[eBE – 1], where T is the first Piola-

Kirchoff stress, E is the large strain, and A and B are con-

stants fit to data. Specifically, the sum of least square error

between the model and experimental stress was minimized

using the LSQNONLIN minimization program in the

MATLAB optimization toolbox. Tangent moduli were cal-

culated at 1, 10, 30, and 50% strain from fit data.18 All

residuals between model and experimental stress were

below 1%. The compressive Young’s modulus of 62% po-

rous scaffolds (N 5 4, 0.1M NaOH degradation samples)

was determined from the initial slope of the stress–strain

data (10–20% strain range) obtained from compression tests

at a crosshead speed of 2 mm/min. The initial height of

each scaffold was measured with an electronic caliper.

To determine if POC exhibited viscoelastic properties,

confined compression tests were performed. The same com-

pression test frame as for the unconfined test was used

except that the sample was confined by acrylic confined

chamber similar to the one described in Refs. 19–23, with a

constant chamber temperature of 378C. A 6.35-mm diame-

ter porous metal indenter was used for compression instead

of a regular fixed metal platen. Ten solid cylinders (6.35

mm in diameter, 4.0 mm in height) with the same curing

conditions as other scaffolds were tested, and the resulting

data were fitted to the nonlinear elastic model.

Tensile mechanical tests were conducted according to

ASTM D412a on the same test frame equipped with 500N

load cell. Briefly, the dumbbell-shaped sample (33 3 6 3
2.0 mm) was pulled at a rate of 2 mm/s. Assuming POC to

be incompressible, the tensile tests were fit to a Neohoo-

kean nonlinear elastic model (Holzapfel, G. Nonlinear

Solid Mechanics, Wiley; first edition)24 of the form:

Wðk1; k2; k3Þ ¼ l1
2

k21 þ k22 þ k23
� �

where W is the strain energy function, ki are principal

stretch ratios, and l1 is a model constant determined by fit-

ting the model to experimental data. The Neohookean

model was fit to experimental data by first deriving the first

Piola–Kirchoff model stress. The least square error between

the model stress and first Piola–Kirchoff experimental

stress was minimized using the MATLAB unconstrained

minimization function FMINUNC. The Baker-Ericksen in-

equality (required for physical stability of the model con-

stants) was calculated for each fit and found to be satisfied.

Porosity and Permeability Measurements

Seven scaffolds from each porosity were scanned in air

using a MS-130 high-resolution lCT scanner (GE Medical

Systems, Toronto, CAN) at 19 lm voxel resolution, at 75

kV and 75 mA. The porosity of each specimen was calcu-

lated by defining a region of interest that encompassed the

entire scaffold and an appropriate threshold level was
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Figure 2. A schematic of designing, fabrication, and porosity analysis of 3D POC scaffolds: with
3D scaffold designs by IDL, first wax molds are built in Solidscape, which then are cast into HA

creating a secondary inverse mold. POC prepolymer/HA constructs are cured, and a resulting 3D

POC scaffold is analyzed by micro-CT for its porosities and defects.5,16,25 [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]

Figure 1. 3D-designed POC scaffolds illustrated through digital images, top view (A) and microCT

images, top view (B) and side view (C). [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]



applied to delineate the solid POC material using GEMS

MicroView software (GE Medical Systems, Toronto,

CAN). All porosity scanning was performed before me-

chanical tests to avoid any artifacts due to compression.

Also, any possible residuals of HA were checked by lCT
images by applying a threshold level of HA. The intensity

threshold of POC is 2510 and that of HA is 2000–2500 at

gray-scale values of Micro-CT images viewed by GEHC

MicroView. By applying different threshold values, any

HA residual within the POC scaffold can be determined.

Scaffold permeability (N 5 7, each design) with and

without composite hyaluronic acid (HyA)/collagen I (Col I)

gel was measured using a previously built flow chamber.25

Permeability was calculated as average mass flow from

Bernoulli’s equation (with a frictional loss correctional

term)23 with Darcy’s Law used to calculate permeability.

