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Comparison of Apparent Diffusion Coefficients
and Distributed Diffusion Coefficients in
High-Grade Gliomas
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Purpose: To compare apparent diffusion coefficients
(ADCs) with distributed diffusion coefficients (DDCs) in
high-grade gliomas.

Materials and Methods: Twenty patients with high-grade
gliomas prospectively underwent diffusion-weighted MRI.
Traditional ADC maps were created using b-values of 0
and 1000 s/mm2. In addition, DDC maps were created by
applying the stretched-exponential model using b-values
of 0, 1000, 2000, and 4000 s/mm2. Whole-tumor ADCs
and DDCs (in 10�3 mm2/s) were measured and analyzed
with a paired t-test, Pearson’s correlation coefficient, and
the Bland-Altman method.

Results: Tumor ADCs (1.14 6 0.26) were significantly
lower (P ¼ 0.0001) than DDCs (1.64 6 0.71). Tumor
ADCs and DDCs were strongly correlated (R ¼ 0.9716; P
< 0.0001), but mean bias 6 limits of agreement between
tumor ADCs and DDCs was �0.50 6 0.90. There was a
clear trend toward greater discordance between ADC and
DDC at high ADC values.

Conclusion: Under the assumption that the stretched-ex-
ponential model provides a more accurate estimate of the
average diffusion rate than the mono-exponential model,

our results suggest that for a little diffusion attenuation
the mono-exponential fit works rather well for quantifying
diffusion in high-grade gliomas, whereas it works less
well for a greater degree of diffusion attenuation.
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MR IMAGING PLAYS an important role in the detec-
tion and evaluation of brain tumors. In addition to
conventional MR imaging, diffusion-weighted MR
imaging (DWI) is developing as an important method
for the assessment of brain tumors (1). DWI allows
visualization and quantification of the random
(Brownian motion) of water molecules driven by ther-
mal energy (1–3). Because the presence of impedi-
ments such as cell membranes, organelles, and mac-
romolecules interferes with the free movement of
water molecules, diffusion in biological tissue is quan-
tified by means of an apparent diffusion coefficient
(ADC) (1–3). Measurement of an ADC would be
expected to be useful in brain tumor assessment
because variations in water mobility can be found
within tumors for various reasons (e.g., necrosis, var-
iations in cellularity) and adjacent to tumors (e.g.,
vasogenic edema), this likely provides information not
readily available from conventional MR imaging (1).

The ADC is most frequently calculated using an
implicit mono-exponential model, as follows:

SðbÞ=S0 ¼ expð�b � ADCÞ (1)

where S(b) is the signal magnitude with diffusion
weighting b, S0 is the signal magnitude with no diffu-
sion weighting, and b is the b-value, which is calcu-
lated for a standard square-shaped gradient pulse
pair as follows:

b ¼ g2 �G2 � d2ðD� d=3Þ (2)
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Here, g is the gyromagnetic ratio (42.58 MHz/T for
hydrogen), G is the strength of the motion probing
gradients (MPGs), d is the duration of one MPG pulse,
and D is the interval between the leading edges of the
MPG pulses (1–3). However, diffusion-weighted signal
decay in the brain and in brain tumors has been
shown to be multi-exponential (4) particularly when a
wide range of b-values are acquired (e.g., b � 3000 s/
mm2). An obvious extension beyond mono-exponential
behavior is the bi-exponential model which may be a
better way to describe the admixture of multiple expo-
nential signal decays (4). The bi-exponential model
allows for a fast diffusing proton pool (originally
assumed to correspond to extracellular diffusion) and
a slow diffusing proton pool (originally assumed to
correspond to intracellular diffusion) coexisting inside
each voxel, and is described as follows (4):

SðbÞ=S0 ¼ V1 � expð�b �D1Þ þ V2 � expð�b �D2Þ; (3)

where V1 and V2 are the volume fractions of the fast
and slowly diffusing pools (V1 þ V2 ¼ 1), and D1 and
D2 are the corresponding ADCs. However, the bi-expo-
nential model is also an oversimplification of tissue
water movement in reality, and it is probably more re-
alistic to assume a larger number (>2) of intravoxel
proton pools with a continuous distribution of diffu-
sion coefficients (5). Moreover, detailed studies of ani-
mal and human brain tissue have determined that
assumptions of fast and slow compartments being
extra- and intracellular water pools, respectively, are
not supported by empirical data (6). To overcome the
difficulty of making assumptions about the number of
intravoxel proton pools with different diffusion
coefficients in biological tissue, Bennett et al (5,7,8)
introduced the stretched-exponential model.
The stretched-exponential model is mathematically
described as follows:

