SU(6) isoscalar factors for the product $405 \times 56 \rightarrow 56,70^{*}$

M. Machacek ${ }^{\dagger}$ and Y . Tomozawa
Physics Department, University of Michigan, Ann Arbor, Michigan 48104
(Received 19 March 1975)

$\mathrm{SU}(6)$ isoscalar factors for the product $405 \times 56 \rightarrow 56,70$ are calculated. $\mathrm{SU}(3)$ isoscalar factors for the products $27 \times 10 \rightarrow 10,8$ and $\overrightarrow{10} \times 8 \rightarrow 8$ are also tabulated.

I. INTRODUCTION

The SU(6) symmetry group was first found useful for the classification of hadrons in the 1960's. It has recently been extended by Melosh ${ }^{1}$ to apply to matrix elements of currents between hadron states. Following the ideas of Gell-Mann, the currents are postulated to belong to irreducible representations of an $\mathrm{SU}(6)$ of currents, while the particle states are classified by a different, constituent $\operatorname{SU}(6)$. These two different $\operatorname{SU}(6)$ symmetries are connected by a unitary transformation, the Melosh transformation. Melosh explicitly constructed this transformation for the free-quark model. The algebraic properties of currents transformed by the Melosh transformation have been extracted from this model and applied to physically relevant matrix elements. This method removed the inconsistencies which appeared in old $\operatorname{SU}(6)$ calculations of several axial coupling constants and the magnetic moments of the nucleons. ${ }^{1}$ Gilman, Kugler, Meshkov and others, ${ }^{2}$ used PCAC in addition to the algebraic properties of the Melosh transformed axial vector current to satisfactorily predict pionic emission amplitudes for the decays of mesons and baryons. Gilman, Karliner, and others, ${ }^{3}$ also found that the application of the Melosh transformation technique to real photon emissions from baryons and mesons is consistent with experiment.

In each of the above applications, the basic technique is to use the Wigner-Eckart theorem to calculate a particular physically relevant matrix element. Thus, the matrix element of an operator between two hadron states is the product of appropriate $\operatorname{SU}(6)$ and angular momentum Clebsch-Gordan coefficients, times a reduced matrix element. ${ }^{2}$ For each of the above applications, the Melosh transformed currents belong to 35 representations of $\operatorname{SU}(6)$. The baryons are classified in 56 and 70 representations, and the mesons form 35 representations of $\operatorname{SU}(6)$. The appropriate $\operatorname{SU}(6)$ Clebsch-Gordan coefficients for these applications have been calculated by Carter, Coyne, and Meshkov, ${ }^{4}$ and by Cook and Murtaza. ${ }^{5}$

If one now wants to apply this technique to currentcurrent matrix elements between baryon states which occur, for example, in nonleptonic weak decays, higher representations which originate from the product 35×35 must be considered. Explicitly, the product 35×35 is decomposed into the irreducible representations:

$$
\begin{equation*}
35 \times 35 \rightarrow 1+35+35^{\prime}+189+280+\overline{280}+405 . \tag{1.1}
\end{equation*}
$$

The only representations in (1.1) which will contribute to a matrix element between baryon states belonging to the 56 and the 56 or 70 representations are 35 and $405 .{ }^{6}$

In this paper, the Clebsch-Gordan coefficients for the product $405 \times 56 \rightarrow 56$, 70 are obtained so that such cur-rent-current processes may be treated in full. In Sec. II, the method of calculating the $\mathrm{SU}(6)$ isoscalar factors for the product $405 \times 56 \rightarrow 56$ and 70 with appropriate choice of phase is explained. In Sec. III, the $\operatorname{SU}(6)$ isoscalar factors for $405 \times 56 \rightarrow 56,70$ are tabulated. SU (3) isoscalar factors for the products $27 \times 10 \rightarrow 10,8$ and $\overline{10} \times 8 \rightarrow 8$, which were used in the present calculation, are also given in Sec. III.

II. METHOD OF CONSTRUCTION

A given $\operatorname{SU}(6)$ representation may be reduced according to the subgroup $\operatorname{SU}(3) \times \operatorname{SU}(2)$. In terms of the spectroscopic notation $A^{2 S+1}$, where A is the $\operatorname{SU}(3)$ representation label and $2 S+1$ is the $\mathrm{SU}(2)$ spin multiplicity, the $35,56,70$, and 405 representations have the following $\operatorname{SU}(3) \times \operatorname{SU}(2)$ contents:

$$
\begin{align*}
& \underline{35}=8^{3}, 8^{1}, 1^{3}, \tag{2.1}\\
& \underline{56}=10^{4}, 8^{2}, \tag{2.2}\\
& \underline{70}=8^{4}, 10^{2}, 8^{2}, 1^{2}, \tag{2.3}\\
& \underline{405}=27^{5}, 27^{3}, 27^{1}, 10^{3}, \overline{10^{3}}, 8^{5}, 8_{A}^{3}, 8_{B}^{3}, 8^{1}, 1^{5}, 1^{1} . \tag{2.4}
\end{align*}
$$