Permeability of scaffolds with hydrogels was measured to

mimic cell loading conditions in vitro or in vivo.
Chondrocytes were seeded into 3D scaffolds by first sus-

pending the cells in media with composite HyA/Col I gels

and then pushing the gel into the 3D scaffolds.16 The gela-

tion procedure is as follows: 625 lL of Col I (stock con-

centration: 6 mg/mL; BD Bioscience Discovery Labs, San

Jose, CA) with 62.5 lL HyA [stock concentration: 3 mg/

mL in 1.5M sodium chloride (NaCl), molecular weight

2.4–3 million Da; Hyalogic LLC, Edwardsville, KS] were

well mixed. The pH of the HyA/Col I suspension was

increased with the addition of 9 lL of 0.5N sodium hy-

droxide with 220 mg/mL sodium bicarbonate to initiate ge-

lation. As soon as 0.5N sodium hydroxide is added to

HyA/Col I gel mixture, gel contents were evenly resus-

pended. Hydrogel mixtures were then dripped down onto

preprepared sterile POC scaffolds until POC scaffolds were

fully soaked and filled with gels up to the top surface. This

was followed by incubation at 378C for 30 min to solidify

gels further. The gel mixture volumes used for each design

varied depending on porosity of each design. Roughly, 90,

110, and 150 lL of gel mixtures were used for 32, 44, and

62% porous scaffolds, respectively. The permeabilities are

presented as mean 6 standard deviation.

In Vitro Scaffold Degradation

Four solid cylinders and four porous scaffolds (6.35 mm in

diameter, 4.0–4.3 mm thickness) for each design were

placed in a tube containing 10 mL phosphate buffer saline

(PBS) (pH 7.4) for 3 weeks. Additionally, nine porous scaf-

folds for each design were degraded by 0.1M NaOH for 9,

24, and 33 h at 378C to rapidly obtain relative degradation

rates among samples. After incubation, samples were

washed with water and oven-dried at 508C for 24 h. Mass

loss was calculated by comparing the initial mass (W0)

with the mass measured at a given time point (Wt), as

shown in the following equation: Mass loss 5 [(W0 – Wt)/

W0]*100%. The results are presented as means 6 standard

deviation. For NaOH degradation, four 62% porous

scaffolds were mechanically tested before and after

degradation.2,3,5

In Vitro Cell Culture and Histology

Porcine chondrocytes (pChon) were isolated and seeded

onto scaffolds following the methods previously pub-

lished16 with some modifications. In short, cells were resus-

pended at a density of 35 3 106 cells/mL in 625 lL of

composite HyA/Col I with approximately 60 lL of culture

medium. Collagen gels are used as a cell carrier for POC

scaffolds to provide better cell distribution within scaffold

pores. Five percent hyaluronic acids was added to provide

a favorable environment for chondrocyte differentiation/

proliferation based on our previous work.16 The remaining

steps were the same as previously described (see "Porosity

and Permeability Measurements" section). Scaffolds seeded

with pChon were cultured with chondrogenic medium [basal

medium (DMEM), 10% fetal bovine serum (FBS), 1% P/S

(Gibco) supplemented with 50 mg/mL 2-phospho-L-ascorbic

acid (Sigma), 0.4 mM proline (Sigma), 5 mg/mL insulin

(Gibco), and 0.1 mM nonessential amino acids (Gibco)].

Chondrocytes on scaffolds were cultured for 4 weeks under

gentle agitation on an orbital shaker, and the media was

changed every other day. All polymer samples were steri-

lized by incubation in 70% ethanol for 30 min, followed by

UV light exposure for another 15 min each side before plat-

ing cells. After sterilization, all scaffolds were briefly rinsed

with PBS, followed by soaking in basal medium to neutral-

ize. Cell culture was maintained in a water-jacket incubator

equilibrated with 5% CO2 at 378C for 4 weeks. For histol-

ogy, constructs were fixed in 10% buffered formalin over-

night, dehydrated with a series of graded ethanol, and

embedded in paraffin. Tissue sections were stained with

safranin-O (saf-O) to assess cell distribution, morphology,

and sGAG staining as a measure for cartilage application.

Three slides (4 sections/slide) were obtained from the center

of each scaffold (top to bottom and left to right).

Statistical Analysis

Data are expressed as mean 6 standard deviation. The sta-

tistical significance among different porosities was calcu-

lated using linear regressions and one-way ANOVA with

post hoc comparison (Tukey). Data were taken to be signif-

icant when a p value of 0.05 or less was obtained.