SðbÞ=S0 ¼ expð�ðb � DDCÞaÞ (4)

where the index a relates to intravoxel water diffusion
heterogeneity, varying between 0 and 1, and the DDC
is the distributed diffusion coefficient, representing
mean intravoxel diffusion rates. Of interest, this
model introduces a new parameter (a), which provides
a new type of image contrast (different from conven-
tional DWI), that relates to the degree of intravoxel
water diffusion heterogeneity. By inspection of Eq. (1),
it should be clear an a ¼ 1 is equivalent to mono-ex-
ponential diffusion-weighted signal decay, thus low
intravoxel diffusion heterogeneity. Conversely an a
near 0 indicates a higher degree of multi-exponential
signal decay (5,7,8); this convention maintains consis-
tency with the definition by Bennett et al (5,7,8) of a
as a heterogeneity index. Another key point worth em-
phasis is that the term ‘‘heterogeneity’’ in this context
refers to intravoxel heterogeneity of exponential decay,
as opposed to intervoxel heterogeneity of diffusion
coefficients as often is the case. The DDC has the
properties and units of a standard diffusion coeffi-
cient and can be thought of as the composite of indi-
vidual ADCs weighted by the volume fraction of water

in each part of the continuous distribution of ADCs.
Given the fact tissue exhibits non–mono-exponential
behavior, the stretched-exponential model at a mini-
mum provides a more complete and accurate empiric
description of tissue water diffusion because the
model is able to fit a variety of observed decay shapes
using only two fit parameters (5,7,8). Nevertheless,
the conventional mono-exponential ADC (simply
referred to as ‘‘ADC’’ in the remainder of this manu-
script), usually calculated by obtaining one image
without diffusion-weighting (i.e., b ¼ 0 s/mm2) and
one image with relatively high diffusion-weighting (in
the brain usually b ¼ 1000 s/mm2), is still the most
prevalent method for quantifying diffusion in clinical
practice (9,10). However, especially in highly heteroge-
neous tissue, such as high-grade gliomas, the ADC
may be nonideal for use, because it is only an approx-
imation of the distribution of diffusion rates in a voxel
(5,7,8). The aim of this study was, therefore, to com-
pare ADC with DDC in high-grade gliomas.

MATERIALS AND METHODS

Patients

This study was approved by the local institutional
review board, and written informed consent was
obtained from all participants. Twenty patients with
high-grade glioma (WHO grade III: N¼3, WHO grade
IV: N¼17, 10 men, 10 women, mean age 58.2 years
[range, 20–89 years]) prospectively underwent DWI of
the brain, before any treatment was started. Exclu-
sion criteria were general contraindications to MR
imaging, such as implanted pacemaker and claustro-
phobia. Patient characteristics are displayed in
Table 1.

Phantom

To support the experimental findings in the patients,
a water phantom with varying local temperatures was
created and scanned with the same parameters for
DWI as were used in the patients. The variable tem-
perature phantom provides a range of diffusion val-
ues, although because the material was simple water,
the signal decay should appear as mono-exponential
(i.e., a � 1).