Wavefunctions for these $\mathrm{SU}(6)$ representations are written using the 6 and $\overline{6}$ representations q_{l} and q^{l}, respectively defined in Table A1, Appendix A. A given wavefunction within an $\mathrm{SU}(6)$ multiplet may be classified according to its $\mathrm{SU}(3) \times \mathrm{SU}(2)$ quantum numbers,

$$
\begin{equation*}
\left|A ; Y I I_{3} ; S S_{3}\right\rangle, \tag{2.5}
\end{equation*}
$$

where Y, I, I_{3} are the hypercharge, I-spin, and third component of the I-spin, respectively, and S, S_{3} are the spin and third component of the spin. The relative phases between wavefunctions within a given $\mathrm{SU}(3)$ multiplet are chosen to agree with the phase conventions of deSwart. ${ }^{7}$ The relative phases of the wavefunctions within a given spin multiplet agree with the Condon-Shortley phase convention for $\operatorname{SU}(2) .{ }^{8}$ The wavefunction of highest weight in successive $\operatorname{SU}(3) \times S U(2)$ multiplets within a given $\mathrm{SU}(6)$ representation is determined by requiring orthogonality between states with the same additive quantum numbers, Y, I_{3}, and S_{3}, and that the traceless condition for each representation be satisfied. For example, the 405 wavefunctions must have the following form:

$$
\begin{align*}
\xi_{i j}^{k l} \propto & \left\{q_{i} q_{j}\right\}\left\{q^{k} q^{l}\right\}-\frac{1}{8} \sum_{m}\left[\delta_{i}^{k}\left\{q_{m} q_{j}\right\}\left\{q^{m} q^{l}\right\}+\delta_{j}^{k}\left\{q_{i} q_{m}\right\}\left\{q^{m} q^{l}\right\}\right. \\
& \left.+\delta_{i}^{l}\left\{q_{m} q_{j}\right\}\left\{q^{k} q^{m}\right\}+\delta_{j}^{l}\left\{q_{i} q_{m}\right\}\left\{q^{k} q^{m}\right\}\right] \\
& +\frac{1}{56}\left(\delta_{i}^{k} \delta_{j}^{l}+\delta_{i}^{l} \delta_{j}^{k}\right) \sum_{m, n}\left\{q_{m} q_{n}\right\}\left\{q^{m} q^{n}\right\}, \tag{2.6}
\end{align*}
$$

TABLE 3.1. SU (6) isoscalar factors for $405 \times 56 \rightarrow 56,70$

where $\left\{q_{i} q_{j}\right\} \equiv q_{i} q_{j}+q_{j} q_{i}$, with the traceless condition

$$
\begin{equation*}
\sum_{i} \xi_{i j}^{i l}=0 . \tag{2.7}
\end{equation*}
$$

As seen in (2.4), 405 contains 8^{3} twice. The state $\left|8_{A} ; 011 ; 11\right\rangle$ is chosen to be the simplest state consistent with the required orthogonality and traceless conditions. $\left|8_{B} ; 011 ; 11\right\rangle$ is then determined by requiring, in addition, that it be orthogonal to $\left|8_{A} ; 011 ; 11\right\rangle$. The relative phases among different $\mathrm{SU}(3) \times \operatorname{SU}(2)$ multiplets within a given $S U(6)$ representation is arbitrary. The phases of the wavefunctions within the 35,56 , and 70 representations are chosen to conform to Meshkov's revised phase conventions ${ }^{9}$ for the table of $\mathrm{SU}(6)$ isoscalar factors for $35 \times 56 \rightarrow 56,70$. This table is given for reference in Appendix C. The highest weight wavefunctions, themselves, for each $\mathrm{SU}(3) \times \mathrm{SU}(2)$ multiplet in 35, 56, and 70 are listed in Appendix B. The present choice of relative phase for the $\mathrm{SU}(3) \times \mathrm{SU}(2)$ multiplets within 405 is also made explicit in Appendix B by listing the highest weight wavefunctions for each
$S U(3) \times S U(2)$ multiplet within 405 . The rest of the wavefunctions can easily be constructed by applying the generators $I_{ \pm}, V_{ \pm}$, and $S_{ \pm} \cdot{ }^{7}$

SU(6) Clebsch-Gordan coefficients can be written in terms of the product of an $\mathrm{SU}(6)$ isoscalar factor with $\mathrm{SU}(3)$ and $\mathrm{SU}(2)$ Clebsch-Gordan coefficients. For the product:

$$
\begin{aligned}
& \left|R ; A ; Y I I_{3} ; S S_{3}\right\rangle \times\left|R^{\prime} ; A^{\prime} ; Y^{\prime} I^{\prime} I_{3}^{\prime} ; S^{\prime} S_{3}^{\prime}\right\rangle \\
& \quad \longrightarrow\left|R^{\prime \prime} ; A^{\prime \prime} ; Y^{\prime \prime} I^{\prime \prime} I_{3}^{\prime \prime} ; S^{\prime \prime} S_{3}^{\pi}\right\rangle
\end{aligned}
$$

where R, R^{\prime}, and $R^{\prime \prime}$ are $\mathrm{SU}(6)$ representation labels, and the others are $\mathrm{SU}(3) \times \mathrm{SU}(2)$ multiplet labels within each respective $\mathrm{SU}(6)$ representation, the ClebschGordan coefficient is written:

$$
\begin{align*}
& \left(\begin{array}{cc|c}
R & R^{\prime} & R^{\prime \prime} \\
A, S & A^{\prime}, S^{\prime} & A^{\prime \prime}, S^{\prime \prime}
\end{array}\right)\left(\begin{array}{ccc}
A & A^{\prime} & A^{\prime \prime} \\
Y I I_{3} & Y^{\prime} I^{\prime} I_{3}^{\prime}, & Y^{\prime \prime} I^{\prime \prime} I_{3}^{\prime \prime}
\end{array}\right) \\
& \quad \times\left(S_{3} S^{\prime} S_{3}^{\prime}, S^{\prime \prime} S_{3}^{\prime \prime}\right) . \tag{2.8}
\end{align*}
$$

The first factor in (2.8) is the $\mathrm{SU}(6)$ isoscalar factor to be determined. The second factor is the full $\mathrm{SU}(3)$ Clebsch-Gordan coefficient for $A \times A^{\prime} \rightarrow A^{\prime \prime}$, many of which have been tabulated by McNamee and Chilton. ${ }^{10}$ The third factor is the usual $\mathrm{SU}(2) \mathrm{Clebsch}-G o r d a n$ coefficient. ${ }^{8}$ For the product $405 \times 56 \rightarrow 56,70$ the additional SU(3) Clebsch-Gordan coefficients for the products $27 \times 10 \rightarrow 10,8$ and $\overline{10} \times 8 \rightarrow 8$ are needed. These coefficients can also be expressed, in terms of isoscalar factors times an $S U(2) I$-spin Clebsch-Gordan coefficient, as

$$
\begin{align*}
& \left(\begin{array}{ccc}
A & A^{\prime} & A^{\prime \prime} \\
Y I I_{3} & Y^{\prime} I^{\prime} I_{3}^{\prime}, & Y^{\prime \prime} I^{\prime \prime} I_{3}
\end{array}\right) \\
& \quad=\left(\begin{array}{cc|c}
A & A^{\prime} & A^{\prime \prime} \\
Y I & Y^{\prime} I^{\prime} & Y^{\prime \prime} I^{\prime \prime}
\end{array}\right)\left(\left[I_{3} I^{\prime} I_{3}^{\prime}, I^{\prime \prime} I_{3}^{\prime \prime}\right)\right. \tag{2,9}
\end{align*}
$$

The $\operatorname{SU}(3)$ isoscalar factors for $27 \times 10 \rightarrow 10,8$ and $\overline{10} \times 8 \rightarrow 8$ were calculated according to the method of deSwart. ${ }^{?}$ They are listed in Tables 3.2 and 3.3 in Sec. 3.

The $S U(6)$ isoscalar factors are found by writing representative wavefunctions in each of the $\mathrm{SU}(3) \times \mathrm{SU}(2)$ multiplets of 56 and 70 in terms of the product wavefunctions of 405 and 56 and the Clebsch-Gordan coefficients given in (2.8). The unknown $\mathrm{SU}(6)$ isoscalar factors are determined by operating on these expressions with the $\mathrm{SU}(6) H_{4}$ and H_{5} operators defined in Appendix A. In particular, the expressions

$$
\begin{equation*}
H_{4}\left|10 ; 1 \frac{3}{2} \frac{3}{2} ; \frac{3}{2} \frac{3}{2}\right\rangle=3\left|10 ; 1 \frac{3}{2} \frac{3}{2} ; \frac{3}{2} \frac{3}{2}\right\rangle \tag{2.10}
\end{equation*}
$$

TABLE 3.2 SU (3) isoscalar factors for $27 \times 10 \rightarrow 10,8$

$$
\begin{align*}
& H_{5}\left|8 ; 1 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle=\left|8 ; 1 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle, \tag{2.11}\\
& H_{4}\left|8 ; 1 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle=(-4 \sqrt{2} / 3)\left|10 ; 1 \frac{3}{2} \frac{1}{2} ; \frac{3}{2} \frac{1}{2}\right\rangle
\end{align*}
$$

$$
\begin{equation*}
+\frac{5}{3}\left|8 ; 1 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle, \tag{2.12}
\end{equation*}
$$

for 56 and

$$
\begin{align*}
& H_{4}\left|8 ; 1 \frac{1}{2} \frac{1}{2} ; \frac{3}{2} \frac{3}{2}\right\rangle=\left|8 ; 1 \frac{1}{2} \frac{1}{2} ; \frac{3}{2} \frac{3}{2}\right\rangle, \tag{2.13}\\
& H_{4}\left|10 ; 1 \frac{3}{2} \frac{3}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle=\left|10 ; 1 \frac{3}{2} \frac{3}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle, \tag{2.14}\\
& H_{5}\left|8 ; 1 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle=\left|8 ; 1 \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle, \tag{2.15}\\
& H_{4}\left|1 ; 000 ; \frac{1}{2} \frac{1}{2}\right\rangle=(-2 / \sqrt{3})\left(\left|8 ; 010 ; \frac{3}{2} \frac{1}{2}\right\rangle+\left|8 ; 010 ; \frac{1}{2} \frac{1}{2}\right\rangle\right), \tag{2,16}
\end{align*}
$$

