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In situ thin-film texture determination
Dmitri Litvinov,a) Thomas O’Donnell, and Roy Clarke
Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120

~Received 22 June 1998; accepted for publication 12 November 1998!

A kinematic theory of reflection high energy electron diffraction~RHEED! is presented for textured
polycrystalline thin films. RHEED patterns are calculated for arbitrary texture situations and for any
general crystallographic orientation that may be encountered in thin-film growth. It is shown that the
RHEED pattern can be used as a fast and convenient tool forin situ texture characterization. The
approach also permits quantitative extraction of angular dispersion parameters which are useful for
optimizing thin-film growth conditions. ©1999 American Institute of Physics.
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I. INTRODUCTION

Reflection high energy electron diffraction~RHEED! has
long been a powerful tool for thin-film surface analys
However, it is mostly used for characterization of sing
crystal epitaxial films.1–4 While there are many other thin
film microstructures of practical interest, such as textu
polycrystalline films,5–7 these cases are only recently bei
addressed. The practical value of RHEED techniques to
ture determination in polycrystalline thin film has recen
been emphasized by Andrieuet al.8 These authors calculate
RHEED patterns corresponding to specific textures and s
metries~bcc! and showed that it is possible to extract qua
titative information on the angular distribution of grain
within the film. However, in order to make this approa
broadly useful to a wide range of realistic thin-film grow
situations, further analysis is necessary that would provid
general formalism covering all possible textures and, in g
eral, any preferred crystallite alignment~e.g., mosaic crys-
tals!.

In this article we develop an analytical treatment
RHEED patterns generated by textured thin films. While
theoretical expressions presented here are useful for an
ing the quantitative details of the pattern, including the a
gular dispersion of crystallites, the approach is most us
for providing a fast and convienient characterization of
texture, including the direction of the texture axis and t
symmetry of the preferred orientation.

II. THEORY

This work presents a kinematic theory of RHEED f
textured polycrystalline materials. We show that the pr
ence of texture gives rise to distinct RHEED characterist
and that these data can be used to extract useful informa
about crystallographic orientation of the texture axis and
angular dispersion. To preserve generality, the texture is
sumed to be not ideal but rather to have some angular di
bution. As an approximation, electron beams diffracted fr
different crystallites are assumed to have random phase
that the intensities of the beams diffracted from differe

a!Electronic mail: litvinov@umich.edu
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crystallites add. This is justified by the short transverse
herence length in a typical RHEED configuration~;100 Å!
compared to typical crystallite sizes~.500 Å!. Furthermore,
due to the surface roughness of real polycrystalline films,
case of 3D transmission diffraction is assumed.

In the Ewald construction the diffraction condition
given by:

Ke82Ke5G , ~2.1!

where Ke8 and Ke are the scattered and the incident wa
vectors of the electron, respectively, andG is a reciprocal
lattice vector

G5ha* 1kb* 1 lc* . ~2.2!

For typical electron energies used in RHEED~;10–30 keV!
the wavelength of the electrons,le ~;0.1–0.2 Å! is !a
~wherea is the crystal lattice parameter!. It follows that for
low orders of diffraction, or (a/le)

2@h21k21 l 2, the elec-
tron wave vectorKe@G. Under these conditions the Ewal
surface can be approximated by a plane and the diffrac
condition then becomes

KeG50. ~2.3!

Equation~2.3! states that all reciprocal lattice vectors sat
fying the diffraction condition lie in a plane perpendicular
Ke. For our purposes only the plane intersecting the ter
nation of the vectorsKe and Ke

8 will be considered, corre-
sponding to the Ewald construction shown in Fig. 1.