MR Imaging

All patients and the phantom were examined with a
3.0T MR scanner (Achieva 3.0T Quasar Dual, Philips
Healthcare, Best, The Netherlands) using an eight-
channel head coil. DWI was performed using a single-
shot spin-echo (SE) echo-planar imaging (EPI)
sequence, with the following parameters: repetition
time/echo time of 8700/60 ms, image acquisition in
the axial plane, slice thickness/gap of 4/1 mm, num-
ber of slices of 28, field of view of 240 � 240 mm,
acquisition matrix of 128 � 99, motion probing gra-
dients (MPGs) in three orthogonal axes, b values of 0,
1000, 2000, and 4000 s/mm2, number of signal
averages of 1 (for b-value of 0 s/mm2), 2 (for b-value
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of 1000 s/mm2), and 3 (for b-values of 2000 and
4000 s/mm2) (to increase signal at higher b-values),
half scan factor of 0.733, parallel imaging (SENSitivity
Encoding [SENSE]) factor of 3, EPI factor of 35, spec-
tral presaturation inversion recovery (SPIR) fat sup-
pression, acquired voxel size of 1.88 � 2.41 � 4.00
mm3, reconstructed voxel size of 0.94 � 0.94 � 4.00
mm3, and total scan time of 4 min and 30 s. In all
patients, routine anatomical pre- and post-gadolin-
ium three-dimensional (3D) T1-weighted fast field
echo, turbo SE axial T2-weighted, and turbo SE
axial fluid-attenuated inversion recovery (FLAIR)
sequences were performed in addition to axial DWI
sequences.

Image Analysis

Whole-brain ADC maps and an ADC map of the water
phantom were created using the images acquired at b-
values of 0 and 1000 s/mm2 (Eq. (1)). Subsequently, the
stretched-exponential model (Eq. (4)) was fitted to signal
intensities of images obtained at b-values of 0, 1000,
2000, and 4000 s/mm2 using a nonlinear least squares
routine to create DDC and a maps of the whole brain in
patients and of the water phantom (5,7,8). Noise thresh-
olds were set to restrict diffusion calculation to only pix-
els well above background noise on the b¼4000 s/mm2

images to avoid fitting pixels with low signal-to-noise ra-
tio (SNR). On average this threshold was 6.6-fold higher
than the background noise level. Pixels on the b¼4000
s/mm2 images falling below the noise threshold were
flagged for exclusion from subsequent volume of interest
(VOI) analysis. Post-gadolinium T1-weighted and diffu-
sion-weighted images of the patients were spatially reg-
istered by full affine transformation of the DWI series,
and its derivative diffusion maps, onto the T1-weighted
series using a mutual information registration routine
(11). Tumor VOIs were manually contoured on both

post-gadolinium T1-weighted and diffusion-weighted
images by one of the authors (T.C.K.). Enhancing tumor
portions were included in the VOIs. If a cystic (resection)
cavity was present, it was included within the tumor
VOI if circumscribed by contrast enhancement and
excluded if outside the enhancing region. However, de-
spite geographic inclusion in the VOI, many pixels in
cystic regions often did not retain adequate SNR on
b¼4000 s/mm2 images and were eliminated from
stretched-exponential fitting by the noise-threshold fil-
ter. These pixels were also rejected from whole-tumor
mean ADC to keep the identical set of pixels for both
ADC and stretched-exponential analyses. Furthermore,
all regions with an impeded diffusion relative to the sur-
rounding brain parenchyma were included in the tumor
VOIs. Subsequently, defined VOIs were applied to ADC,
DDC, and a maps to yield mean, whole-tumor ADCs,
DDCs, and a values. Finally, regions of interest (ROIs) of
similar size were placed in different locations on the
ADC map of the water phantom, and copied and pasted
onto the corresponding locations on the DDC and a
maps, and ADCs, DDC, and a values of the different
ROIs were measured. Image registration was performed
using AVS software (Advanced Visual Systems Inc., Wal-
tham, MA) with other image processing and analysis
performed on in-house software developed in Matlab
(The Mathworks, Inc., Natick, MA).

Statistical Analysis

Differences between tumor ADC and DDC were
assessed using a paired t-test. Correlation between
tumor ADC and DDC was assessed using Pearson’s
correlation coefficient. Agreement between tumor ADC
and DDC was determined as mean absolute difference
(bias) and 95% confidence interval of the mean differ-
ence (limits of agreement) according to the methods of
Bland and Altman (12). Statistical analyses were

