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A Gr~n's function technique is applied t~ one-velocity neutron problems with spherical symmetry. 
The ~am ~dvantag~ of the approach IS that It bypasses the need to construct explicitly the appropriate 
spherIcal eIgenfunctIOns. Indeed, these can be directly deduced from this new formulation if one so 
~~ , 

1. INTRODUCTION 

The eigenfunction expansion technique has achieved 
considerable success in dealing with boundary-value 
problems in one-speed linear transport theory. The 
method developed by one of the authors,l though 
applied extensively to boundary-value problems with 
planar boundary conditions,l-4 is readily adapted to 
more general geometrical configurations. The essential 
feature of this technique lies in constructing a complete 
set of eigenfunctions (normal modes) of the appro­
priate transport equation, expanding the neutron 
angular density in terms of the complete set, and 
finding the expansion coefficients from the boundary 
conditions. There are some drawbacks in this kind of 
treatment. They are, among others: 

(i) The set of eigenfunctions (for example, the 
energy-dependent transport equation) may not form 
a complete set, which means one must construct 
appropriate additional functions to make the set 
complete. 

(ii) In most cases it is not always easy to prove 
completeness. 

In a recent paper by Case,5 a fresh approach has 
been introduced. It draws on analogy with the Green's 
function technique in dealing with classical boundary­
value problems. The advantages of this approach, 
among others, are: 
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(i) It incorporates the normal mode expansion 
technique in the scheme. 

(ii) The eigenfunctions arise in a rather natural way, 
and thus the necessity of proving their completeness 
(if they form a complete set) is eliminated. 

This paper utilizes the new approach to deal with 
various spherically symmetric boundary-value prob­
lems in one-speed transport theory. In particular, we 
treat albedo, critical, and Milne problems for the 
interior of a sphere, and the Milne problem for the 
exterior of a black sphere. In formulating the bound­
ary-value problems for specific cases, we encounter an 
apparent difficulty in managing the regular integral 
equations by analytic methods. To circumvent this 
difficulty, we introduce a reduction operator which 
permits us to transform these regular integral equations 
into integral equations with singular kernels, but with 
the original coefficients. In other words, the reduction 
operator essentially reduces the spherical eigen­
functions in the integral equations to the planar ones. 
The resulting singular integral equations are then 
solved for the coefficients by the conventional method 
developed for planar problems. 

2. CONSTRUCTION OF THE GREEN'S 
FUNCTION 

The time-independent transport equation in the 
one-speed approximation is 

(1 + n . V)1p(r, n) = :7T f dQ'1p(r, n') + Q(r, Q), 

(1) 

where n = v/v is the unit velocity vector, r is the 
position vector, Q(r, n) is a given neutron-source 
function, and c is the average number of secondary 
neutrons per collision produced by a neutron of 
velocity v. In this treatment we will assume that c is a 
known constant. 
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224 CASE, ZELAZNY, AND KANAL 

In the treatment of the boundary-value problems, 
the standard way of incorporating the boundary 
conditions is to convert the differential equation into 
an integral equation. With this end in mind, consider 
the Green's function for the above transport equation: 

(1 + .Q • V)G(r, .Q; ro, .Qo) 

= .£.. fdo.'G(r, .Q', ro, .Qo) + b(r - ro)b(.Q • .Qo), 
47T 

(2) 

where .Qo is the direction of the monodirectional point 
source located at ro and b(.Q· .Qo) is the surface 
b function defined in the usual manner; i.e., 

b(.Q . .Qo) = 0, .Q ~ .Qo, (3a) 

f d.QJ(.Q)b(.Q • .Qo) = J(.Qo), (3b) 

if somewhere in the domain of integration .Qo = .Q. 
By construction, the solution5 of Eq. (I) is 

'lj!(r,.Q) = f dO.' d3r'G(r,.Q; r', .Q')Q(r', .Q') 

+ f dS do.sG(r,.Q; rs, .Qs)fi(rJ • .Qs'lj!(rs, .Qs), 

(3c) 

where r. and.Qs are position and velocity vectors of the 
neutron at the boundary surface, respectively, and 
fi(rs) is the corresponding normal pointing toward the 
region where the solution of the transport equation 
is being sought. 

