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In situ thin-film texture determination
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A kinematic theory of reflection high energy electron diffraci@®&HEED) is presented for textured
polycrystalline thin films. RHEED patterns are calculated for arbitrary texture situations and for any
general crystallographic orientation that may be encountered in thin-film growth. It is shown that the
RHEED pattern can be used as a fast and convenient todh feitu texture characterization. The
approach also permits quantitative extraction of angular dispersion parameters which are useful for
optimizing thin-film growth conditions. ©1999 American Institute of Physics.
[S0021-897699)04904-X

I. INTRODUCTION crystallites add. This is justified by the short transverse co-
herence length in a typical RHEED configuration100 A)
compared to typical crystallite sizés5500 A). Furthermore,
due to the surface roughness of real polycrystalline films, the

Reflection high energy electron diffractiRHEED) has
long been a powerful tool for thin-film surface analysis.
However, it is mostly used for characterization of single o _ S
crystal epitaxial films:* While there are many other thin- case of 3D transmission d|ffract|on IS assu_med. L
film microstructures of practical interest, such as textured . In th.e Ewald construction the diffraction condition is
polycrystalline films>~’ these cases are only recently beingg'ven by:
addressed. The practical value of RHEED techniques to tex- K.—-K=G, (2.2
ture determination in polycrystalline thin film has recently o
been emphasized by Andriet al® These authors calculated Where K. and K, are the scattered and the incident wave
RHEED patterns corresponding to specific textures and symi€ctors of the electron, respectively, atdis a reciprocal
metries(bco and showed that it is possible to extract quan-lattice vector
titative information on the angular distribution of grains  g=pa* + kb* +1c*. 2.2
within the film. However, in order to make this approach
broadly useful to a wide range of realistic thin-film growth For typical electron energies used in RHEED10-30 keVf
situations, further analysis is necessary that would provide &e wavelength of the electrona, (~0.1-0.2 A is <a
general formalism covering all possible textures and, in gen(wherea is the crystal lattice paramefeit follows that for
eral, any preferred crystallite alignmefe.g., mosaic crys- low orders of diffraction, or §/\¢)?>h?+k?+1?, the elec-
tals). tron wave vectoK.>G. Under these conditions the Ewald

In this article we develop an analytical treatment ofsurface can be approximated by a plane and the diffraction
RHEED patterns generated by textured thin films. While thecondition then becomes
theoretical expressions presented here are useful for analyz- K. G=0. 2.3
ing the quantitative details of the pattern, including the an- €
gular dispersion of crystallites, the approach is most usefuEquation(2.3) states that all reciprocal lattice vectors satis-
for providing a fast and convienient characterization of thefying the diffraction condition lie in a plane perpendicular to
texture, including the direction of the texture axis and theK.. For our purposes only the plane intersecting the termi-
symmetry of the preferred orientation. nation of the vector«, and K(; will be considered, corre-

sponding to the Ewald construction shown in Fig. 1.

II. THEORY A. Reciprocal lattice of a polycrystalline film with a

This work presents a kinematic theory of RHEED for texture
textured polycrystalline materials. We show that the pres- ¢ js yseful to develop a picture of the reciprocal lattice
ence of texture gives rise to distinct RHEED chargcter|st|c§0f a polycrystalline film. In the case of polycrystalline films
and that these data can be used to extract useful informatiQpihout ‘any texture or preferred crystallite alignment, the
about crystallographic orientation of the texture axis and 'tsreciprocal “Jattice” can be thought of as a set of concentric
angular dispersion. To preserve generality, the texture is a%pheregwith radii equal toG=Vh?+k2+12 in the case of
sumed to be not ideal but rather to have some angular distriihogonal lattices For ideal texture, i.e., when there is no
bution. As an approximation, electron beams diffracted fromyighersion in the texture orientation, the reciprocal lattice
different crystallites are assumed to have random phases $@sists of a set of points along the texture direction super-
that the intensities of the beams diffracted from dlfferentposed with a set of concentric rings lying in discrete parallel
planes perpendicular to the texture directjgsee Fig. 2a)].
dElectronic mail: litvinov@umich.edu In the case where there is angular dispersion in the texture
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FIG. 3. Thin-film coordinate axis geometry. The thin curved lines indicate
FIG. 1. Ewald construction for the diffraction condition. which vectors are coplanar. For exampig, andb* lie in thekj plane.

orientation, the reciprocal lattice can be described by a set abtation around an axis perpendicular to the film surface and

concentricdomesalong the texture direction superposed with an arc centered around thexis is present, the rotation axis

a set of concentric circular bands; both domes and circulagorresponds to a texture direction in the film.