Table 1

Patient Characteristics

Case Age Sex WHO grade Location ADC (�10�3 mm2/s)* DDC (�10�3 mm2/s)* a*

1 28 M III Frontal/temporal 0.97 6 0.19 1.01 6 0.37 0.55 6 0.05

2 29 M III Frontal 1.47 6 0.45 2.80 6 1.65 0.41 6 0.14

3 75 F IV Temporal 1.03 6 0.27 1.18 6 0.59 0.63 6 0.11

4 75 F IV Temporal 1.09 6 0.38 1.41 6 1.00 0.64 6 0.11

5 20 M IV Frontal 1.41 6 0.44 2.31 6 1.43 0.53 6 0.13

6 73 M IV Frontal 1.52 6 0.66 2.64 6 1.77 0.53 6 0.17

7 56 M IV Temporal/frontal 1.04 6 0.18 1.13 6 0.46 0.68 6 0.06

8 40 F IV Occipital/temporal 1.01 6 0.55 1.26 6 1.26 0.59 6 0.14

9 69 M IV Temporal 1.40 6 0.59 2.41 6 1.63 0.52 6 0.12

10 78 F IV Temporal 1.18 6 0.55 1.92 6 1.65 0.55 6 0.17

11 61 M IV Parietal/occipital 0.75 6 0.15 0.68 6 0.32 0.65 6 0.10

12 51 F IV Occipital/parietal 0.70 6 0.35 0.77 6 0.88 0.70 6 0.16

13 61 F IV Temporal 1.37 6 0.40 2.28 6 1.40 0.53 6 0.13

14 68 M IV Parietal 1.20 6 0.26 1.54 6 0.79 0.58 6 0.08

15 89 F IV Temporal/occipital 1.42 6 0.35 2.58 6 1.43 0.45 6 0.10

16 46 M IV Temporal/frontal 1.46 6 0.40 2.43 6 1.28 0.53 6 0.10

17 63 F III Temporal 0.76 6 0.15 0.73 6 0.18 0.75 6 0.09

18 65 F IV Temporal 1.07 6 0.21 1.21 6 0.53 0.61 6 0.08

19 62 M IV Temporal 0.95 6 0.26 1.09 6 0.76 0.56 6 0.15

20 55 F IV Occipital 1.08 6 0.45 1.48 6 1.29 0.59 6 0.12

*Mean, whole-tumor values.
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executed using MedCalc Software (MedCalc, Maria-
kerke, Belgium). In addition to whole-tumor-based
analyses, a voxel-based analysis was performed by

combining voxels from all 20 patients and plotting
DDC against ADC for each tumor voxel.

RESULTS

Individual patient results are listed in Table 1. Tumor
ADCs ([1.14 6 0.26] � 10�3 mm2/s) were significantly
lower (P ¼ 0.0001) than DDCs ([1.64 6 0.71] � 10�3

mm2/s). As can be seen in Figure 1, there was a
strong correlation between tumor ADCs and DDCs (R
¼ 0.9716; P < 0.0001). Figure 2 shows the results of
Bland-Altman agreement analysis; mean bias between
tumor ADCs and DDCs was �0.50 � 10�3 mm2/s,
with limits of agreement of 6 0.90 � 10�3 mm2/s.
Figures 1 and 2 show that agreement between ADCs
and DDCs was dependent on the magnitude of meas-
urements, with a good agreement in the low ADC,
DDC regime, and a poor agreement at high ADC and
DDC. Also note from Figures 1 and 2 that as DDC
increases, the a value decreases, and that lower a val-
ues correspond to a poorer agreement between ADC
and DDC. A scatterplot with voxel-based tumor DDCs
against ADCs is shown in Figure 3. Figure 4 shows
two representative examples of good and poor agree-
ment between ADC and DDC, respectively. In the
water phantom a good agreement between ADC and
DDC, at a wide range of ADCs, was found. For exam-
ple, in three different ROIs in the water phantom,
ADCs (in 10�3 mm2/s) of 1.07 6 0.17, 1.36 6 0.03,
and 2.01 6 0.04 were measured, with corresponding
DDCs (in 10�3 mm2/s) of 1.09 6 0.19, 1.36 6 0.03,

Figure 1. Scatter plot with tumor DDC (in 10�3 mm2/s)
(x-axis) against ADC (in 10�3 mm2/s) (y-axis) and line of
unity (dashed line). Correlation between tumor ADC and
DDC was strongly positive (R ¼ 0.9716; P < 0.0001). How-
ever, note that the plotted data deviate from the line of unity,
suggesting overall poor agreement between tumor ADCs and
DDCs. Nevertheless, note that agreement between tumor
ADCs and DDCs is dependent on the magnitude of measure-
ments, with a good agreement at low ADCs/DDCs, and a
poor agreement at high ADCs/DDCs. Also note that as DDC
increases, the a value decreases, and that lower a values
correspond to a poorer agreement between ADC and DDC.