Let us now construct the Green's function by taking 
the Fourier transform of Eq. (2) with respect to r; 
i.e., let 

G(r,.Q; ro, .Qo) 

= _1_ fd3k exp [ik • (r - ro)]Gi.Q, .Qo). (4) 
(27T)3 

Equation (2) then becomes 

Gi.Q, .Qo) = ~ .£..- fdo.' Gi.Q', .Qo) 
1 + Ik·.Q 47T 

+ b(.Q • .Qo) (5) 
1 + ik·.Q 

By integrating both sides of Eq. (5) with respect to .Q, 
we obtain 

I
do.G (.Q Sl) = 1 (6) 

k ,0 A(k) . (1 + ik • .Q) , 

where 

A(k) = 1 - ~ I dO. (7) 
47T 1 + ik . .Q 

is the familiar dispersion function. 

Substituting the integral in Eq. (5) by the expression 
(6), we get 

Gk(.Q • .Qo) = [A(1 + ik· .Q)(l + ik· .QoW! 

+ b(.Q • .Qo)[l + ik . .Q]-I. 

The Green's function is then simply given by 

G(r, .Q; ro, .Qo) 

= ~ fd 3k exp [ik • (r - ro)] 
(27T) 

X [_C_ [(1 + ik • .Q)(l + ik . .QOWI 
47TA 

+ b(.Q . .Qo) J. (8) 
1 + ik·.Q 

This is the fundamental Green's function which will 
serve to determine the solution of the one-speed trans­
port equation for any given source and any incident 
distribution. We, therefore, turn to Eq. (3), which 
represents such a solution, and cast itin a more useable 
form. 

Let us introduce the explicit expression for G [as 
given by Eq. (8)] in Eq. (3c) and rearrange the terms to 
obtain 

'lj!(r, .Q) = 'lj!ir,.Q) + V'o(r,.Q) + 'lj!c(r, .Q), (9) 

where 

'lj!ir,.Q) = I dO.' d3r'G(r,.Q; r', .Q')Q(r', .Q') (10) 

is a known function, 

1 J 3 e
ik

•
r 

'lj!o(r, .Q) = -2 d k H, 
47T 1 + ik·.Q 

(11) 

H = -.l IdS do.so(rs) • .Qs'lj!(rs, .Qs)b(Sl • .Qs)e-ik
•r, 

27T 

= 2~ f dSfi(rs) • .Qs'lj!(rs, .Q)e-ik
•
rs

, (12) 

(.Q) C Jd3k e
ik

.
r T () 

'lj!c r, = 87T2 1 + ik • .Q A ' 13 

and 

1 I e-ik
.
r
, 

T = -2 dS do.so(rs) • .Qs'lj!(r., .Qs) . 
47T 1 + ik·.Qs 

(14) 

From Eq. (9) we see that the solution of any 
boundary-value problem is known, provided we can 
find the surface distribution 'lj!(rs'.Q) or, equivalently, 
the coefficients Tand H. Of course, if 'lj!(rs'.Q) is known 
a priori, then we are done. However, this is not 
always possible, for, in most instances, we only know 
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either the incident or the outgoing distribution, but 
not both. It is, therefore, necessary to supplement Eq. 
(9) with another equation which determines "P(rs ' n). 
This is easily done by passing to the limit [in Eq. (9») 
as r -+ rs from within the region of interest; i.e., 

"P(rs ' n) = "PaCrs' n) + "Po(rs, n) + "Pe(rs , n). (15) 

For further discussion of the equation that determines 
the surface distribution, see Ref. 5. 

The rest of this paper is devoted to the study of the 
integral equation (9) in conjunction with Eq. (15), 
subject to various boundary conditions in spherically 
symmetric problems. Specifically, we shall consider 
two categories of problems, the interior and the 
exterior of a sphere. 