$H_{4}\left|10 ; 011 ; \frac{1}{2} \frac{1}{2}\right\rangle=H_{4}\left|8 ; 011 ; \frac{3}{2} \frac{1}{2}\right\rangle=-H_{4}\left|8 ; 011 ; \frac{1}{2} \frac{1}{2}\right\rangle$,
for 70 are sufficient to determine all the isoscalar factors. These factors are tabulated in Table 3.1 in Sec. III. Each row of isoscalar factors is normalized separately. The leftmost isoscalar factor for the 56 , 10^{4} multiplet and the $70,8^{4}$ multiplet are chosen to be

TABLE AI. Basic representations 6 and $\overrightarrow{6}$ with eigenvalue assignments for H_{4} and H_{5}.

Name	$\left\|Y I_{3} ; S S_{3}\right\rangle$	H_{4}	H_{5}
$q_{1}=p_{7}$	$\left\|\frac{1}{3} \frac{1}{2} \frac{1}{2} ; \frac{11}{22}\right\rangle$	1	1
$q_{2}=n_{4}$	$\left\|\frac{1}{3} \frac{1}{2}-\frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle$	-1	1
$q_{3}=\lambda_{4}$	$\left\|-\frac{2}{3} 00 ; \frac{1}{2} \frac{1}{2}\right\rangle$	0	-2
$q_{4}=p_{4}$	$\left\|\frac{1}{3} \frac{1}{2} \frac{1}{2} ; \frac{1}{2}-\frac{1}{2}\right\rangle$	-1	-1
$q_{5}=n_{1}$	$\left\|\frac{1}{3} \frac{1}{2}-\frac{1}{2} ; \frac{1}{2}-\frac{1}{2}\right\rangle$	1	-1
$q_{6}=\lambda_{1}$	$\left\|-\frac{2}{3} 00 ; \frac{1}{2}-\frac{1}{2}\right\rangle$	0	2
$q^{1}=\bar{p}_{1}$	$\left\|-\frac{1}{3} \frac{1}{2}-\frac{1}{2} ; \frac{1}{2}-\frac{1}{2}\right\rangle$	-1	-1
$q^{2}=\bar{n}_{1}$	$-\left\|-\frac{1}{3} \frac{1}{2} \frac{1}{2} ; \frac{1}{2}-\frac{1}{2}\right\rangle$	1	-1
$q^{3}=\bar{\lambda}_{1}$	$-\left\|\frac{2}{3} 00 ; \frac{1}{2}-\frac{1}{2}\right\rangle$	0	2
$q^{4}=\bar{p}_{7}$	$-\left\|-\frac{1}{3} \frac{1}{2}-\frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle$	1	1
$q^{5}=\bar{n}_{1}$	$\left.1-\frac{1}{3} \frac{1}{2} \frac{1}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle$	-1	1
$q^{6}=\bar{\lambda}_{t}$	$\left\|\frac{2}{3} 00 ; \frac{1}{2} \frac{1}{2}\right\rangle$	0	-2

TABLE 3.3 SU (3) isoscalar factors for $\overline{10} \times 8 \rightarrow 8$

			$\left(-1, \frac{3}{2}\right)$	$\left(-1, \frac{3}{2}\right)$	(0.1)	$(0,1)$	$(0,1)$	$(0,1)$	$\left(1, \frac{1}{2}\right)$	($1, \frac{1}{2}$)	$\left(1, \frac{1}{2}\right)$	(2,0)
	YI	$Y_{2} I_{2}$	$(0,1)$	$\left(1, \frac{1}{2}\right)$	$(0,1)$	(1, $\frac{1}{2}$)	$\left(-1, \frac{1}{2}\right)$	(0, 0)	$(0,1)$	$\left(-1, \frac{1}{2}\right)$	$(0,0)$	$\left(-1, \frac{1}{2}\right)$
8	$(0,1)$			$2 \sqrt{2} / \sqrt{15}$	$-\sqrt{2} / \sqrt{15}$			1/V5		$-\sqrt{2} / \sqrt{15}$		
	$\begin{aligned} & \left(1, \frac{1}{2}\right) \\ & \left(-1, \frac{1}{2}\right) \end{aligned}$		$2 / \sqrt{5}$			$1 / \sqrt{5}$	$1 / \sqrt{5}$		$-1 / \sqrt{5}$		$1 / \sqrt{5}$	$-\sqrt{2} / \sqrt{5}$
	$(0,0)$				$\sqrt{3} / \sqrt{5}$					$\sqrt{2} / \sqrt{5}$		

positive. Expressions (2.12), (2.16), and (2.17), then determine the relative phases of the remaining rows. These expressions also provide an internal check on the normalization of each row.