Figure 2. Agreement between tumor ADCs and DDCs.
Bland-Altman plot of difference between ADC and DDC (in
10�3 mm2/s) (y-axis) against mean of ADC and DDC (in 10�3

mm2/s) (x-axis), with mean absolute difference (bias) (contin-
uous line) and 95% confidence interval of the mean differ-
ence (limits of agreement) (dashed lines). Note that
agreement between tumor ADCs and DDCs is dependent on
the magnitude of measurements, with a good agreement at
low ADCs/DDCs, and a poor agreement at high ADCs/
DDCs. Also note that as DDC increases, the a value
decreases, and that lower a values correspond to a poorer
agreement between ADC and DDC.

Figure 3. Scatterplot with voxel-based tumor DDCs (x-axis)
against ADCs (y-axis), as a function of a value (colorized).
ADCs appear to agree well with DDCs at approximately 1.0
� 10�3 mm2/s and in any case a values are close to 1. How-
ever, as a values decrease, ADCs appear to be higher than
DDCs at DDCs < 1.0 � 10�3 mm2/s, whereas ADCs appear
to be lower than DDCs at DDCs > 1.0 � 10�3 mm2/s.
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and 2.02 6 0.05, and a values of 0.98 6 0.05, 0.99 6
0.13, and 0.99 6 0.07, respectively.

DISCUSSION

DWI allows the cellularity of tumors to be assessed
noninvasively because cellular and subcellular ele-
ments impede water mobility, thus cellular-dense
regions exhibit low ADC relative to necrotic and highly
edematous tissues (1). By directly comparing ADCs of
brain tumors with histological samples, several inves-
tigators (13–16) indeed showed that the ADC is inver-

sely proportional to the cellular density, which may be
helpful in brain tumor characterization. Other poten-
tial applications of DWI and ADC measurements lie in
better tumor delineation, in the differentiation
between radiation-induced necrosis and tumor recur-
rence, and in the early assessment of the effectiveness
of radiation and/or chemotherapy (1,17). At present,
evidence of the effectiveness of DWI regarding brain
tumor characterization, tumor delineation, and differ-
entiation between radiation-induced necrosis and tu-
mor recurrence is either conflicting or scarce (1), while
a voxel-based quantitative DWI approach (currently
referred to as parametric response mapping of diffu-
sion) has recently shown promise as an early predic-
tor of treatment response and survival in patients
with high-grade gliomas (18,19).

The ADC is the most commonly used measure of
diffusion in clinical practice. Moreover, the choice of
b-values 0 and 1000 s/mm2 is probably the most
widely used method to generate ADC maps of the
brain (9,10). This protocol is well established and has
led to a large published base of material. The DDC
measurement, however, requires more than two b-val-
ues acquired over a relatively wide b-value range to il-
licit multi-exponential decay features, thus to date
there is only limited published material on use of the
stretched-exponential model applied to human glio-
mas. One can consider the DDC as a weighted sum
over a distribution of ADCs that comprise the multi-
exponential decay properties, and thus represents a
more accurate depiction of diffusion in the presence
of multiexponential decay (5,7,8). The motivation for
this study was to determine the degree of agreement
between the well-established ‘‘standard’’ ADC and the

Figure 4. Two cases with good and poor agreement between
ADC and DDC, respectively. A–D: Case 7 (Table 1); a 56-
year-old male with a high-grade glioma (WHO grade IV) in
the left frontal and temporal lobes. A: Axial post-gadolinium
T1-weighted image with tumor VOI clearly shows the
enhancing tumor (white arrow). B–D: ADC, DDC, and a value
of the tumor on corresponding axial ADC (B), DDC (C), and a
(D) maps were 1.17 � 10�3 mm2/s, 1.13 � 10�3 mm2/s, and
0.68, respectively. B–D The relatively good agreement
between tumor ADC and DDC, and the relatively high a
value of this tumor are well visualized. E,F: Case 9 (Table 1);
a 69-year-old male with a high-grade glioma (WHO grade IV)
in the right temporal lobe. Axial post-gadolinium T1-
weighted image with tumor VOI (E) shows the enhancing
part of the tumor (dashed arrow). G,H: ADC, DDC, and a
value of the tumor on corresponding axial ADC (F), DDC (G),
and a (H) maps were 1.45 � 10�3 mm2/s, 2.41 � 10�3