3. SPHERICALLY SYMMETRIC PROBLEMS 

By this we mean that the angular density "P will be a 
function of rand fl = f • n, with fl > 0 corresponding 
to the outgoing neutrons and fl < 0 to the incoming 
ones. Under the spherical symmetry, the integral 
equation (9) is considerably simplified by carrying out 
the appropriate angular integrations. Thus, noting 
that T, given by Eq. (14), is a function of the magni­
tude of k, we can write 

"Pe(r, fl) 

= ~ (ro dkk2 T(k) (h
dT

Jl ~ 
87T

2 Jo A(k) Jo -1 1 + ikt 

x exp (ik{ tfl + [(1 - fl2)(1 - t2»)t cos (Cf! - Cf!k)})' 

or 

C Jro 2 T(k) "Pir, fl) = - dkk J(k, r, fl) - , 
87T -ro A~) 

(16) 

where 

/(k, r, fl) =Jl ~ eiktrI'Jo{kr[(l - fl2)(1 - t2»)l}. 
-11 + Ikt 

(17) 
Similarly, 

1 Jro Jl dt "Po(r, fl) = - dkk2 -- eiktrl' 
47T -00 -1 1 + ikt 

x Jo{kr[(l - fl2)(1 - t2»)l}H(k, t), (18) 
where 

H(k, t) = fldfl'fl'''P(r., fl')e- iktr
.I" 

x Jo{krs[(l - fl'2)(1 - t2)]t} (19) 

and rs denotes the radius of the sphere. The equation 
that determines the angular density is then 

"P(r, fl) = "Pq(r, fl) + "Po(r, fl) + "Pe(r, fl). (20) 

Before we express "P(r, fl) (for interior and exterior 
problems) in terms of eigenfunctions of the transport 

equation, let us examine the analytical properties of 
A(k), J(k, r, u), and T(k) in the complex k plane. 
From Eq. (7) it is clear that A is sectionally holo­
morphic in the k plane with the branch cuts extending 
from -ioo to -i and ito ioo. This property is shared 
by the functions J(k, r, fl) and T(k). (We shall use this 
fact in constructing the eigenfunctions of the transport 
equation.) The zeros of A(k) are either purely real or 
purely imaginary, depending on whether c < 1 or 
c > 1. It may seem peculiar, at first, that the angular 
density [or more appropriately, the Green's function 
given by Eq. (8») is not uniquely determined when the 
zeros of A are real. However, we will show later (when 
we deal with the critical problem) that it is not 
necessary to prescribe anyone particular recipe for 
treating the real zeros of A; that is, all prescriptions 
lead to a unique determination of the angular density. 
Finally, we note that, for complex values of k, the 
functions J(k, r, fl), T(k) , and H(k, t) diverge at 
infinity. However, we show in the following sections 
that these functions can always be written as a sum 
of two, one of which converges in the upper half k 
plane and the other in the lower half. 

A. Interior Problems 

In Eq. (20), let us first consider "Pe(r, fl) given by 
Eq. (16). We wish to express "Pe(r, fl) in terms of eigen­
functions. To do that, we need to change the path of 
integration from the real axis to the contour surround­
ing the cut, as shown in Fig. 1. Since r < rs , it is 
necessary to decompose T(k) only. The decomposition 
is readily obtained by expanding the exponential in 
Eq. (14) in terms of spherical harmonics. Thus, 

e-ik.r, = 47T I injn(krs)Y:m(k. ns)ynm( -fs ' n s). n,m 

The expression for T(k) now becomes 

T(k) = ~ IdS dn fi(r ) • n "P(r" fls) 
7T s s s 1 + ik • ns 

(21) 

x 2 injnCkrs)Y!m(k. ns)Ynm( -fs ' n.). 
n,m 

r ) r. 

k- plane 

r < r. 

FIG. I. Contours for 
r> r. and r < r •. 
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Because of the azimuthal symmetry of the surface 
angular density "P(r, , P,.), the only term in the sum 
over m which is nonzero is that for which m = O. 
Hence, 

T(k) = f1dP,BP,S"P(r., P,.) 

0() 

x L in(2n + 1)jn(kr.)P nC -P,s)Q,.{k), (22) 
n=O 

where Qn(k) is the Legendre function of the second 
kind defined by 

Qn(k) = (1 dt P net) . (23) 
)-1 1 + ikt 

Now the spherical Besssel function inez) can be ex­
pressed as a sum of Hankel functions of the first and 
the second kind. In Sommerfeld's notation,6 

(24) 

Putting (24) into (23), we get the following decom­
position for T(k): 

(25) 

where 

TI,2(k) = L1~P,8P,."P(r., P,.),(O,(2)(k, rs, -P,.) (26) 

and 

0() 

= L in(2n + l)~~),(2)(kr.)Pn( -p,.)QnCk). (27) 
n=O 

Let us note that 
(28) 