III. RESULTS

Table 3. 1 lists the SU(6) isoscalar factors for the product $405 \times 56 \rightarrow 56,70$. This table has been constructed to agree with the revised phase conventions for the isoscalar factors of the product $35 \times 56 \rightarrow 56$, 70. ${ }^{4,9}$ When necessary, this revised table for $35 \times 56-56,70$, given in Appendix C, should be used with Table 3.1, rather than the table given in Ref. 4. Tables 3.2 and 3.3 list the $\mathrm{SU}(3)$ isoscalar factors for the products $27 \times 10 \rightarrow 10,8$ and $\overline{10} \times 8 \rightarrow 8$, needed in the construction of the full $\mathrm{SU}(6)$ Clebsch-Gordan coefficients.

ACKNOWLEDGMENTS

We thank S. Meshkov for helpful conversations and for supplying useful information during the course of this work.

APPENDIX A: GENERATORS AND BASIC REPRESENTATIONS OF SU(6) GROUP

The 35 generators of $\operatorname{SU}(6)$ can be written ${ }^{11}$ as X_{i}^{j}, $i, j=1,2, \ldots, 6$, with the condition

$$
\begin{equation*}
\sum_{i=1}^{6} X_{j}^{i}=0 \tag{A1}
\end{equation*}
$$

and the commutation relations
TABLE B1. Representative wavefunctions for 35,56 and 70 representations. For $70, \varphi_{i j, k} \equiv q_{i} q_{j} q_{k}+q_{j} q_{i} q_{k}-q_{k} q_{j} q_{i}-q_{j} q_{k} q_{i}$.

```
|A; \(\mathrm{YI}_{3} ; \mathrm{SS}_{3}\) \}
18;011; 11 \(\rangle=q_{1} q^{5}\)
18;011; 00 \(\rangle=-(1 / \sqrt{2})\left[q_{1} q^{2}+q_{4} q^{5}\right]\)
\(|1 ; 000 ; 11\rangle=(-1 / \sqrt{3})\left[q_{1} q^{4}+q_{2} q^{5}+q_{3} q^{6}\right]\)
56
\(\left|10 ; 1 \frac{33}{2} \frac{33}{2} ; \frac{3}{2}\right\rangle=q_{1} q_{1} q_{1}\)
18;011; \(\left.\left.\frac{11}{2}\right\rangle\right)=(1 / 3 \sqrt{2})\left[2\left(q_{6} q_{1} q_{1}+q_{1} q_{6} q_{1}+q_{1} q_{1} q_{6}\right)\right.\)
    \(\left.-\left(q_{4} q_{3} q_{1}+q_{4} q_{1} q_{3}+q_{3} q_{4} q_{1}+q_{1} q_{4} q_{3}+q_{3} q_{1} q_{4}+q_{1} q_{3} q_{4}\right)\right\}\)
70
18; 011; \(\frac{33}{22}=(1 / \sqrt{6}) \varphi_{11,3}\)
\(\left|10 ; 1 \frac{3}{2} \frac{3}{2} ; \frac{1}{2} \frac{1}{2}\right\rangle=(1 / \sqrt{6}) \varphi_{11,4}\)
18;011; \(\left.\frac{1}{2} \frac{1}{2}\right)=-(1 / 3 \sqrt{2})\left[\varphi_{11,6}+\varphi_{34,1}+\varphi_{43,1}\right]\)
\(\left|1 ; 000 ; \frac{11}{2}\right\rangle=-(1 / 6 \sqrt{3})\left[2 \varphi_{26,1}+\varphi_{62,1}+\varphi_{21,6}+2 \varphi_{15,3}+\varphi_{53,1}+\varphi_{13,5}\right.\)
    \(+2 \varphi_{34,2}+\varphi_{43,2}+\varphi_{32,4} 1\)
```

$$
\begin{equation*}
\left[X_{i}^{j}, X_{k}^{l}\right]=\delta_{k}^{j} X_{i}^{l}-\delta_{i}^{l} X_{k}^{j} . \tag{A2}
\end{equation*}
$$

The familiar $\operatorname{SU}(3)$ hypercharge, I-spin, V-spin, and U-spin operators are written in terms of these generators in the following way:

TABLE B2. Representative 405 wavefunctions $\left\{q_{i} q_{j}\right\} \equiv q_{i} q_{j}+q_{j} q_{i}$