bands being parts of concentric spheres with common center In general, if the texture axis is at some nonzero angle

at the origin of the reciprocal lattidsee Fig. 20)]. with respect to the film surface normal, the RHEED pattern
As mentioned above, the RHEED pattern is defined bywill change as the sample is rotated around the axis perpen-

the intersection of the Ewald sphefapproximated by a dicular to the film surface. However, the RHEED pattern

plane in this cageand the reciprocal lattice. Symmetry dic- should be symmetric when the texture axis is parallel to the

tates that if the RHEED pattern does not change as thplane of specular diffractiofa plane spawned bi, and the

sample is rotated around an axis perpendicular to the filnmormal to the film surfage It will be shown below that these

surface, the texture axis must be oriented perpendicular tqualitative arguments are supported by detailed analytical

the film. It follows that, in this case, the intersection of anexpressions for RHEED patterns in arbitrary geometries.

Ewald surface with domes along the texture direction will

appear as an arc symmetric with respect tozlais while

all other diffraction features will appear as partial rings sym-B. Case of orthogonal crystal axes

metrical around the axis with minima along the axis. This

suggests a simple way of determining the texture of the film:1. (001) texture

if the RHEED pattern is invariant with respect to the sample Without loosing generality, let us first consider a case

where the texture is oriented along tf@01) crystal direc-
tion. We recall that such a film is a collection of crystallites
with one of the crystallographic directions fixed which de-
fines the texture and these crystallites are free to rotate
around the texture direction. It will be shown subsequently
how this case can be extended to an arbitrary texture direc-
tion. We shall choose a laboratory framg (k) such that
is normal to the substrate surface and the texture direction
lies in the (k) plane(see Fig. 3 We label by® the angle
betweerk and texture orientatior® is the angle of rotation
around texture direction and it is the only parameter in the
problem that can be adjusted so that the diffraction condition
(2.3) is satisfied(we assume a uniform and continuous dis-
tribution of ® such that one can always find a crystallite with
a given value 0@).

First, to solve the diffraction equatioi2.3), we need to
determine the coordinates of an arbitrary reciprocal vector
G(hkl) in the laboratory frame such that

G=Gyi+G,j+Gxk. (2.4

(a) (b) The coordinate transformation to express,(G,,G,) in
terms of hkl) is obtained by performing two rotations of the
FIG. 2. (a) Reciprocal lattice of a polycrystalline film with an ideal texture. reciproca| lattice frame: the first is a counterclockwise rota-

(001) texture in a film with a simple cubic lattice is illustrated. The rings tion aroundc* by angle® that makes* andi coincide, and
represent the trajectories of reciprocal lattice points upon rotation around th !

texture axis|b) sketch of the reciprocal lattice of a polycrystalline film with the second is a counterclockwise rotation arouty angle
a non-ideal texture. .
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cos® -—sin® 0
Ry o=| SIN® cos® 0O
0 0 1
1 0 0
Rgo=| 0 cos® —sind (2.5
0 sin® cosd
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V(D,y)=[Z(D,y)cosP—1 sin D] L
cosy
U(P,y)=2Z(P,y)sin®+I cosd. (2.149
Then Eq.(2.13 becomes a set of equations
U cos®—V cosy sind=|
VZ+U?-G?=0 (2.19

The resulting transformation is the product of the two g,

rotations in the specific order given:

Inki-6,6,6,~ RioRe+ 6 - (2.6)
Then the G,,G,,G,) coordinates are given by
Gy cos0® —-sin® 0
Gy|= %T cos®sin® cosdcos® —sind
G, sin ®sin sind®cos® cosd
h
x| k 2.7
I

(U cos®—1)2+U? cos?y sin ?d — G? cos?y sin2d=0

V2 cos?® +(V cosy sin ®+1)?—G? cos?d=0.

(2.19
The solution of Eq(2.16) is given by
_ —lcosysin®* cos®R
Vt(q)a')’)_ Sz
| cos® =+ cosysin®R
U (D,y)= , (2.17)

SZ

Consider now the case of a near grazing incidence electrofyhereS*=1—sirfysir’ ® andR= - 1*+ G*S%.

beam so thaK, can be expressed as

Ke=kyi+kyj+ 0k, (2.9
where
ke=|Kgcosy, ky=|Ksiny (2.9
and the diffraction conditiori2.3) becomes
(cosy, siny, 0)
hcos®—ksin ®
(hsin®+kcos®)cos®—Isin® | =0. (2.10

(hsin®+kcos®)sin®+1cosd

We need to solve Eq2.10 for © to satisfy the diffraction
condition. From Eq(2.10 we have

hcos®—ksin®=—tany[(hsin®+kcos®)