RESULTS

Mechanical Tests

Figure 3(A) shows that unconfined compressive tests of

POC solid and scaffolds produced stress–strain curves char-

acteristic of elastomeric materials. As porosity of scaffolds

increased, tangent moduli decreased. Solid and 32% porous

scaffolds exhibited nonlinear behavior with increased strain

level whereas 44 and 62% porous scaffolds were more lin-
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ear. Figure 3(B) is an example of nonlinear model fit for a

44% porous scaffold and Table I summarizes tangent mod-

uli for each design at various strain levels (%).

In cartilage engineering, many researchers have tried to

design and fabricate scaffolds with stress–relaxation proper-

ties, mimicking the poroelastic biomechanics of cartilage.

To determine if POC solid cylinders or scaffolds were also

either viscoelastic or poroelastic, we have performed con-

fined compressive tests as described earlier.19–21 Results of

stress–relaxation tests demonstrated that POC does not ex-

hibit significant stress relaxation and thus can be considered

as a nonlinear elastic material and not viscoelastic. Porous

scaffolds also did not demonstrate stress relaxation, indicat-

ing that pores of the designed size did not exhibit poroelas-

tic behavior.

Tensile test data for solid coupons exhibited nonlinear

elastic behavior and was fit well with the Neohookean

model (Figure 4). The coefficients differed with synthesis

conditions, with 1 day of curing at 1008C followed by 4

days at 1208C giving a l1 value of 0.172 6 0.022 MPa

while 5 days of 1008C giving a l1 value of 0.142 6 0.013

MPa. The coefficient of determination for all fits was greater

than 0.99, indicating good fits for the nonlinear model.26 In

addition, all coefficients satisfied the Baker–Eriksen criteria

for material stability. This demonstrates higher curing tem-

perature gives an overall stiffer behavior for solid POC.

These results also demonstrate that POC can be considered

as a nonlinear elastic elastomeric material.

The major difference between linear and nonlinear elas-

ticity is that, in linear elasticity, the material modulus is con-

stant over the entire deformation, whereas for nonlinear

elasticity, the modulus will change with deformation. In

general, soft tissues, including cartilage, are shown to ex-

hibit strain stiffening in which the tangent modulus increases

with increasing strain.26,33 If we accept the fact that mechan-

ical strain magnitude can affect tissue regeneration in that

cells may modulate matrix synthesis in response to strain

levels, matching only the linear versus nonlinear behavior

could have significant consequences for tissue regeneration.

If only a material exhibiting linear behavior is used for a

scaffold, we are faced with the choice of matching either the

low modulus under small strains or the higher modulus

under large strains. Matching the small-strain, low modulus

may provide sufficient strain to stimulate cells under small

deformation, but if large deformations are seen, then the

cells may be damaged. If we match the large deformation

higher modulus with a linear scaffold, this may protect the

chondrocytes under large strain, but may shield the chondro-

cytes for sufficient mechanical stimulus under small strain.

A nonlinear material that can match both regions may pro-

vide better strain microenvironments to chondrocytes. Of

Figure 3. (A) A tangent moduli (MPa) versus strain (%) curve from
unconfined compression tests and nonlinear model fit (N 5 7, p \
0.05 for all porosities). (B) An example of compressive test data and

corresponding nonlinear model fit for a 44% porous scaffold. [Color

figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

TABLE I. Tangent Moduli (MPa) of Scaffolds at Various Strain (%) Presented as Average 6 Standard Deviation and Average Model
Fit Error (fval)

Strain (%)

Design (Porosity)

Average fvalSolida 32%b 44%c 62%d

1 0.674 6 0.147 0.372 6 0.048 0.327 6 0.046 0.147 6 0.046 0.0064

10 0.933 6 0.209 0.523 6 0.061 0.355 6 0.037 0.170 6 0.052 0.0015

30 1.922 6 0.475 1.115 6 0.123 0.427 6 0.035 0.244 6 0.089 0.0023

50 3.977 6 1.113 2.392 6 0.343 0.519 6 0.082 0.365 6 0.182 0.0010

a–dN 5 7 and p\ 0.05.
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course, this is currently conjecture, but such hypotheses can

only be tested if we can engineer scaffolds with both linear

and nonlinear elastic behavior.