The expression (16) for "Pe(r, p,) may now be re­
written as a sum of two integrals by inserting the 
decomposition of T(k) given by Eq. (25). One may, 
then, readily show that one of the integrals converges 
in the upper half k plane and the other in the lower 
half. To simplify the subsequent calculations, we use 
the relation (28) and write 

c fOO 2 TI(k) ( ) 1J!.(r,p,) = - dkk -- I k, r,J-t. 
81T -00 A 

(29) 

In much the same way, the expression for "Po(r, p,) 
[see Eq. (18)] may be cast in the following form: 

"Po(r, p,) = 1. foo dkk2fI dt. eiklr/l 

41T -00 -1 1 + Ikt 
x Jo{kr[(1 - p,2)(1 - t2)]!}HI(k, t), (30) 

8 A. Sommerfeld, Lectures on Theoretical Physics, Vol. 6: 
Partial Differential Equations in Physics (Academic Press, New 
York, 1949). 

where 

H1(k, t) = f/p,fp,I"P(r.,p,f) 

00 

x L in(2n + 1)~~)(kr.)P n( -p,')P nCt). (31) 
n=O 

Now we can change the path of integration from 
the real axis to a contour surrounding the cut in the 
upper half k plane. For "Pe(r, p,), we have 

"Pe(r, p,) = - dkk2 __ 1 ___ 1 + d. c. C iiOO (I-T- I+T+) 
81T i A- A+ 

(32) 

where - (+) denotes the boundary value as we 
approach the cut from the right(left), and D . C is the 
discrete contribution arising from the zero of A. For 
the present we have assumed that c < I; i.e., the 
zeros of A(k) are purely imaginary. Let us simplify the 
integrand by constructing the eigenfunctions. This we 
do as follows. First we note that, from Plemelj's 
formula, we have 

= ! e-r/l Jo{r[(1 - J-t2)(k2 + 1)]!}, 
k 

and k is purely imaginary. Thus, 

A = (I-T1/A-) - (I+Tt/A+) 

(34b) 

= (T1/A-)(:J'I + i1TI6) - (TtJA+)(:J'I - i1TId). 

To construct the eigenfunctions, we introduce )"(k) 
in A as follows: 

A = (T1/A-)[:J'I + A.Ia - ()" - i1T)Id] 

- (Tt(A+)[!fI + A.Id - ()" + i1T)Idl. 

Now choose)" such that 

cp(k, r, fA) = 'Sf + U 6 (35) 

are spherical eigenfunctions of the transport equation 
with continuous spectrum. By straightforward calcu­
lations, one may readily show that the appropriate 
)" is 

)" = i1T(A+ + A-)/(A+ - A-). (36) 

If we choose A in this way, then A becomes 

A = [(T1/A-) - (Tt/A+)]cp(k, r, p,) 

+ 21Ti(Tl - Tt/A- - A+)Id • 
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(37) 

(38) 

and we have written down the explicit expression for 
the discrete contribution in which 

r O (k ) = _ ~ k2 Tl(ikO) (39) 
< 0 4 0 N(iko) , 

and 

cp(iko, r, ft) 

=jl _d_t _ e-kO~ltlo{kor[(l _ ft2)(1 _ t2)]!} (40) 
-11 - kot 

is the discrete eigenfunction of the transport equation 
with the eigenvalue iko the zero of A(k); i.e., 

or 

A(iko) = 0, 0 < ko < 1. 

For tpo(r, ft) [see Eq. (30)], we get 

tpo(r, ft) = - dkk2 dt 27Tii'«l II 
47T i -1 

X e'ktrItJo{kr[(l - ft2)(i _ t2)]i} 

x 15(1 + ikt)H(k, t), 

tpo(r, ft) = -ie-Tit f«l dkkJo{r[(l - ft2)(k2 + i)]!} 

X H( k, - i~)' (41) 

Now one may easily show that tpo(r, ft), as given by 
Eq. (41), is equal to minus the second term on the 
right-hand side of Eq. (37). With this in mind, Eq. 
(20), for the angular density tp(r, ft), becomes 

f1 1 (i) (i ) tp(r, ft) = tp,ir , ft) + Jo dv ~ r < ; cp ;' r, ft 

+ cp(t,r,ft)r~(*), (42) 

where we have set k = ii'll and ko = i/vo. 
An equation that determines the coefficients r < 

and r~ is obtained by letting r -- r. in Eq. (42). Thus, 

(1 1 (i) (i ) tp(r., ft) = tp,lr., ft) + Jo dv ; r < ; cp ;' r., ft 

+ cp(*,r .. ft)r~(~). (43) 

This is a regular integral equation. Its solution is 
difficult to discuss. Therefore, we shall seek the help 
of an operator (the reduction operator) which, when 
applied to Eq. (20), produces ,an auxiliary equation 
with the same coefficients as that in Eq. (43), but with 
a singular kernel. Before we present such an operator, 
let us first consider the cJass of exterior problems. 