A. Reciprocal lattice of a polycrystalline film with a
texture

It is useful to develop a picture of the reciprocal latti
of a polycrystalline film. In the case of polycrystalline film
without any texture or preferred crystallite alignment, t
reciprocal ‘‘lattice’’ can be thought of as a set of concent
spheres~with radii equal toG5Ah21k21 l 2 in the case of
orthogonal lattices!. For ideal texture, i.e., when there is n
dispersion in the texture orientation, the reciprocal latt
consists of a set of points along the texture direction sup
posed with a set of concentric rings lying in discrete para
planes perpendicular to the texture direction@see Fig. 2~a!#.
In the case where there is angular dispersion in the tex
1 © 1999 American Institute of Physics
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orientation, the reciprocal lattice can be described by a se
concentricdomesalong the texture direction superposed w
a set of concentric circular bands; both domes and circ
bands being parts of concentric spheres with common ce
at the origin of the reciprocal lattice@see Fig. 2~b!#.

As mentioned above, the RHEED pattern is defined
the intersection of the Ewald sphere~approximated by a
plane in this case! and the reciprocal lattice. Symmetry dic
tates that if the RHEED pattern does not change as
sample is rotated around an axis perpendicular to the
surface, the texture axis must be oriented perpendicula
the film. It follows that, in this case, the intersection of
Ewald surface with domes along the texture direction w
appear as an arc symmetric with respect to thez axis while
all other diffraction features will appear as partial rings sy
metrical around thez axis with minima along thez axis. This
suggests a simple way of determining the texture of the fi
if the RHEED pattern is invariant with respect to the sam

FIG. 1. Ewald construction for the diffraction condition.

FIG. 2. ~a! Reciprocal lattice of a polycrystalline film with an ideal textur
~001! texture in a film with a simple cubic lattice is illustrated. The rin
represent the trajectories of reciprocal lattice points upon rotation aroun
texture axis;~b! sketch of the reciprocal lattice of a polycrystalline film wit
a non-ideal texture.
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rotation around an axis perpendicular to the film surface
an arc centered around thez axis is present, the rotation axi
corresponds to a texture direction in the film.

In general, if the texture axis is at some nonzero an
with respect to the film surface normal, the RHEED patte
will change as the sample is rotated around the axis perp
dicular to the film surface. However, the RHEED patte
should be symmetric when the texture axis is parallel to
plane of specular diffraction~a plane spawned byKe and the
normal to the film surface!. It will be shown below that these
qualitative arguments are supported by detailed analyt
expressions for RHEED patterns in arbitrary geometries.

B. Case of orthogonal crystal axes

1. (001) texture

Without loosing generality, let us first consider a ca
where the texture is oriented along the~001! crystal direc-
tion. We recall that such a film is a collection of crystallite
with one of the crystallographic directions fixed which d
fines the texture and these crystallites are free to ro
around the texture direction. It will be shown subsequen
how this case can be extended to an arbitrary texture di
tion. We shall choose a laboratory frame (i,j ,k) such thatk
is normal to the substrate surface and the texture direc
lies in the (jk) plane~see Fig. 3!. We label byF the angle
betweenk and texture orientation.Q is the angle of rotation
around texture direction and it is the only parameter in
problem that can be adjusted so that the diffraction condit
~2.3! is satisfied~we assume a uniform and continuous d
tribution of Q such that one can always find a crystallite wi
a given value ofQ).

First, to solve the diffraction equation~2.3!, we need to
determine the coordinates of an arbitrary reciprocal vec
G(hkl) in the laboratory frame such that

G5Gxi1Gyj1Gzk. ~2.4!

The coordinate transformation to express (Gx ,Gy ,Gz) in
terms of (hkl) is obtained by performing two rotations of th
reciprocal lattice frame: the first is a counterclockwise ro
tion aroundc* by angleQ that makesa* andi coincide, and
the second is a counterclockwise rotation aroundi by angle
F:

he

FIG. 3. Thin-film coordinate axis geometry. The thin curved lines indic

which vectors are coplanar. For example,c* 8 andb* 8 lie in the k j plane.
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Rc* ,Q5S cosQ 2sin Q 0

sin Q cosQ 0

0 0 1
D ,

Ri,F5S 1 0 0

0 cosF 2sin F

0 sin F cosF
D . ~2.5!