$\mid A ; Y I_{3} ; S_{3}{ }^{\text {¢ }}$)	
$127 ; 022 ; 22\rangle=q_{1} q_{1} q^{5} q^{5}$	
18;011; 22> $=(1 / \sqrt{20})\left[2\left\{q_{1} q_{2}\right\} q^{5} q^{5}+2 q_{1} q_{1}\left\{q^{4} q^{5}\right\}+\left\{q_{1} q_{3}\right\}\left\{q^{5} q^{6}\right\}\right]$	
11; 000; 22 $\rangle=(1 / \sqrt{24})\left[2 q_{1} q_{1} q^{4} q^{4}+2 q_{2} q_{2} q^{5} q^{5}+2 q_{3} q_{3} q^{6} q^{6}\right.$	
$\left.+\left\{q_{1} q_{2}\right\}\left\{q^{4} q^{5}\right\}+\left\{q_{2} q_{3}\right\}\left\{q^{5} q^{6}\right\}+\left\{q_{1} q_{3}\right\}\left\{q^{4} q^{6}\right\}\right]$	
\| $27 ; 022 ; 11\rangle=(1 / 2)\left[\left\{q_{1} q_{4}\right\} q^{5} q^{5}+q_{1} q_{1}\left\{q^{2} q^{5}\right\}\right]$	
\|10; $\left.1 \frac{3}{2} \frac{3}{2} ; 11\right\rangle=(1 / 2)\left[q_{1} q_{1}\left\{q^{2} q^{6}\right\}-q_{1} q_{1}\left\{q^{3} q^{5}\right\}\right]$	
$\left\|\overline{10} ;-1 \frac{3}{2} \frac{3}{2} ; 11\right\rangle=(1 / 2)\left[\left\{q_{3} q_{4}\right\} q^{5} q^{5}-\left\{q_{1} q_{6}\right\} q^{5} q^{5}\right]$	
$\left\|8_{A} ; 011 ; 11\right\rangle=(1 / \sqrt{48})\left[2 q_{1} q_{1}\left\{q^{1} q^{5}\right\}-2 q_{1} q_{1}\left\{q^{2} q^{4}\right\}+2\left\{q_{2} q_{4}\right\} q^{5} q^{5}\right.$	
$-2\left\{q_{1} q_{5}\right\} q^{5} q^{5}+\left\{q_{3} q_{4}\right\}\left\{q^{5} q^{6}\right\}$	
$\left.-\left\{q_{1} q_{6}\right\}\left\{q^{5} q^{6}\right\}-\left\{q_{1} q_{3}\right\}\left\{q^{2} q^{6}\right\}+\left\{q_{1} q_{3}\right\}\left\{q^{3} q^{5}\right\}\right]$	
$\left\|8_{B} ; 011 ; 11\right\rangle=(1 / \sqrt{480})\left[2 q_{1} q_{1}\left\{q^{1} q^{5}\right\}-8 q_{1} q_{1}\left\{q^{2} q^{4}\right\}-8\left\{q_{2} q_{4}\right\} q^{5} q^{5}\right.$	
$+2\left\{q_{1} q_{5}\right\} q^{5} q^{5}-3\left\{q_{1} q_{2}\right\}\left\{q^{2} q^{5}\right\}-3\left\{q_{1} q_{4}\right\}\left\{q^{4} q^{5}\right\}$	
$-4\left\{q_{3} q_{4}\right\}\left\{q^{5} q^{6}\right\}+\left\{q_{1} q_{6}\right\}\left\{q^{5} q^{6}\right\}-4\left\{q_{1} q_{3}\right\}\left\{q^{2} q^{6}\right\}$	
$\left.+\left\{q_{1} q_{3}\right\}\left\{q^{3} q^{5}\right\}\right]$	
\|27; 022;00) $=(1 / \sqrt{12})\left[2 q_{1} q_{1} q^{2} q^{2}+2 q_{4} q_{4} q^{5} q^{5}+\left\{q_{1} q_{4}\right\}\left\{q^{2} q^{5}\right\}\right]$	
$18 ; 011 ; 00\rangle=(1 / \sqrt{960})\left[2 q_{1} q_{1}\left\{q^{1} q^{2}\right\}+2\left\{q_{1} q_{2}\right\} q^{2} q^{2}+2 q_{4} q_{4}\left\{q^{4} q^{5}\right\}\right.$	
$+2\left\{q_{4} q_{5}\right\} q^{5} q^{5}+\left\{q_{1} q_{3}\right\}\left\{q^{2} q^{3}\right\}+\left\{q_{1} q_{4}\right\}\left\{q^{1} q^{5}\right\}$	
$+\left\{q_{1} q_{4}\right\}\left\{q^{2} q^{4}\right\}+\left\{q_{1} q_{5}\right\}\left\{q^{2} q^{5}\right\}+\left\{q_{2} q_{4}\right\}\left\{q^{2} q^{5}\right\}$	
$+\left\{q_{4} q_{6}\right\}\left\{q^{5} q^{6}\right\}-7\left\{q_{1} q_{6}\right\}\left\{q^{2} q^{5}\right\}-7\left\{q_{3} q_{4}\right\}\left\{q^{3} q^{5}\right\}$	
$\left.+8\left\{q_{1} q_{6}\right\}\left\{q^{3} q^{5}\right\}+8\left\{q_{3} q_{4}\right\}\left\{q^{2} q^{6}\right\}\right]$	
$\|1 ; 000 ; 00\rangle=(1 / 12 \sqrt{14})\left(4 q_{1} q_{1} q^{1} q^{1}+4 q_{2} q_{2} q^{2} q^{2}+4 q_{3} q_{3} q^{3} q^{3}+4 q_{4} q_{4} q^{4} q^{4}\right.$	
$+4 q_{5} q_{5} q^{5} q^{5}+4 q_{6} q_{6} q^{6} q^{6}+2\left\{q_{1} q_{2}\right\}\left\{q^{1} q^{2}\right\}+2\left\{q_{1} q_{3}\right\}\left\{q^{1} q^{3}\right\}$	
$+2\left\{q_{1} q_{4}\right\}\left\{q^{1} q^{4}\right\}-5\left\{q_{1} q_{5}\right\}\left\{q^{1} q^{5}\right\}-5\left\{q_{1} q_{6}\right\}\left\{q^{1} q^{5}\right\}$	
$+2\left\{q_{2} q_{3}\right\}\left\{q^{2} q^{3}\right\}-5\left\{q_{2} q_{4}\right\}\left\{q^{2} q^{4}\right\}+2\left\{q_{2} q_{5}\right\}\left\{q^{2} q^{5}\right\}$	
$-5\left\{q_{2} q_{6}\right\}\left\{q^{2} q^{6}\right\}-5\left\{q_{3} q_{4}\right\}\left\{q^{3} q^{4}\right\}-5\left\{q_{3} q_{5}\right\}\left\{q^{3} q^{5}\right\}$	
$+2\left\{q_{3} q_{6}\right\}\left\{q^{3} q^{6}\right\}+2\left\{q_{4} q_{5}\right\}\left\{q^{4} q^{5}\right\}+2\left\{q_{4} q_{6}\right\}\left\{q^{4} q^{6}\right\}$	
$+2\left\{q_{5} q_{6}\right\}\left\{q^{5} q^{6}\right\}+7\left\{q_{1} q_{5}\right\}\left\{q^{2} q^{4}\right\}+7\left\{q_{1} q_{6}\right\}\left\{q^{3} q^{4}\right\}$	
$+7\left\{q_{2} q_{4}\right\}\left\{q^{1} q^{5}\right\}+7\left\{q_{2} q_{6}\right\}\left\{q^{3} q^{5}\right\}+7\left\{q_{3} q_{4}\right\}\left\{q^{1} q^{6}\right\}$	
$\left.+7\left\{q_{3} q_{5}\right\}\left\{q^{2} q^{6}\right\}\right]$	