mm2/s, and 0.42, respectively. F,G: The poor agreement
between tumor ADC and DDC is well visualized (F, G), with
DDC being considerably higher (G, arrowhead). The relatively
low a value of this tumor is also well visualized (H). It should
be emphasized that a maps are completely different from
ADC or DDC maps, because the former show intravoxel dif-
fusion heterogeneity of tissues whereas the latter can only
provide information on the intervoxel diffusion heterogeneity
of tissues. Also note that the apparent ‘‘zero’’ DDCs and a
values of the cerebrospinal fluid (C, D, G, H, white asterisks)
are only a result of noise thresholding—these pixels were not
included in the analyses.
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potentially more accurate DDC, albeit more difficult to
generate. Moreover, the present study sought to deter-
mine the circumstance where ADC and DDC disagree.
The present results indicate that low ADCs agree rea-
sonably well with DDCs in high-grade gliomas. How-
ever, assuming the DDC to be a more accurate esti-
mate of the average diffusion rate, higher ADCs may
underestimate the amount of diffusion in high-grade
gliomas (i.e., DDCs are even higher). A previous ani-
mal model of glioma also noticed lower tumor ADCs
relative to tumor DDCs (7), although this finding was
not clearly explained and may not (quantitatively)
apply to human high-grade gliomas.

The findings of the present study can be explained
by the stretched-exponential model itself and the bio-
logical properties of high-grade gliomas. First, review-
ing Eqs. (1) (S(b)/S0 ¼ exp (�b � ADC)) and [4] (S(b)/
S0 ¼ exp (�(b � DDC)a)) shows that when b � DDC ¼
1 (regardless of a value) or when a ¼ 1 (regardless of
b-value or DDC), DDC � ADC. However, if b � DDC >
1, a decrease in the a value results in a decrease in
signal attenuation as a function of b-value. If b �
DDC < 1, the opposite effect occurs, such that low a
values result in a relatively fast signal decay. Thus, b
� DDC ¼ 1 delineates ‘‘high’’ and ‘‘low’’ ranges of decay
rates (5,7,8). Next, consider the case where two fixed
b-values are used for calculating the ADC. From Eqs.
(1) and (4), the following equation can be derived:

ADC ¼ ba�1 �DDCa (5)

If b � DDC ¼ 1, DDC � ADC, regardless of the a
value (note that this occurs at a DDC or ADC of 1 �
10�3 mm2/s when using a b-value of 1000 s/mm2)
(Figs. 4 and 5). If a < 1, and b � DDC > 1, ADC will
be lower than DDC (Fig. 4). In contrast, if a < 1, and
b � DDC < 1, ADC will be higher than DDC (Fig. 5).
Also recall that the higher the a value, the better ADC
and DDC should agree (note, at the mono-exponential
extreme a ¼ 1, thus DDC ¼ ADC). The present data
support this because at higher a values, the observed
ADCs and DDCs of high-grade gliomas are in reasona-
ble agreement (i.e., data points are close to the line of
unity in Figure 1, and low difference between ADC
and DDC in Fig. 2), and this agreement occurs in the
low ADC regime. In contrast, the lower the a value the
poorer the agreement between ADC and DDC; and
this divergence is observed at higher ADCs or DDCs
in high-grade gliomas. It should be noted that highly
necrotic/cystic elements of tumor were eliminated
from analysis in this study by the noise-threshold fil-
ter in the stretched-exponential fitting routine. As
such our results pertain to the cellular components of
tumor and exclude cyst. Cystic tissues commonly
have an ADC > 2.5 � 10�3 mm2/s; however, such
high water mobility tissues did not retain adequate
signal at b ¼ 4000 s/mm2 for stretched-exponential
fitting thus were rejected. If SNR was not a limitation,
simple cyst predominantly composed of water should
appear as mono-exponential (a�1) with high
ADC�DDC. To support these findings, a water phan-
tom with varying local temperatures was scanned,
and a good agreement between ADC and DDC, at a