The resulting transformation is the product of the tw
rotations in the specific order given:

Jhkl→GxGyGz
5Ri,FRc* ,Q . ~2.6!

Then the (Gx ,Gy ,Gz) coordinates are given by

S Gx

Gy

Gz

D 5
2p

a S cosQ 2sin Q 0

cosFsin Q cosFcosQ 2sin F

sin Fsin Q sin FcosQ cosF
D

3S h

k

l
D . ~2.7!

Consider now the case of a near grazing incidence elec
beam so thatKe can be expressed as

Ke5kxi1kyj10k, ~2.8!

where

kx5uKeucosg, ky5uKeusin g ~2.9!

and the diffraction condition~2.3! becomes

~cosg, sin g, 0!

•S h cosQ2k sin Q

~h sin Q1k cosQ! cosF2 l sin F

~h sin Q1k cosQ! sin F1 l cosF
D 50. ~2.10!

We need to solve Eq.~2.10! for Q to satisfy the diffraction
condition. From Eq.~2.10! we have

h cosQ2k sin Q52 tan g@~h sin Q1k cosQ!

3cosF2 l sin F#. ~2.11!

Substituting into Eq.~2.7!

G5S 2tan g~Z cosF2 l sin F!

Z cosF2 l sin F

Z sin F1 l cosF
D , ~2.12!

whereZ5h sinQ1kcosQ.
SinceuGu25h21k21 l 25G2, we obtain

1

cos2 g
~Z cosF2 l sin F!21~Z sin F1 l cosF!25G2.

~2.13!

Equation ~2.13! can be solved as a quadratic equation
obtain the diffraction condition. First, we make a change
variables
on

f

V~F,g!5@Z~F,g!cosF2 l sin F#
1

cosg

U~F,g!5Z~F,g!sin F1 l cosF. ~2.14!

Then Eq.~2.13! becomes a set of equations

U cosF2V cosg sin F5 l

V21U22G250 ~2.15!

or

~U cosF2 l !21U2 cos2g sin 2F2G2 cos2g sin 2F50

V2 cos2F1~V cosg sin F1 l !22G2 cos2F50.

~2.16!

The solution of Eq.~2.16! is given by

V6~F,g!5
2 l cosg sin F6 cosFR

S2

U6~F,g!5
l cosF6 cosg sinFR

S2
, ~2.17!

whereS2512sin2g sin2 F andR5A2 l 21G2S2.
The reciprocal vectorG satisfying the diffraction condi-

tion ~2.3! in terms ofV6(F,g) andU6(F,g) is given by

G~F,g!5S 2V6~F,g!sin g

V6~F,g!cosg

U6~F,g!
D . ~2.18!

The diffraction pattern on the screen is then described
the following vector

I5
d

uKeu
S Gi~F,g!

Gz~F,g!
D 5

d

uKeu
2p

a S V6~F,g!

U6~F,g!
D , ~2.19!

whereGi(F,g) is a component ofG that is parallel to thei j
plane andd is the perpendicular distance from the sample
the screen.

We point out here that for the cases wheng5 p
2 andg

50 corresponding to the texture axis lying in the plane
specular reflection~the plane perpendicular to the film con
taining the incident beam! and the texture axis lying in the
plane perpendicular to the plane of specular diffraction,
spectively, Eq.~2.19! reproduces the solutions for the spec
cases considered by Andrieuet al.8

Equation~2.19! applies to the case of an ideal textur
To describe a nonideal asymmetric texture we let the p
ferred crystallographic direction rock around its average
rection ~texture axis!. The quantitiesDF i and DF' define
the components of the angular spread parallel and per
dicular to thejk plane, respectively, withDF i0 and DF'0

being the maximum values of these deviations such that

S DF i

DF i0
D 2

1S DF'

DF'0
D 2

<1. ~2.20!

It is straightforward to show that the component of t
angular spread prependicular to thejk plane, i.e.,DF' , is
related to the quantityDg5g2g0 by the following equation
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tan DF'5tan Dg sin F0 , ~2.21!

whereF0 and g0 are the values ofF and g, respectively,
that define the orientation of the texture axis.