$$
\begin{align*}
& Y=-\left(X_{3}^{3}+X_{6}^{6}\right), \tag{A3}\\
& I_{+}=X_{1}^{2}+X_{4}^{6}, \\
& I_{-}=X_{2}^{1}+X_{5}^{4}, \\
& I_{3}=\frac{1}{2}\left(X_{1}^{4}+X_{4}^{4}-X_{2}^{2}-X_{5}^{5}\right), \\
& V_{+}=X_{1}^{3}+X_{4}^{6}, \\
& V_{-}=X_{3}^{1}+X_{6}^{4}, \\
& V_{3}=\frac{1}{2}\left(X_{1}^{1}+X_{4}^{4}-X_{3}^{3}-X_{6}^{6}\right), \\
& U_{+}=X_{3}^{2}+X_{6}^{5}, \tag{A6a}\\
& U_{-}=X_{2}^{3}+X_{5}^{6}, \tag{A6b}\\
& U_{3}=\frac{1}{2}\left(X_{3}^{3}+X_{6}^{6}-X_{2}^{2}-X_{5}^{5}\right) . \tag{A6c}
\end{align*}
$$

The generators of spin are given by

$$
\begin{align*}
& S_{+}=X_{1}^{4}+X_{2}^{5}+X_{3}^{6}, \tag{A7a}\\
& S_{-}=X_{4}^{1}+X_{5}^{2}+X_{6}^{3}, \tag{A7b}\\
& S_{3}=X_{1}^{1}+X_{2}^{2}+X_{3}^{3} . \tag{A7c}
\end{align*}
$$

The basic 6 and $\overline{6}$ representations, expressed as q_{1}, q^{l}, $l=1,2, \ldots, 6$, respectively, are given in Table A1 along with their eigenvalue assignments. The commutation relations of the generators with these basic representations are:

$$
\begin{equation*}
\left[X_{i}^{j}, q_{t}\right]=\delta_{l}^{j} q_{i}-\frac{1}{6} \delta_{i}^{j} q_{t}, \tag{A8a}
\end{equation*}
$$

$$
\begin{equation*}
\left[X_{i}^{j}, q^{t}\right]=-\delta_{i}^{l} q^{j}+\frac{1}{6} \delta_{i}^{j} q^{I} . \tag{A8b}
\end{equation*}
$$

A complete set of commuting operators, linear in the generators X_{i}^{j}, is given by Y, I_{3}, S_{3}, H_{4}, and H_{5} where H_{4} and H_{5} are chosen such that, ${ }^{12}$

$$
\begin{align*}
H_{4} & = \pm 4 I_{3} S_{3}, \tag{A9a}\\
H_{5} & = \pm 6 Y S_{3}, \tag{A9b}
\end{align*}
$$

for the basic 6 and $\overline{6}$ representations. The positive sign is used for the 6 representation and the negative sign for the $\overline{6}$ representation. In terms of the generators X_{i}^{j}, H_{4} and H_{5} are written:

$$
\begin{align*}
& H_{4}=X_{1}^{4}-X_{2}^{2}-X_{4}^{4}+X_{5}^{5}, \tag{A10a}\\
& H_{5}=X_{1}^{4}+X_{2}^{2}-2 X_{3}^{3}-X_{4}^{4}-X_{5}^{5}+2 X_{6}^{6} . \tag{A10b}
\end{align*}
$$

APPENDIX B: REPRESENTATIVE WAVEFUNCTIONS OF HIGHEST WEIGHT

Table B1 lists the highest weight wavefunctions, written in terms of the basic representations q_{l} and q^{l}, $l=1,2, \ldots, 6$, for each of the $\operatorname{SU}(3) \times \operatorname{SU}(2)$ multiplets in the 35,56 , and $70 \mathrm{SU}(6)$ representations, respectively. The relative phases of these wavefunctions are chosen to agree with the table of Carter, Coyne, and Meshkov ${ }^{4}$ with revised phase conventions. ${ }^{9}$ (See Appendix C.) Table B2 lists the highest weight wavefunctions for the 405 representation.