Xcos®—1| sind]. (2.11
Substituting into Eq(2.7)
—tan y(Z cos®—1 sin ®)
G= Z cos®—1| sin® , (2.12

Zsin®+1 cosd

whereZ=hsin®+kcos®.
Since|G|?=h?+k?+12=G?, we obtain

(Z cos®—1 sin ®)2+(Z sin®+1 cosd)’=G>.
(2.13

cog y

Equation (2.13 can be solved as a quadratic equation to

The reciprocal vecto6 satisfying the diffraction condi-
tion (2.3 in terms of V. (®,y) andU. (P, ) is given by

—V.(P,y)siny
Ut((biy)

The diffraction pattern on the screen is then described by
the following vector

|:i(G((D’7)) V. (®,y)
|Ke| GZ(CD,)/) Ui(CD,'y)

whereG(®, y) is a component o that is parallel to thej
plane andl is the perpendicular distance from the sample to
the screen.

We point out here that for the cases whes 3 and y
=0 corresponding to the texture axis lying in the plane of
specular reflectiorithe plane perpendicular to the film con-
taining the incident beajmand the texture axis lying in the
plane perpendicular to the plane of specular diffraction, re-
spectively, Eq(2.19 reproduces the solutions for the special
cases considered by Andriet al®

Equation(2.19 applies to the case of an ideal texture.
To describe a nonideal asymmetric texture we let the pre-
ferred crystallographic direction rock around its average di-
rection (texture axi$. The quantitiesA®; and Ad, define
the components of the angular spread parallel and perpen-
dicular to thejk plane, respectively, witd @, andAd
being the maximum values of these deviations such that

( AD, 2+( AD,
ADp) 1AD

It is straightforward to show that the component of the

G(D,y)= (2.18

B d 27
Kd a

: (2.19

2

<1.

(2.20

obtain the diffraction condition. First, we make a change ofangular spread prependicular to tfieplane, i.e., A® , is

variables

related to the quantity y= y— 7y, by the following equation
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FIG. 4. Change of basis in reciprocal space.

tanAd, =tanAy sind,, (2.21

where®, and vy, are the values o and vy, respectively,
that define the orientation of the texture axis.

We will assume a Gaussian distribution in the angular
dispersion of the texture. As stated earlier, we also assume

that the total intensity at a particular spot in the diffraction
pattern is a sum of intensities from different crystallites.
Consequently, we can modify E(.19 to obtain the inten-
sity distribution along the diffraction arc:

d 27

Kd a

Vi(q)iy)

H(®,y)=Ao U.(D,y)

)D(A@,Aqn),
(2.22

whereA, is a normalizing constant afd(A®,Ad ) is a
distribution function which in the case of a Gaussian distri-
bution is

2 1
D(AD,AD, )= 7 ADAD,

xexp{—z

Equation (2.22) describes the RHEED pattern from a
polycrystalline film with a texture. One should note that this
equation also takes into account diffraction from a film with-
out any texture present. In such a case one should $gt
equal tor andD(A®,Ad,) equal to 1.

ADF ) AD?
Aapﬁo AD?,

. (2.23

2. Arbitrary texture

Having described diffraction fof001) texture, we can

Litvinov, O’'Donnell, and Clarke

FIG. 5. Change of coordinates in triclinic system.

cosw 0 -—-sinw
Jnk—nerr=( 0 1 0
sinw 0 cosw
cos¢p sing O
x| —sin¢g cos¢ O], (2.249
0 0 1
or
h’ COSw COS¢ COSw Sing — Sinw
k' | = —sin ¢ Ccos ¢ 0 ,
I’ Ssinw coS¢ Sinwsing  coSw I
(2.25
where
I h
9 cos = 2 (2.26

COSw= ————7, .
Vh3+k5+13 Vh3+k3

To calculate the RHEED pattern for this case of arbitrary
texture axis in an orthogonal crystal system, we use Eq.
(2.22 replacingh,k,| values withh’ k' 1’ defined by Eq.
(2.25.