We will assume a Gaussian distribution in the angu
dispersion of the texture. As stated earlier, we also ass
that the total intensity at a particular spot in the diffracti
pattern is a sum of intensities from different crystallite
Consequently, we can modify Eq.~2.19! to obtain the inten-
sity distribution along the diffraction arc:

I ~F,g!5A0

d

uKeu
2p

a S V6~F,g!

U6~F,g!
DD~DF i ,DF'!,

~2.22!

whereA0 is a normalizing constant andD(DF i ,DF') is a
distribution function which in the case of a Gaussian dis
bution is

D~DF i ,DF'!5
2

p

1

DF i0DF'0

3expF22S DF i
2

DF i0
2

1
DF'

2

DF'0
2 D G . ~2.23!

Equation ~2.22! describes the RHEED pattern from
polycrystalline film with a texture. One should note that th
equation also takes into account diffraction from a film wit
out any texture present. In such a case one should setDF0

equal top andD(DF i ,DF') equal to 1.

2. Arbitrary texture

Having described diffraction for~001! texture, we can
extend the formalism to a case with an arbitrary text
(h0k0l 0). One can choose any set of three noncoplanar v
tors as a basis to describe the reciprocal lattice. Here
choose an orthogonal basis set$a* 8b* 8c* 8% such that the
direction of the texture coincides with the direction of thec* 8

axis. Then the problem becomes exactly the same as in
case of~001! texture.

We use the following transformation to calculate rec
rocal lattice indices in the new basis~Fig. 4!

FIG. 4. Change of basis in reciprocal space.
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Jhkl→h8k8 l 85S cosv 0 2sin v

0 1 0

sin v 0 cosv
D

3S cosf sin f 0

2sin f cosf 0

0 0 1
D , ~2.24!

or

S h8

k8

l 8
D 5S cosv cosf cosv sin f 2 sin v

2sin f cosf 0

sin v cosf sin v sin f cosv
D S h

k

l
D ,

~2.25!

where

cosv5
l 0

Ah0
21k0

21 l 0
2

, cosf5
h0

Ah0
21k0

2
. ~2.26!

To calculate the RHEED pattern for this case of arbitra
texture axis in an orthogonal crystal system, we use
~2.22! replacingh,k,l values withh8,k8,l 8 defined by Eq.
~2.25!.

C. Case of nonorthogonal crystal axes

So far, we have considered diffraction from films wi
an underlying orthogonal crystal lattice. Similar to the pre
ous section where we discussed an arbitrary texture case
choice of a particular basis is due purely to its convenien
We can always choose an orthogonal basis for any cry
symmetry and recalculate the new coordinates of recipro
lattice points. The problem then becomes identical to the
described previously and all the results remain valid.

We will illustrate how this procedure should be applie
using the triclinic system~see Fig. 5! as an example.a* , b* ,
andc* are the basis vectors for the reciprocal crystal latti
a, b, andg are the interaxial angles, andi, j , andk are the
vectors for the orthogonal basis. We will denote
v i,a* ,v i,b* , . . . , the anglesia*̂ , ib*̂ , . . . . One can show
that

FIG. 5. Change of coordinates in triclinic system.



n
lig

all

q.

en-

to
e

i-

n-

of
e
Eq.

e

tal

2155J. Appl. Phys., Vol. 85, No. 4, 15 February 1999 Litvinov, O’Donnell, and Clarke
cosv j,c*5
cosg cosb2cosa

sin g

cos2 vk,c*

5
112 cosa cosb cosg2cos2a2cos2 b2cos2 g

sin2 g
.

~2.27!

