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Abstract

Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/B-catenin
signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC-associated
familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC
mutations were included. Somatic APC and KRAS mutations, f-catenin immunostaining, and qRT-PCR of APC,
MYC, AXIN2 and SFRP1 were analysed. Array-comparative genomic hybridization (aCGH) was also assessed in 26
FAP adenomas and 24 paired adenoma-carcinoma samples. A somatic APC alteration was present in 15 adenomas
(LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was
overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra-case heterogeneity.
Increased cytoplasmic and/or nuclear B-catenin staining was seen in 94% and 80% of the adenomas. B-Catenin
nuclear staining was strongly associated with MYC levels (p value 0.03) but not with KRAS mutations. Copy
number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained
Wnt pathway genes (p value 0.012). Based on B-catenin staining and Wnt pathway target genes alterations the
Wnt pathway appears to be constitutively activated in all APC-FAP tumours, with alterations occurring both
upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic
profiling of APC-FAP tumours provides new insights into the role of APC in tumourigenesis.
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the colorectal, duodenal, and desmoid tumours that
develop in FAP patients. The site of the ‘first hit’ in
the APC tumour suppressor gene determines the type
of the ‘second hit’. Mutations near codon 1300 [codons
1285-1378; in the mutation cluster region (MCR)] [6]
are associated with loss of heterozygosity (LOH), with
no loss of genetic material [7]. More recently, putative
‘third hits’, mostly copy number gains or deletions,
have been reported [8]. Combined profiling of mouse
and human adenomas has allowed the identification of
new direct and indirect target genes such as BUBI,

Introduction

Classical familial adenomatous polyposis (FAP) is most
often caused by truncating germline mutations typically
located in the central region of the Adenomatous Poly-
posis Coli (APC) tumour suppressor gene [1]. In some
cases, missense mutations can also occur [2,3]. APC
is also somatically mutated in sporadic colorectal can-
cer (CRC) at a high frequency. APC mutations can be
detected in aberrant crypt foci, suggesting that the loss
of APC function represents an initiating event in CRC

[4]. Inactivation of both APC alleles is both necessary
and sufficient to promote adenoma growth [5].
Molecular analyses of FAP-associated tumours have
provided deep insights into tumourigenesis. Bial-
lelic mutation of the APC gene is a hallmark of
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MAD2LI, and CD44, which are associated with APC-
driven tumour progression [9—14].

The APC protein plays an integral role in the Wnt
signalling pathway, as it binds and down-regulates p-
catenin [15] by the formation of a protein complex

J Pathol 2010; 221: 5767
www.thejournalofpathology.com



58

Table 1. Clinical characteristics of patients included in the study

Family Age at operation No of
ID Sex history (years) adenomas
FAP1 F Yes 35 300
FAP3 M No 41 >100
FAP4 M No 26 >1000
FAP6 M No 23 >100
FAP8 F Yes 20 139
FAP9 F Yes 33 800

A Obrador-Hevia et al

Extracolonic

disease CHRPE Germline APC mutation

No No ¢.1958+1G>A; r.[=, 1744_1958del];
p.?

No No c. [19584+3A>G; 1959G>A]: r.[=:
1744_1958del; 1959G>A]; p.?

Yes No ¢.4175C>A; p.Ser1392X

Yes No ¢.4612_4613delGA; p.Glu1538llefsX5

No No ¢.1262_1263delinsAA; p.Trp412X

No No ¢.3183_3187del; p.GIn1062X

F = female; M = male; CHRPE = congenital hypertrophy of the retinal pigment epithelium.

with AXIN and glycogen synthase kinase-38 (GSK3-B)
[16]. Loss of functional APC, usually due to trun-
cating mutations that remove the p-catenin regulatory
domain, leads to nuclear accumulation of P-catenin
[15], where it acts as a TCF4 transactivator. TCF4
transcriptionally targets pro-proliferative genes such as
MYC and cyclin DI, which are key effectors of this
pathway [17,18]. The activated B-catenin/TCF4 com-
plex imposes a progenitor-like phenotype in colorec-
tal cells by regulating MYC and p21 activities [19].
Whnt signalling is autoregulated at many levels. The
expression of a variety of positive and negative regu-
lators of the pathway, such as FRIZZLEDs, LRP and
HSPG, AXIN2 and TCF/Lef, is controlled by the f-
catenin/TCF complex. Recent studies have suggested
that APC loss alone may be insufficient to promote
aberrant Wnt/B-catenin signalling and that APC and
KRAS play distinct roles in the control of stability and
nuclear accumulation of B-catenin [20].