B. Exterior Problems 

Now since r > r., in order to express tpc(r, ft) [see 
Eq. (16)] in terms of eigenfunctions by the change of 
path of integration to a contour surrounding the cut 
in the upper half plane, we need to decompose 
J(k, r, ft) [see Eq. (17)] and then follow the sllme 
procedure as that in the interior problems. Thus, to 
decompose J(k, r, ft), we write 

eiktrItJo(kr[(1 _ ft2)(1 _ t2)]!) 
00 

= ! I i fl(2n + l)[{~H(kr) + {~2)(kr)]p fI(f.t)P net), (44) 
n=O 

where we have used the decomposition (24) of the 
spherical Bessel function. Then, 

J(k, r, ft) = tW1l(k, r, ft) + {(2)(k, r, ft)], (45) 

where ~(l).(2)(k, r, ft) is given by (27) with rs replac€(d 
by r and -ft. by ft. Equation (16) for tpc(r, ft) now 
becomes 

C j«l T(k) 
tplr, ft) = 87T -00 dkk

2
{(1l(k, r, ft) A(k)' (46) 

The resulting integral equation for tp(r, ft) is given 
by 

"P(r, ft) = "Pir , ft) + f dv(l/v)r > (i/v)Z(i/v, r, ft) 

+ Z(i/vo, r, ft)r~(1/vo). (47) 

An equation that determines the coefficients r > (i/v) 
and r~(l/vo) is 

tp(r., ft.) = tpir., ft) + fdll(l/lI)r >U/V)Z(i/lI, r., ft) 

+ Z(i/vo, rso ft)r~(1lvo), (48) 
where 

and 
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In Eq. (47), the regular eigenfunctions occur implicitly 
in the coefficients r > (i/v) and r~(l/vo). Thus, from 
Eq. (22) for T(k), we have 

T(k) = fld,us,us1p(r., ,u.)I(k, r., -ft.)· 

Therefore, 

where k is a purely imaginary number (Le., k = i/v). 
Now, by definition, 

[I-(k, r., -ft.)/A-] - [I+(k, r., -ft.)/A+] 

= (1/A-)[;rI(k, r., -ft.) + i7rI~(k, r., -ft.)] 
- (lJA+)[;rI(k, r., -ft.) - iTrI~(k, r., -fts)] 

= (l/A+A-){;rI(k, r., -ft.) 
+ i7r[(A+ + A-)/(A+ - A-)]I~(k, r., -fts)} 

= (1/A+A-)tP(k, r., -fts). 

4. THE REDUCTION OPERATOR 

Let us consider an operator 6, given by 

e == lim J"" dr'r' K(r - r',,u) 
r-+r8 -00 

X (1 +,u~ + 1 - ,u2 ~), 
or' r' oft 

(56) 

where the kernel K(r - r', ft) is 

K(r - r', tt) = (1/,u)e-(r-r')!Jl8(r - r')8(,u) 

- (1/,u)e-(r-r')/1l8(r' - r)8( -,u). (57) 

Let us write the operator e, formally, as 

e == lim KS, (58) 

where 
o 1 _,u2 0 

S=:l+,u-+---
or r a,u 

is the streaming part of the transport operator. 

A. Application of the Operator e to Interior Problems 

We have already mentioned that 4>(k, r, ,u), as given Owing to the linearity of the operator e, its applica-
by Eq. (35), are the regular eigenfunctions of the tion to Eq. (20) gives us 
transport equation with continuous spectrum. Here, 

4>(k, rs, -,us) = ;rICk, r" -,u.) 
+ iTr[(A+ + A-)/(A+ - A-)]I~(k, r., -,us) (52) 

are the regular eigenfunctions of the adjoint equation 
with the same continuous spectrum. Thus, explicitly, 

Similarly, 

(54) 

where 

~(t, r.,fts) 

= vofl ~ e'81"/Volo{~ [(1 - ,u;)(1 - t2)]!} (55) 
-1 Vo - t Vo 

is the regular discrete eigenfunction of the adjoint 
equation with the point spectrum Vo (iko = i/vo being 
the zero of A). 