Then we have

a*5a* i

b*5~b* cosg!• i1~b* sin g!j

c*5~c* cosb!• i1~c* cosv j,c* !• j1~c* cosvk,c* !•k,
~2.28!

wherea* 5ua* u, b* 5ub* u, andc* 5uc* u.
The required expression forG in the new coordination

system is obtained by substituting expressions fora* , b* ,
andc* from Eq. ~2.28! into Eq. ~2.2!:

S h8

k8

l 8
D 5S a* b* cosg l cosb

0 b* sin g c* cosv j,c*

0 0 c* cosvk,c*

D S h

k

l
D .

~2.29!

Having redefined the coordinate system to the orthogo
one, we shall apply the procedure described above to a
the texture along the (001) axis and use Eq.~2.22! to calcu-
late the diffraction pattern.

III. ANALYSIS AND DISCUSSION

A. Texture axis not in the plane of the film

Let us consider a case where the texture axis is par
to the plane of specular diffraction~see Sec. II A!, i.e., g0

5p/2. From Eq.~2.17!

FIG. 6. Simulated RHEED pattern for rocksalt crystal lattice with~001!
texture perpendicular to the plane of the film. Angular spread in textur
15°.
al
n

el

U1S F,
p

2
6Dg D5U2S F,

p

2
7Dg D

~3.1!

V1S F,
p

2
6Dg D52V2S F,

p

2
7Dg D .

It follows that in this case the RHEED pattern defined by E
~2.19! is symmetric with respect to thez axis.

Next, consider the case where the texture axis is perp
dicular to the film surface. We setg50. Then from Eq.
~2.17! we have

U1~6DF,0!5U2~7DF,0!

~3.2!
V1~6DF,0!52V2~7DF,0!.

It follows that in the case of the texture axis perpendicular
the surface of the film, the RHEED pattern will always b
symmetric with respect to thez axis and it is invariant with
respect to the sample rotation around thez-axis.

Let us consider now a case whereG5(0,0,l ), i.e., G
along the texture direction. ThenR5 lAS221. Thus, for the
solution to existS2 must be greater or equal to 1. By defin
tion, S2<1. Combining the two inequalities we get

S251, R50

and

sin g50 or sinF50, ~3.3!

and Eq.~2.22! becomes

I5A0

d

uKeu
2p

a
l S 2cosg sin F

cosF
DD~DF i ,DF'!. ~3.4!

When sinF50, corresponding to an ideal texture perpe
dicular to the film surface, Eq.~3.4! gives just one point of
diffraction and, as will be clear below, this is a subcase
sin g50. When sing50, i.e., when the texture lies in th
plane perpendicular to the plane of specular diffraction,
~2.22! becomes

is

FIG. 7. Simulated RHEED image of double texture for rocksalt crys
lattice.
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I5A0

d

uKeu
2p

a
l S 6sin F

cosF
DD~DF i ,DF'!. ~3.5!

This is the equation of an arc with its intensity distributio
symmetric with respect to thez axis and with a maximum o
intensity on thez axis. This is consistent with the discussio
above~see Sec. II A! where the presence of a diffraction a
with such an intensity distribution indicates the presence
texture in the direction of the particularG responsible for
that specific diffraction arc~see Fig. 6!.

B. Texture parallel to the surface of the film

The final example is when the texture axis lies in t
plane of the sample surface. Equation~2.22! then becomes

I5A0

d

uKeu
2p

a S 2
l

cosg

6AG22S l

cosg D 2D D~DF i ,DF'!.

~3.6!

For the case of ‘‘double texture,’’ where the texture axis
free to rotate within the plane of the film, Eq.~3.6! gives the
corresponding diffraction pattern ifg is varied from2p to p
~see Fig. 7!.
f

IV. CONCLUSIONS

We have presented a kinematic theory of RHEED fo
polycrystalline film with an arbitrary degree of crystallit
ordering. The analytical expressions developed allow sim
lation of RHEED patterns for polycrystalline films with a
bitrary textures and arbitrary underlying crystal lattices. It
shown how the developed formalism can be applied to t
ture identification and angular dispersion characterizati
The approach presented here should be useful forin situ
texture characterization of thin films facilitating the choice
optimum deposition conditions.
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