The aim of this study was to gain further insight
into the role of APC and the Wnt signalling members
in APC-FAP adenomas. We collected FAP adenomas
and corresponding mucosae and CRC samples, and
screened the APC gene as well as KRAS. We also
studied the expression and DNA copy number changes
of key members of the pathway both downstream and
upstream of APC.

Materials and methods

FAP colorectal adenomas

Fresh samples from colectomy specimens of six FAP
patients who harboured APC pathogenic germline
mutations were collected before fixation and cryopre-
served (Table 1). Ten adenomas representative of the
five areas of the colon and rectum (caecum, ascen-
dant, transverse, descendant colon, and rectum) and
paired normal mucosa from each patient were analysed.
Adenomas were classified according to size as small,
<10 mm; medium, 10-20 mm; or large, >20 mm
(Supporting information, Supplementary Table 1). A
set of ten paired normal mucosa/adenoma/carcinoma
samples was also analysed. In all cases, at least 70% of
tumour cell content was present. Written informed con-
sent was obtained from all patients participating in the
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study. The study protocol was approved by the Ethics
Committee of the Hospital Universitari de Bellvitge.

APC and KRAS mutations

APC and KRAS mutations were analysed by sequenc-
ing. Genomic DNA was extracted with the QIAamp
DNA Mini Kit (QIAGEN Inc, Valencia, CA, USA).
APC primers were designed to amplify 838 nt that
contained codons 1203-1482 of the gene and for
KRAS a 241 nt fragment containing codons 12 and
13 (Supporting information, Supplementary Table 2).
The PCR products were then purified with the Jetquik
PCR purification kit (Genomed, Kent, UK) and directly
sequenced using ABI PRISM 37.30 (Applied Biosys-
tems Inc, Foster City, CA, USA).

APC LOH analysis

LOH at APC was analysed using three microsatel-
lite markers on chromosome 5q (D5S82, D5S346,
and D5S5299) (Supporting information, Supplementary
Table 2). Primers are available upon request. Prod-
ucts were detected using ABI PRISM 37.30 (Applied
Biosystems Inc). In informative cases, the values given
for the peak area of the two alleles in the paired normal
and tumour samples were used to define allele loss as
described by Cawkwell ef al [21]. A ratio of less than
or equal to 0.30 was assigned to be indicative of loss
on the basis that some tumours in the series contained
up to 30% of normal cells contamination.

APC allele-specific expression (ASE) analysis

ASE at APC was analysed using the rs2229992 SNP
on cDNA (Supporting information, Supplementary
Table 2). To specifically amplify cDNA, we used an
exon 11 forward primer (5'-GGGACTACAGGCCATT
GCA-3') and a reverse primer targeting the exon 11—
12 junction (5'-ATAGAGCATAGCGTAGCCTTGTT
G-3'). PCR products were purified using illustraTM
GEXTM PCR DNA and the Gel Band Purification Kit
(GE Healthcare, Little Chalfont, UK.). For the sin-
gle nucleotide primer extension reaction, primer exten-
sion was carried out with the SNaPshot Multiplex Kit
(Applied Biosystems) with 5'-TATTGCAAGTGGACT
GTGAAATGTA-3" according to the manufacturer’s
instructions.
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Table 2. APC alterations in FAP adenomas

Somatic APC expression levels

Point aCGH Normal Adenomas with
ID mutation* LOH loss Total mucosat underexpression®
FAP1 0 5 4 (3)8 6/10 (60%) 1.676 9/10
FAP3 1 0 1 2/10 (20%) 0.977 3/10
FAP4 0 3 0 3/10 (30%) 1.576 4[10
FAP6 0 2 0 2/10 (20%) 1.932 9/10
FAP8 1 0 0 1/10 (10%) 0.634 0/10
FAP9 2 1 0 3/10 (30%) 0.775 4/10

* The somatic point mutations detected were as follows: FAP3 AD2: Q338X C>T; FAP8 AD7: EI397X G>T; FAP9 ADI: SI356XC>G; AD4: EI309X G>T.
1 Basal expression refers to log, values of macroscopically normal mucosa versus a pool of normal colonic mucosa from sporadic colorectal cancer cases.