Based on previous reports,27–32 aggregate modulus of

human articular cartilage ranges from 0.1 to 3.10 MPa and

unconfined compressive modulus ranges from 0.45 to 0.9

MPa with 10–30% strain, depending on ages and health

conditions. POC scaffold tangent moduli range from 0.1

MPa (62% porosity at 1% strain) to 1.115 MPa (33% po-

rosity at 30% strain). Thus, POC tangent moduli encompass

the range of human articular equilibrium moduli.

Permeability

Table II shows permeability of scaffolds without and with

hydrogels for various porosities. Generally, it is known that

an increase in interconnected porosity results in an increase

in permeability. However, permeability depends not only

on scaffold architecture, but also on base materials because

of the presence of micropores, hydrophilicity, and number

of crosslinkages. Without gels, permeability increased dra-

matically with a linear regression coefficient of 0.1524,

whereas permeability did not vary substantially between

different designs with gel, having a linear regression coeffi-

cient of 0.0032 (Figure 5). The differences in permeability

between cases with and without gel become more critical

when cells are seeded onto scaffolds for tissue ingrowth.

Even though scaffold architectures may have significantly

different permeabilities, the use of gels for scaffold cell

seeding may temporarily cause a significant drop in perme-

ability. However, the relatively quick hydrogel degradation

will cause a steady increase in scaffold permeability.

In Vitro Degradation

Yang et al.3 demonstrated that the degradation rate could be

adjusted by varying synthesis and fabrication conditions of

POC solids. They demonstrated that increased curing tem-

perature and postpolymerization time resulted in a higher

tensile strength and a higher Young’s modulus due to higher

crosslink density and fewer unreacted monomer groups, but

those synthesis conditions tend to make a material that

degrades slower. However, they did not investigate how dif-

ferent scaffold architectures could affect POC degradation

and associated changes in compressive mechanical proper-

ties. The data for degradation of POC scaffolds with various

porosities are presented in Figure 6. Both fast (0.1M NaOH)

and slow (PBS) degradation showed a similar trend in terms

of different degradation profiles for each design.

Degradation, perhaps due to both bulk and surface ero-

sion, was highly dependent on scaffold porosity and perme-

ability (Figure 6). Both the 32 and 44% scaffolds showed

loss of architecture and complete pore collapse after 3-

week degradation in PBS. All designs showed loss of archi-

tecture after 24 h in 0.1M NaOH. A significant portion of

the 62% porous scaffold showed pore collapse, although

the top layer of the scaffold maintained the pore structure.

Based on these results, it is not possible to make a defini-

tive conclusion as to the mechanism of degradation, bulk

versus surface. The nature of the pore collapse suggests

that both mechanisms may be involved.

In this study, the lower porosity scaffolds with thicker

struts showed a greater degree of collapse than the 62% po-

rous scaffolds with the thinnest struts. If the sole mecha-

nism of degradation was surface erosion, one would expect

that the 62% porous scaffold with the thinnest struts would

collapse sooner, as the struts would lose thickness and ge-

ometry first. However, the thinnest struts did not collapse

first, suggesting that bulk degradation with autocatalysis

could play a role in POC porous architecture degradation.

TABLE II. Permeability of Scaffold Designs with and Without
Collagen I Gel (N 5 7, p < 0.05 for Both with and Without Gel)

Permeability (1026 m4/N�s)
Porosity (%) 32 44 62

Without gel 0.54 6 0.12 2.98 6 0.21 5.24 6 0.89

With gel 0.31 6 0.04 0.37 6 0.03 0.41 6 0.07

Figure 5. POC scaffold permeability with and without gel for differ-
ent porosity (N 5 7, p \ 0.05). [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 4. An example of tensile test data and corresponding Neo-

hookean model fit. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

146 JEONG AND HOLLISTER

Journal of Biomedical Materials Research Part B: Applied Biomaterials



Tangent Young’s modulus (10–20% strain range) for 62%

scaffolds decreased from 0.070 to 0.037 MPa after PBS degra-

dation. In Figure 6(A), initial degradation rate did not seem to

vary much depending on different porosities; however, perme-

ability effects were associated with higher degradation rates at

longer time periods as determined by weight loss.