reasonably wide range of ADCs, was found. The high-
est diffusion value (in 10�3 mm2/s) achieved in the
phantom before signal dropped below the noise
threshold was ADC ¼ 2.01 6 0.04 with a correspond-
ing DDC ¼ 2.02 6 0.05, and an a ¼ 0.99 6 0.07.
Therefore, we believe the disagreement between ADC
and DDC in glioma in the high ADC-DDC regime is a
direct result of complex diffusion in biological system
and not an artifact of fitting the stretched-exponential
model to the data. Regardless of its exact biological
meaning, its clinical consequence is that, although
low ADCs will agree fairly well to DDCs, high ADCs
will be in poor agreement with DDCs and may under-
estimate diffusion values (assuming the DDC to be a
more accurate measure of the average diffusion rate);
this may lead to incorrect lesion characterization (e.g.,
underestimation of the amount of necrosis) and may
render studies in which the ADC is used for assessing
response to therapy less sensitive for the detection of
changes in diffusion.

To obtain ADCs that equal DDCs, it has been pro-
posed to optimize the b-value for each tissue, such
that b � DDC ¼ 1 (5). This may be useful, for
instance, in localizing a region of cytotoxic edema fol-
lowing the onset of stroke (5). However, in contrast to
acute ischemic stroke, high-grade gliomas encompass
a wide range of DDCs (0.68 to 2.80 � 10�3 mm2/s in
the present study), and optimizing the b-value before
scanning seems to be impractical. Nevertheless, lower
b-values (i.e., < 1000 s/mm2) may be more useful to
quantify diffusion by means of the ADC in high-grade
gliomas. Alternatively, when aiming to obtain more
precise diffusion quantification or increasing sensitiv-
ity for the detection of changes in diffusion, it may be
necessary to obtain a DDC instead of an ADC.

Figure 5. Graph with DDC (x-axis) against ADC (y-axis),
with varying a values, according to Eq. (5) (ADC ¼ ba�1�
DDCa). The b-values of 0 and 1000 s/mm2 are used to calcu-
late the ADC. If b � DDC ¼ 1, DDC � ADC, regardless of the
a value (note that this occurs at a DDC or ADC of 1000 s/
mm2 when using a b-value of 1000 s/mm2). If a < 1, and b
� DDC > 1, ADC will be lower than DDC. In contrast, if a <

1, and b � DDC < 1, ADC will be higher than DDC. Also
recall that the higher the a value, the better ADC and DDC
agree (note, at the mono-exponential extreme a ¼ 1, thus
DDC ¼ ADC).
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A disadvantage of using the DDC is the need to add
a few more b-values (>1000 s/mm2) to a conventional
DWI sequence (usually performed at b-values of 0
and 1000 s/mm2), which prolongs examination time.
Furthermore, fitting the stretched-exponential model
to the DWI data to obtain DDC maps takes extra post-
processing time, and is typically not included in clini-
cal software packages. Furthermore, it should be
noted that the present study only included high-grade
gliomas, and it is still unclear if, and to what extent,
ADCs and DDCs of low-grade gliomas or other brain
tumors agree. Perhaps low-grade gliomas exhibit less
intravoxel diffusion heterogeneity than high-grade
gliomas because of less histological heterogeneity of
the former. Consequently, ADC and DDC measure-
ments may be in better agreement in low-grade glio-
mas than in high-grade gliomas due to the more
mono-exponential signal decay of the former (i.e., a
values close to 1). However, this issue remains specu-
lative and further research is needed. Another study
limitation is that although the DDC is assumed to
represent a more accurate depiction of diffusion than
the ADC in the presence of multiexponential signal
decay (5,7,8), this has not been confirmed yet by in
vivo studies with histopathological correlation.

In conclusion, under the assumption that the
stretched-exponential model provides a more accurate
estimate of the average diffusion rate than the mono-
exponential model, our results suggest that for a little
diffusion attenuation the mono-exponential fit works
rather well for quantifying diffusion in high-grade glio-
mas, whereas it works less well for a greater degree of
diffusion attenuation.
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