* Underexpression in adenomas is defined as log, values <0 when compared with corresponding normal mucosa of the same FAP patient.
§ In parentheses, cases with concomitant LOH and loss of genetic material as assessed by aCGH.

SNaPshot reaction products were treated with 1 U of
shrimp alkaline phosphatase (usb) for 60 min at 37 °C
and then for 15 min at 75°C. Products were run in
an ABI Prism 3130 DNA sequencer and analysed by
GeneMapper v4.0 (Applied Biosystems).

ASE was measured using peak intensities in het-
erozygous samples. Allelic frequencies were calculated
as freq C = C/(C + kT) or freq T = T/(T + k'C), where
k and k" are constants given by the mean of the C/T(k)
and T/C(k") proportions in control samples. ASE values
are expressed as the proportion of frequencies of both
alleles (freq C/freq T) and are normalized using two
normal mucosae from sporadic patients. Three inde-
pendent replicates of all experiments were obtained and
in every experiment a set of controls was included. A
Mann—Whitney test was used to evaluate ASE differ-
ences among groups.

p-Catenin immunostaining

Five-micrometre sections of biopsy specimens were
treated with 3% formaldehyde. After blocking with
3% hydrogen peroxide, the sections were incubated
with the anti-B-catenin monoclonal antibody (BD Bio-
sciences, San Jose, CA, USA) diluted 1:90 in PBS,
followed by washing. Sections were incubated with
the anti-mouse EnVision HRP System (Dako, Glostrup,
Denmark), followed by washing. Results were indepen-
dently analysed by two pathologists who assessed the
localization and the level of PB-catenin expression. B-
Catenin staining was graded as none, weak, moderate,
or strong (—, +, ++, +++) for both cytoplasmic and
nuclear.

Gene expression analysis

Total RNA was isolated using Trizol® Reagent (Invit-
rogen, Carlsbad, CA, USA). One microgram of RNA
was reverse-transcribed into cDNA using pdN6 primers
and MMLV reverse transcriptase (Invitrogen). Sub-
sequent real-time PCR reactions were performed in
duplicate in the LightCycler® 2.0 System (Roche Diag-
nostics, Mannheim, Germany) using the SYBR Green
detection methodology. Primers were designed to
specifically amplify MYC, SFRPI, and AXIN2 mRNA
as they were placed in different exons of the genes

Copyright © 2010 Pathological Society of Great Britain and Ireland.
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(Supporting information, Supplementary Table 2). APC
primers targeted exons 2 and 3, allowing the simultane-
ous analyses of all transcripts. pB-2-microglobulin was
used as an internal control for normalization. Threshold
cycle data were analysed using the following formula

. AC Py control—sample
ratio = ((Etarget) target ( ple)

)/

(( Eref) AC Pref(control—sample) )

[22] to quantify the level of gene expression
changes. Expression levels were logy ratios. The -
test and Wilcoxon test were applied to log, ratios
to evaluate their significance. The log, ratios also
allowed indirect comparisons between sporadic and
FAP mucosae and tumours.

Array CGH analysis

DNA was isolated as previously described and quanti-
fied. DNA labelling was performed using the BioPrime
DNA labelling kit reagents (Invitrogen) and accord-
ing to protocols described elsewhere [23]. Labelled
DNAs were hybridized to customized oligonucleotide
microarrays containing 30000 60-mer oligo probes
assessing 449 chromosomal regions [23]. Fluorescence
ratios of scanned images of arrays were obtained using
BlueFuse version 3.2 (BlueGnome).

Array CGH data consist of the log ratios of nor-
malized intensities, indexed by the physical location
of the probes on the genome. Data were processed
using the statistical package snapCGH (R package
version 1.10.0) of Bioconductor [24] in the R soft-
ware (http://www.R-project.org) and initially filtered
for low-quality probes based on quality standard val-
ues. Each microarray was normalized focusing the
median intensity in 0. Values were log-transformed
and then the complete set of microarrays was normal-
ized using the quantiles method. Default parameters
of snapCGH were used for the segmentation process
using the GLAD method [25,26] based on the adaptive
weights smoothing (AWS) procedure. Each chromo-
some of each sample was processed separately and
altered regions were compiled from different arrays.
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Array CGH raw data may be found in the Supporting
information.