To solve the integral equation (48) for the coeffi­
cients, we shall seek the help of the reduction operator. 
In the next section, we present such an operator. 

First, consider the left-hand side of Eq. (59). Since e 
is a product of two operators [Eq. (58»), K and S, let 
us apply S first. Thus, 

S1p(r,,u)8(rs - r) 

o1p 
= 1p(r,,u)8(r. - r) + ,u8(r. - r)­

ar 

1 - ,u2 aljl 
- ,uljJb(rs - r) + -- 8(r. - r) -a . 

r ,u 
For,u < 0, 

6[1p(r, ,u)@(rs - r)] = rs1p(r., ft). (60) 

Next consider 61pc. We have, from Eq. (16), 

c J"" 2 T(k) 61pc(r,,u) = - dkk - leICk, r, ,u)]. (61) 
8Tr -00 A(k) 

Now, 
SICk, r, ft) = (2 sin kr)Jkr. 

Therefore, for ft < 0, 

KSI(k ) 2 food ' , -1.-,') '''';:>( , ) sin kr' , r,ft = - - r r e ~"" r - r --
r -00 kr' 

or 

KSI(k, r,p) = - - + . (62) i [ e
ikr 

e-
ikr 

] 

k 1 + ikft 1 - ikft 
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If we put Eq. (62) into Eq. (60), the result is 

ic . foo T(k) 
0"PcCr, fL) = - hm dkk-

81Tr-r, -co A(k) 

X - + . (63) [ 
eikf e-ilcr ] 

1 + ikfL 1 - ikfL 

Now, decomposing T(k) into the sum of TI(k) and 
T2(k) as before [see Eq. (25)] and following the same 
procedure of integration around the cut in the upper 
half k plane, we obtain 

where 

_ ~ [iOO dkk[e-ikr'~(1 _ ikfL) 
4Ji 

_ eikf'b(l + ikfL)](T1 - Tt) + rd.c. 
A- - A+ 

(64) 

cf>°(k, r., fL) = eikr'{'J'(1 + ikfJ)-l 
+ i1T[(A+ + A-)/(A+ - A-)]b(l + ikp)} (65) 

are the planar eigenfunctions corresponding to the 
continuous k spectrum. Also, for Jl < 0, these eigen­
functions are regular. However, if the sign of k is 
reversed, then these planar eigenfunctions become 
irregular. 

In Eq. (64), let us introduce the coefficients r < 

and r~ as given by Eqs. (38) and (39), respectively. 
Thus, 

1ioo dk 
()"Pc(r, Jl) = i ---; 

i k-

where 

x [</>o(_k, rs,Jl) - r/>°(k, r.,fL)W«k) 

_ E. [ioo dkk Tl - Tt 
4Ji A- - A+ 

X [e- ikr'b(l - ikfL) - eikf'b(l + ikfL)] 

+ CJ[</>O(-iko, r.,fL) 

- cp°(iko, r., /l)]r < (ko), (66) 

tfo°(iko, r., /l) = e-ikor'/(l - kot-t), 0 < ko < I, (67) 

is the planar discrete eigenfunction corresponding to 
the point spectrum ko. 

One may readily show again that the second term on 
the right-hand side of Eq. (66) is equal to -()1poCr, Il). 
Consequently, the reduced angular density given by 

Eq. (59) may now be written as follows: 

rs1p(rs, fL) = 8"Pir, t-t) fdV[ cpo ( - ;, rs, t-t) 

- cpo(;,r .. Il)]r«;) 
+ vo[ tfo°( - ~ , r., fl) - cf>o(~ , r., fl) ] 
x r~ (~), /l < 0. (68) 

Putting the explicit forms of the planar eigenfunctions 
in Eq. (67), we re-express this equation in the standard 
notation.1 Thus, 

where 

fell) = -. vor < - -- - --
1 [ 2 0 (1) ( e-r,/vo er,/vo ) 

2m Vo Vo - fL '110 + t-t 
+ [l~ e-2r./ vt' < (l) 

Jo v - fL v 

+ rs"P(rs,/l) - 81pq(r,/l)] (70) 

and 

i\ (;) = ver,/vr < (n. (71) 

Equation (69) is the auxiliary equation which can be 
solved for the coefficients r < and r~ by the standard 
technique developed for planar problems.1 We note 
that the existence of such a solution guarantees the 
completeness of the regular spherical eigenfunctions 
given by Eqs. (35) and (40) in the sense stated in the 
following theorem. 