APPENDIXC SU (6) ISOSCALAR FACTORS FOR THE PRODUCT $35 \times 56 \rightarrow 56,70$ WITH REVISED PHASE CONVENTIONS 4,9

	$8^{3} \times 10^{4}$	$8{ }^{1} \times 10^{4}$	$1^{3} \times 10^{4}$	$\left(8^{3} \times 8^{2}\right)_{s}$	$\left(8^{3} \times 8^{2}\right)_{a}$	$\left(8^{1} \times 8^{2}\right)_{s}$	$\left(8^{1} \times 8^{2}\right)_{a}$	$1^{3} \times 8^{2}$
56								
10^{4}	2/3	$-2 / \sqrt{15}$	-1/3		$-2 \sqrt{2} / 3 \sqrt{5}$			
8^{2}	$2 / 3$			$-\sqrt{2} / 3$	$2 \sqrt{2} / 3 \sqrt{5}$	0	$-\sqrt{2} / \sqrt{15}$	$-1 / 3 \sqrt{5}$
70								
8^{4}	$5 / 4 \sqrt{3}$	$-\sqrt{5} / 4$		$-\sqrt{5} / 4 \sqrt{3}$	$-1 / 4 \sqrt{3}$			$1 / 2 \sqrt{6}$
10^{2}	$\sqrt{2} / \sqrt{3}$		$-1 / \sqrt{6}$		$-1 / 2 \sqrt{6}$		$-1 / 2 \sqrt{2}$	
$\begin{aligned} & 8^{2} \\ & 1^{2} \end{aligned}$	$\sqrt{5} / 2 \sqrt{3}$			$\begin{aligned} & \sqrt{5} / 4 \sqrt{6} \\ & \sqrt{3} / 2 \end{aligned}$	$-5 / 4 \sqrt{6}$	$\begin{aligned} & -\sqrt{5} / 4 \sqrt{2} \\ & -1 / 2 \end{aligned}$	$1 / 4 \sqrt{2}$	$1 / 2 \sqrt{3}$

*Work partially supported by the U.S. Atomic Energy Commission.
†Junior Fellow, Michigan Society of Fellows.
${ }^{1}$ H.J. Melosh, Phys. Rev. D 9, 1095 (1974).
${ }^{2}$ F.J. Gilman, M. Kugler, and S. Meshkov, Phys. Rev. D 9, 715 (1974); F. J. Gilman and M. Kugler, Phys. Rev. Lett. 30, 518 (1973); A.J. G. Hey and J. Weyers, Phys. Lett. B 44, 263 (1973) ; F.J. Gilman, M. Kugler, and S. Meshkov, ibid. 45, 481 (1973); A.J. G. Hey, J. Rosner, and J. Weyers, Nucl. Phys. B 61, 205 (1973).
${ }^{3}$ F.J. Gilman and I. Karliner, Phys. Rev. D 10, 2194 (1974); A. Love and D.V. Nanopoulos, Phys, Lett. B 45, 507 (1973); F.J. Gilman and I. Karliner, Phys. Lett. B 46, 426 (1973).
${ }^{4}$ J. C. Carter, J.J. Coyne and S. Meshkov, Phys. Rev. Lett. 14, 523 (1965).
${ }^{5}$ C. L. Cook and G. Muriaza, Nuovo Cimento 39, 7095 (1965). Caution must be exercised in using these tables since inconsistencies appear in the phase conventions. This was also
found by F. Gilman and I. Karliner (private communication). ${ }^{6}$ S. Pakvasa and S. P. Rosen, Phys. Rev. 147, 1166 (1966); M. Machacek and Y. Tomozawa, "Nonleptonic Weak Decay and the Melosh Transformation" Phys. Rev. D (to be published).
${ }^{7}$ J. J. deSwart, Rev. Mod. Phys. 35, 916 (1963). The phase convention is such that the matrix elements of $V_{ \pm}$are chosen to be real and positive. See Eqs. (7.5)-(7.8) in the above paper.
${ }^{8}$ V. Chaloupka, et al., Phys. Lett. B 50, No. 1 (April 1974). ${ }^{9}$ S. Meshkov (private communication).
${ }^{10}$ P. McNamee and F. Chilton, Rev. Mod. Phys. 36, 1005 (1964).
${ }^{11}$ For example, M. Gourdin Unitary Symmetries and Their Applications to High Energy Physics (North-Holland, Amsterdam, 1967), Chap. IX.
${ }^{12}$ L. Schülke, Z. Phys. 183, 424 (1965).