Results

APC somatic alterations in FAP adenomas

A somatic APC alteration was present in 15 of 60
(25%) adenomas analysed. LOH was detected in 11
out of 60 adenomas (18%) (Figure 1A and Table 2). In
agreement with previous studies [25,26], concomitant
loss of genetic material associated with LOH was
observed in three cases only. Mutational analysis of
somatic alterations in the APC gene was directed to
the MCR. Only four somatic mutations were detected
in the 60 adenomas studied (6%) (Figure 1B) and these
were all nonsense mutations near to codon 1300, one
of them being a C — T transition and the remaining
being transversions. In two adenomas, two somatic
alterations were detected.

APC mRNA overexpression is present in FAP
adenomas

APC levels of each FAP adenoma were compared with
their corresponding mucosa. Adenomas from all FAP
patients presented increased APC expression levels
(three-fold average) (Figure 1C). These changes were
not observed in sporadic samples (adenomas and carci-
nomas) (Figure 1C). Macroscopically normal mucosa
from FAP patients showed a 2.4-fold increase when
compared with a pool of sporadic normal mucosae,
indicating that abnormal overexpression is a very early
event in APC-driven tumourigenesis. Altogether, APC
RNA expression levels appeared elevated in FAP ade-
nomas compared with sporadic adenomas (p value
0.0004, z-test).

Allele-specific expression (ASE) was explored in
FAP3 tumours since it turned out to be heterozygous for
1s2229992. The range for normal ASE (0.8—1.2) was
established using colorectal normal mucosae. While
FAP mucosa showed balanced expression of both alle-
les (0.826), ASE imbalance was present in four (val-
ues for individual adenomas: 0.691, 0.589, 0.561, and
0.349) of the five FAP adenomas analysed, suggesting
that expression of the mutated allele can be selected
for during tumour progression.

Wnt pathway is activated in adenomas and changes
in expression occur upstream and downstream of
APC

In FAP adenomas, some type of cytoplasmic p-catenin
accumulation was present in 56 of 59 (94%) cases
(Table 3). Nuclear accumulation was observed in 46
of 59 (80%) FAP adenomas but in none of the normal
mucosae. Intensities of cytoplasmic and nuclear stain-
ing were positively correlated (p value 0.016; Fisher’s
exact test) (Figure 2 and Supporting information, Sup-
plementary Table 1). The intensity of nuclear p-catenin

Copyright © 2010 Pathological Society of Great Britain and Ireland.
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staining correlated with adenoma size. Sixteen of 45
(35%) small adenomas (less than 1 cm) showed mod-
erate to strong nuclear immunostaining (++ or +-++),
while this percentage increased to 78% (11 of 14)
for adenomas larger than 1 cm (p = 0.006). Ten of
the 15 cases (66%) showing biallelic APC inactiva-
tion showed either moderate (n = 7) or strong (n = 3)
nuclear staining. There was no evidence of heterogene-
ity in this set of samples. Immunohistochemistry of
sporadic samples showed nuclear staining in four of
four adenomas and in eight of ten carcinomas.

To extend our studies to other Wnt-related genes,
we examined the 60 matched sets of FAP adenomas
together with ten sporadic adenomas and ten spo-
radic carcinomas for expression of CMYC, AXIN2,
and SFRP1 (Figure 3). This analysis revealed up-
regulation of CMYC in both sporadic (4.34-fold)
and FAP tumours (5.82-fold). A statistically sig-
nificant correlation was observed between B-catenin
nuclear staining and elevated CMYC levels (p value
0.03; Kruskal-Wallis test). Furthermore, AXIN2 (also
known as conductin) was overexpressed in all the anal-
ysed adenomas (11.2-fold). CMYC and AXIN2 expres-
sion levels correlated highly with those of APC (p
value 0.02 and <0.0001, respectively; Pearson cor-
relation test). In contrast, SFRPI was consistently
down-regulated or even undetectable in FAP (19.5-
fold) and sporadic tumours (45-fold). Moreover, MYC
and SFRPI had altered expression levels not only in
tumoural samples, but also in macroscopically normal
mucosa (data not shown).

KRAS mutations are rare and are not associated
with B-catenin nuclear accumulation

Six out of 60 (10%) FAP adenomas were carriers of
a KRAS codon 12 mutation (Table 3 and Supporting
information, Supplementary Table 1). The most fre-
quent change (G-to-A mutation in the second position
of codon 12) was identified in two of the adenomas
with KRAS mutations. No correlation was observed
between the presence of the mutation and P-catenin
nuclear accumulation (Table 3).