C. Case of nonorthogonal crystal axes

So far, we have considered diffraction from films with
an underlying orthogonal crystal lattice. Similar to the previ-
ous section where we discussed an arbitrary texture case, the
choice of a particular basis is due purely to its convenience.
We can always choose an orthogonal basis for any crystal
symmetry and recalculate the new coordinates of reciprocal

extend the formalism to a case with an arbitrary texturejattice points. The problem then becomes identical to the one
(hokol o). One can choose any set of three noncoplanar vecdescribed previously and all the results remain valid.
tors as a basis to describe the reciprocal lattice. Here we we will illustrate how this procedure should be applied
choose an orthogonal basis s{a’"b*'c*’} such that the using the triclinic systenisee Fig. 5 as an examplea*, b*,
direction of the texture coincides with the direction of tfe ~ andc* are the basis vectors for the reciprocal crystal lattice,
axis. Then the problem becomes exactly the same as in the, B, andy are the interaxial angles, andj, andk are the
case 0f(001) texture. vectors for the orthogonal basis. We will denote by
We use the following transformation to calculate recip- ; z+ ,wjp«, ... , the anglesa*, ib*, ... . One can show
rocal lattice indices in the new bagiBig. 4) that
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FIG. 6. Simulated RHEED pattern for rocksalt crystal lattice wifl01)
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ar ar
U+(¢,EiA7)=U(®,—IAy>
3.1)
Vo @, Zaay|l=—v_ [® Z5A
+ !2— Y — ,2 Y.

It follows that in this case the RHEED pattern defined by Eq.
(2.19 is symmetric with respect to theaxis.

Next, consider the case where the texture axis is perpen-
dicular to the film surface. We set=0. Then from Eq.
(2.17 we have

U, (=AD,00=U_(FAD,0)
Vi (xAD,00=—V_(FAD,0). 3.2

It follows that in the case of the texture axis perpendicular to
the surface of the film, the RHEED pattern will always be

texture perpendicular to the plane of the film. Angular spread in texture issymmetric with respect to theaxis and it is invariant with

15°.
COS yCOSB—COS«
cos Wj c*x = -
: sin vy
C052 Wy cx

1+ 2 cosa cos B cosy—cos?a—cos B—cos y

Sir? y

(2.27)

Then we have
a*=a*j
b*=(b* cosy)-i+(b* sin vy)j

C*=(C* coSB)-i+(C* COSwjcx) j+(C* COSwy ) K,

(2.28

wherea* =|a*|, b* =|b*|, andc* =|c*|.

The required expression f@ in the new coordination
system is obtained by substituting expressionsaor b*,
andc* from Eg.(2.28 into Eq.(2.2):

h’ a* b* cosvy | cosp h
k"|=| 0 b*siny c* COSwjcx k
I’ 0 0 C* COS wy cx I

(2.29

Having redefined the coordinate system to the orthogona
one, we shall apply the procedure described above to alig

the texture along the (001) axis and use Ef22) to calcu-
late the diffraction pattern.

Ill. ANALYSIS AND DISCUSSION

A. Texture axis not in the plane of the film

Let us consider a case where the texture axis is paralle

to the plane of specular diffractiofsee Sec. Il A i.e., yg
=/2. From Eq.(2.17)

respect to the sample rotation around gexis.

Let us consider now a case whe®&=(0,0)), i.e., G
along the texture direction. ThéR=1yS?—1. Thus, for the
solution to existS? must be greater or equal to 1. By defini-
tion, S°’<1. Combining the two inequalities we get

$?=1, R=0

and
siny=0 or sind=0, (3.3
and Eq.(2.22 becomes

— A d 27T|
K a

—cosy sin®
cos®d

)D(ACI)|,A<IJL). (3.4

When sin®=0, corresponding to an ideal texture perpen-
dicular to the film surface, Eq3.4) gives just one point of
diffraction and, as will be clear below, this is a subcase of
sin y=0. When siny=0, i.e., when the texture lies in the
plane perpendicular to the plane of specular diffraction, Eq.
(2.22 becomes

FIG. 7. Simulated RHEED image of double texture for rocksalt crystal
lattice.
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IV. CONCLUSIONS
! AO|Ke| a ! cos®d We have presented a kinematic theory of RHEED for a
This is the equation of an arc with its intensity distribution POlycrystalline film with an arbitrary degree of crystallite
symmetric with respect to theaxis and with a maximum of ©rdering. The analytical expressions developed allow simu-
intensity on thez axis. This is consistent with the discussion [ation of RHEED patterns for polycrystalline films with ar-
above(see Sec. Il Awhere the presence of a diffraction arc bitrary textures and arbitrary underlying crystal lattices. It is

with such an intensity distribution indicates the presence ofoWn how the developed formalism can be applied to tex-
texture in the direction of the particula® responsible for ture identification and angular dispersion characterization.

d 27 [ £Sin®
( )D(ACD,ACI)L). (3.5

that specific diffraction arésee Fig. 6. The approach presgnted h(_are. should. .be.usefulirfcmi.tu
texture characterization of thin films facilitating the choice of
B. Texture parallel to the surface of the film optimum deposition conditions.

The final example is when the texture axis lies in the
plane of the sample surface. Equati@22 then becomes
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