Biocompatibility Evaluation

Cartilaginouslike tissue was formed within POC scaffolds

and chondrocytes in lacuna were evenly distributed within

the tissue. These cells maintained a rounded form, indicat-

ing maintenance of the chondrocytes phenotype [Figure

7(B)]. The void spaces shown in Figure 7(a, b) are areas

occupied by POC scaffolds. The chondrocytic morphology

and tissue formation confirm the biocompatibility of the

POC scaffolds.

DISCUSSION

The success in development of novel biodegradable poly-

mers for scaffolds relies on appropriate mechanical proper-

ties, degradation rates, and biocompatibility. It is critical to

understand how scaffold architectures affect mechanical,

mass transport, and degradation properties of scaffolds as

these properties will significantly influence tissue regenera-

tion. A typical solid elastomer shows a nonlinear behavior

in compression and tension.3 However, the degree of nonli-

nearity in compression depended significantly on scaffold

porosity. As porosity increased, nonlinear behavior

decreased and 44 and 62% porous scaffolds had a trend to-

ward more linear behavior. Because of the inherent POC

nonlinear behavior, solid and 32% porous scaffolds showed

a distinct increase in compressive tangent moduli compared

with higher porosities.

Permeability showed a more complex relationship to

scaffold architecture, depending on the presence or absence

of gel cell carriers. Scaffold permeability without gel

showed a linear relationship with porosity (Figure 5).

Based on permeability without gel, we may deduce that

water could penetrate through both gel and POC itself at

similar rates because the regression coefficients did not

depend significantly on porosity when the scaffold con-

tained gel. This data are especially important when consid-

Figure 7. (A and B) Histological studies of POC scaffolds with

chondrocytes for 4 weeks. The sections were stained with safranin

O. Stars indicate areas occupied by scaffold materials. [Color figure
can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 6. Degradation studies of POC scaffolds with various poros-

ities in (A) 0.1M NaOH solution at room temperature (N 5 9, each

porosity) (p\ 0.05) and (B) PBS at 378C (N 5 4, each porosity) (p\
0.05). [Color figure can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]
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ering seeding cells with gels onto POC scaffolds. The deg-

radation rates were also highly dependent on porosity and

permeability. Sixty-two percent porous scaffolds exhibited

faster and accelerated degradation rates with time, whereas

32 and 44% porous scaffolds showed a steady linear

increase in degradation rates with time [Figure 6(A)]. Data

for degradation with PBS for 3 week showed an interesting

phenomenon in that only 62% porous scaffolds maintained

some porous architecture at 3-week time point while other

designs all exhibited distorted inner architectures due to

degradation. When measured compressive modulus,

Young’s modulus was decreased by up to 47%.

In vitro histological evaluation of POC scaffolds with

gel confirmed that they supported synthesis of cartilage ma-

trix by chondrocytes. Also, chondrocytic morphology of

scaffold was also maintained, showing its promising poten-

tial as a scaffold for cartilage regeneration.

The above characterization provides us with a comprehen-

sive understanding of the physical properties of POC scaf-

folds. POC scaffolds hold promise for serving as a supporting

template for cartilage and other soft tissue regeneration with

tunable biodegradation and nonlinear compliant mechanical

properties. Also, this characterization provides us with a

foundation to study cell behavior and tissue ingrowth on dif-

ferent scaffold architectures to elucidate the relation between

scaffold architectures, mechanical properties, biodegradation,

and consequent cell growth and morphology.

CONCLUSION

Poly(1,8 octanediol-co-citrate) scaffolds exhibit controllable

biodegradation and nonlinear mechanical properties that are

suitable for cartilage and other soft tissue regeneration.

Increasing porosity decreases stiffness and the degree of non-

linear behavior, but increases permeability and degradation

rate of POC scaffolds. Thus, when designing scaffolds for soft

tissue application, the trade off between effective scaffold me-

chanical, mass transport, and degradation behavior resulting

from designed porosity should be taken into account. The

characterization of 3D POC scaffolds and the relation between

scaffold architectures and mechanical properties provide a ba-

sic foundation for determining how scaffold architecture

affects tissue regeneration. The detailed characterization of

mechanical and mass transport properties should expand and

elucidate the potentials of POC as a soft tissue scaffold.

The authors thank Alisha Diggs and Eiji Saito for help with
HA mold fabrication, Jessica M. Kemppainen for help with per-
meability measurements, and Chris Strayhorn for assistance with
histology.
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