Recurrent chromosome changes more commonly
contain Wnt pathway genes

aCGH was performed in 29 of the 60 FAP adeno-
mas and in 24 paired adenoma-—carcinoma samples
(Figure 4). We explored whether Wnt pathway com-
ponents and their targets (n = 130) were overrepre-
sented in areas with genomic losses or gains. FAP
and sporadic samples were jointly analysed. Wnt genes
were overrepresented in those areas showing copy
number variation (p = 0.01; p = 0.01, Fisher’s exact
test and Pearson’s chi-squared test, respectively). The
Whnt genes present in most frequently gained regions
were GJB6 (gap junction protein, beta 6), FGF9
(fibroblast growth factor 9), TNFRSF19 (tumour necro-
sis factor receptor superfamily, member 19), POSTN
(periostin), TNFSF11 [tumour necrosis factor (ligand)
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Figure 1. APC somatic alterations in FAP adenomas. (A) LOH was assessed in the APC gene by analysing three different markers.
Representative example of complete loss of one APC allele (upper panel) and partial loss of another marker (lower panel). (B) Germline
and somatic mutations in the APC gene. Schematic representation of the gene, where germline mutations are represented as wide bars
and somatic mutations are represented as narrow bars. The MRC (mutation cluster region) region of the gene was screened for mutations
in ten adenomas from each of the six FAP patients with known germline mutation. (C) APC relative mRNA levels in FAP and sporadic CRC
samples. APC mRNA levels were assessed by means of quantitative PCR. FAP cases (mean value of all samples) were compared with a pool
of ten sporadic CRC normal mucosae. The last two bars correspond to the mean values of the ten adenomas and carcinomas compared
with their corresponding normal mucosa with minor changes in APC RNA expression.

superfamily, member 11], JAGI (jagged 1), NKX2-2
(NK2 homeobox 2), WISP2 (WNTI inducible sig-
nalling pathway protein 2), MMP9 (matrix metallo-
proteinase 9), and SALL4 (sal-like 4). The Wnt genes
found in frequently lost regions were SMAD4 (SMAD
family member 4) and TCF4 (transcription factor 4).

Discussion

Genetic and epigenetic aberrations in several compo-
nents of the Wnt signalling pathway have been found,
at a high frequency, in colorectal cancers. In this study,
we have gained insight into the scope and degree
of Wnt pathway activation in APC-driven colorectal
tumourigenesis at multiple levels with particular atten-
tion to the mRNA expression levels of relevant tar-
gets, p-catenin immunostaining, correlation with KRAS
mutations, and the presence of copy number alterations.

A detectable second hit in the APC gene was found
in 25% of APC-FAP adenomas, with LOH being more
frequently found than point mutations. Other reports
have described a similar rate of LOH (21-22%) [7,27],
but our rate of somatic mutations in APC is lower. The
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relatively low prevalence of second mutations found
may be related to the fact that only the MCR of the
gene was analysed, leaving aside a high proportion
of the coding region and all adjacent areas. As has
been previously reported [7], LOH in FAP adenomas
is not associated with loss of genetic material, further
indicating that somatic recombination underlies it.
Consistent APC mRNA overexpression was obser-
ved in FAP samples, either morphologically normal or
adenoma tissue. Our RT-PCR assay targets a common
region shared by all APC isoforms, thus providing an
overall assessment of all APC transcript levels. In con-
trast, diminished germline dosage of the APC alleles
at both the DNA and the RNA level has been asso-
ciated with the development of FAP [28-32]. How-
ever, and in line with our finding, Venesio et al [33]
found increased germline expression of an APC mRNA
isoform in AFAP patients. This observation and our
ASE results could point to allele-specific expression of
the aberrant and inactive form of APC. Further stud-
ies are required to explore whether the normal or the
mutant allele is overexpressed. Regardless of whether
RNA levels are up-regulated or down-regulated, subtle
changes must tend to select a modest, maybe optimal,
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Table 3. KRAS and B-catenin status in FAP adenomas

Sample

FAP4 AD5
FAP4 AD10
FAP4 AD7
FAP4 AD8
FAP4 AD9
FAP8 AD9
FAP8 AD8
FAP1 AD4
FAP1 AD2
FAP1 AD5
FAP1 AD7
FAP1 AD3
FAP1 AD6
FAP1 AD1
FAP3 AD5
FAP3 AD6
FAP4 AD4
FAP4 AD3
FAP6 AD6
FAP6 AD4
FAP6 AD3
FAP6 AD2
FAP8 AD5
FAP8 AD10
FAP8 AD7
FAP8 AD6
FAP9 AD3
FAP1 AD8
FAP1 AD9
FAP3 AD7
FAP3 AD8
FAP3 AD9
FAP3 AD10
FAP4 AD1
FAP4 AD2
FAP6 AD7
FAP6 AD1
FAP6 AD5
FAP6 AD8
FAP6 AD9
FAP6 AD10
FAP8 AD4
FAP8 AD3
FAP9 AD2
FAP3 AD3
FAP3 AD2
FAP1 AD10
FAP3 AD1
FAP3 AD4
FAP8 AD2
FAP8 AD1
FAP9 AD9
FAP9 AD10
FAP9 AD8
FAP9 AD6
FAP9 AD7
FAP9 AD4
FAP9 AD1
FAP9 AD5
FAP4 AD6

— = no mutation/no staining; + = weak staining; +4 = moderate staining; +++ = strong staining.
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Normal Mucosa

Normal Mucosa

Adenoma

Figure 2. B-Catenin translocates to the nucleus in colorectal tumour samples. f-Catenin immunostaining of normal mucosa, an adenoma,
and a carcinoma of sporadic colorectal cancer patients representative of all samples (upper panel). B-Catenin immunostaining of normal
mucosa and two different adenomas of FAP patients representative of all samples (lower panel). B-Catenin is restricted to the cytoplasm
in normal samples, whereas it accumulates in the cytoplasm and translocates to the nucleus in tumour samples.

APC expression level for FAP adenoma development.
Our observations also indicate that this mRNA dereg-
ulation is not present in sporadic CRC samples, sug-
gesting a different mechanism of Wnt activation and
reinforcing the role of the first APC hit in FAP that
not only influences the molecular nature of the second
hit, but might also influence the level of APC mRNA
expression.

Nuclear P-catenin immunostaining has been con-
sidered a surrogate of Wnt pathway activation that
would occur upon homozygous loss of APC. Previous
studies assessing nuclear p-catenin in FAP adenomas
yielded controversial findings showing both positive
[34,35] and negative results [20,36—38]. Discrepan-
cies have been attributed to the technical challenges
associated with B-catenin staining. Using an immuno-
histochemical technique that yielded consistent results
both in fresh-frozen and in paraffin-embedded tissues,
we detected some degree of nuclear immunostaining
in 80% of the fresh-frozen FAP adenomas analysed.
In a recent report, Phelps et al combined zebrafish,
in vitro studies, and tumour analyses to conclude that
loss of APC alone stabilizes the levels of cytoplasmic
B-catenin but this stabilization is insufficient for caus-
ing P-catenin nuclear accumulation, which requires the
activities of KRAS and RAF1 [20]. Our results not only
confirm the APC-associated cytoplasmic accumulation
of B-catenin, but also show that biallelic APC inacti-
vation is strongly associated with moderate or strong
nuclear staining, supporting the idea that APC total
inactivation is driving and increasing Wnt signalling
activation. In line with previous reports [39], a low
prevalence of KRAS mutations was found. Importantly,
no apparent relationship was observed with p-catenin
nuclear accumulation. Thus, our results conflict with
those of Phelps et al, showing that FAP adenomas
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with mono- or bi-allelic APC inactivation and with-
out KRAS mutations are capable of inducing p-catenin
nuclear translocation. While several animal models
have demonstrated that KRAS mutation enhances the
APC inactivation effect [40—49], the involvement of
KRAS in B-catenin nuclear localization remains to be
elucidated.

The Wnt pathway regulates development and cellu-
lar homeostasis and is well conserved through evo-
lution. If early pathway activation is present, regu-
lation of other members of the signalling pathway
should occur. MYC was first described as a target
of the Wnt pathway [50] and has been identified as
a key effector of the P-catenin transcriptional pro-
gramme [51]. MYC levels were up-regulated in the
majority of adenomas and carcinomas, and correlated
with p-catenin nuclear immunostaining. AXIN2 was
also overexpressed in FAP adenomas, in line with pre-
vious reports [52,53]. AXIN2 overexpression can be
used as a surrogate of Wnt signalling activation since
it serves as a negative feedback loop for the Wnt sig-
nalling pathway [54]. Although AXIN2 overexpression
can down-regulate B-catenin in human tumour cell lines
[54,55], a destruction complex with an inactive APC
component is apparently not capable of eliminating -
catenin accumulation in FAP adenomas.

In agreement with previous reports [52,56], SFRPI
was consistently down-regulated or even undetectable
in FAP and sporadic tumours. SFRPI is a member
of the SFRP family of proteins that act as inhibitors of
Whnt signalling by preventing binding to its receptor. In
normal Wnt signalling, SFRPI levels are regulated by
B-catenin/TCF4 and promoter methylation is suggested
by some authors as the mechanism by which SFRP
transcription is inactivated [52,57]. In APC-driven
tumourigenesis, SFRP1 down-regulation is a very early
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Figure 3. Altered expression levels of Wnt signalling members in colorectal tumour samples. (A) Relative RNA expression levels of SFRP1,
AXIN2, and CMYC expressed as log, ratios (0 means no change). Mean values of the ten adenomas from the six FAP patients and mean
values of ten sporadic (SP) colorectal cancer adenomas and carcinomas compared with their corresponding normal mucosa. Schematic
representation of the protein function and location. SFRP1 binds to Frizzled (FZZ) receptors and prevents Wnt binding, and thus inhibits
the pathway. AXIN2 is part of the B-catenin destruction complex and promotes -catenin degradation by the proteasome. MYC is a target
of the pathway and it promotes cell proliferation. (B) Log, ratio expression and p value for the three genes. *p < 0.05; *p < 0.01.

event that may promote further deregulation of the Wnt
pathway.

The abnormal expression of MYC and SFRP! in the
macroscopically normal mucosa in patients with FAP
provides us with indirect evidence that the Wnt path-
way is already activated in the very early stages of
tumourigenesis. Previously, we have shown that over-
expression of mitotic checkpoint proteins is present in
both adenomas and normal mucosa from FAP patients
[9]. Overall, our results point to an evident functional
impact of a single APC mutated allele and our data are

Copyright © 2010 Pathological Society of Great Britain and Ireland.
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consistent with results obtained by Yeung er al using
protein analysis techniques in normal colon crypts from
FAP patients [58].

When we expanded our Wnt signalling pathway
analysis to the DNA level, the combined analysis of
FAP adenomas, sporadic adenomas, and carcinomas led
to the observation that Wnt pathway components and
target genes are overrepresented in areas with losses
and gains, supporting the third-hit hypothesis where
Wht signalling modulation could be secondary to copy
number changes in more advanced stages of tumour
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Figure 4. Array CGH data of colorectal tumours. Array CGH data are represented as a bar plot, where gains are shown in black and losses
in grey. The Y axis represents the percentage of samples that harbour the change in copy number. Regions containing Wnt genes are

marked with a dot.

progression [8]. Some of these Wnt genes, such as
JAGI, a key member of the Notch signalling pathway
[59], and POSTN [60], have been previously described
to be altered in CRC. Our aCGH data further extend
published results in APC- and MYH-FAP adenomas
[61,62] and show that adenomas harbour a low level
of genetic instability.

Taken together, our results suggest that monoallelic
APC mutation might be sufficient for deregulation
of the expression of APC and other key members
of the Wnt pathway. While APC biallelic inactiva-
tion is associated with P-catenin nuclear localization,
KRAS mutations do not appear to be necessary for
this translocation. The data presented here further elu-
cidate the mechanisms of APC-driven tumourigene-
sis. Early and universal transcriptional activation of
the Wnt signalling pathway is evident at the RNA
level, whilst further activation may occur later as
genomic instability supervenes and copy number vari-
ations then arise. We have identified novel loci of
genomic instability that may direct further investiga-
tion of potentially novel genes relevant to colorectal
cancer genes.
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Table S1. Summary of the results obtained with FAP and CRC samples.
Table S2. Primer sequences used for mutation detection, LOH detection, and quantitative PCR analysis.

Supplementary array data. aCGH raw data for sporadic colorectal cancer samples marked as AD for adenomas and CA for carcinomas.
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