Theorem 1: "Any" function 1p(r, fL) in the domain 
- /l < I and regular at r = 0 may be expanded in 
terms of the regular spherical eigenfunctions r/>(i/v, 
r, /l) and tfo°(i/vo, r, /l), corresponding to the contin­
uous spectrum 0 < v < 1 and the point spectrum vo. 

Let us mention that this is the half-range complete­
ness of the eigenfunctions. The proof of the theorem 
is demonstrated by constructing the coefficients r < 

and r~ from Eq. (69). For further details on this we 
refer the reader to Ref. 1. Here we shall merely use the 
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results of such a solution in various specific boundary­
value problems. Before we do that, however, let us 
complete our presentation by giving the analog of 
Eq. (69) for the class of exterior problems. 

B. Application of the Operator () to Exterior 
Problems 

Consider the left-hand side of Eq. (59). For r > r .. 
we have 

S{ 1p(r, ,u)e(r - r.)} 

= 1p(r, ,u)e(r - r.) + ,ue(r - r.) d1p 
dr 

1 - ,u2 d1p + ,u1p{)(r - r.) + -- e(r - r.) - . 
r d,u 

For ,u > 0, we get 

O{1p(r, ,u)8(r - r.)} = r.1p(r., ,u). (72) 

In the right-hand side of Eq. (59) consider 01pc: 

C Joo dk T(k) 01p.(r,,u) = - "2 - fOlCk, r, ,u)]. 
817 -00 k A(k) 

For,u > 0, we have 

KSI(k, r,,u) = K 2 sin kr 
kr 

= 2. Jr dr' e-(r-r')/p sin kr' 
k,u -00 

1 [e
ikr 

e-
ikr J 

= ki 1 + ik,u - 1 - ikp. . 
Therefore, 

c Joo T(k) 01p.(r,,u) = -. lim dkk -
8171 r-+r, -00 A 

[ 
eikr e-ikr J 

x 1 + ik,u - 1 - ik,u , 

c Joo T(k) eikr 
01p.(r,,u) = -.lim dkk - .' 

47T1 r-+r, -00 A 1 + Ik,u 

or 
(73) 

Again, by changing the path of integration to a con­
tour surrounding the cut in the upper half k plane, 
we cast Eq. (73) into the form given below: 

c iiOO ° (T- T+) 01p.(r, ,u) = 417i i dkkcp (k, r.,,u) A - - A + 

+ E iioodkkeikr'{)(l + ik,u) 
2 i 

T- - T+ 
X A- _ A+ + d. c. (74) 

where cpO(k, r .. ,u) is the planar eigenfunction repre­
sented by Eq. (65). Now let us introduce the coeffi­
cients r> and r«;. defined by Eqs. (50) and (51), 

respectively, and put the form of 01p. given by Eq. (73) 
into Eq. (59). We obtain 

r.1p(r .. ,u) = 01pk,,u) - 2fdVI\(;)cpO(;, r .. ,u) 

- 2VocpO(~ , r .. ,u )r~ (t), (75) 

where cp°(ijvo, r.,,u) is the discrete planar eigen­
function given by Eq. (67). 

Let us cast Eq. (74) into a more usable form by 
introducing the explicit expressions for the eigen­
functions. Thus, 

where 
= (A+ - A-)g(,u), ,u > 0, (76) 

g(,u) = ~[-v~r~ (i)e-r"vOj(vo -,u) 
47T1 71o 

and 

+ 01pa(r,,u) - r."PCr .. ,u) J (77) 

(78) 

In the next section, we consider some specific 
interior and exterior problems. 

5. APPLICATIONS 

In the integral equation (69), we notice that, except 
for the terms involving the incident distribution and 
the distribution due to source(s), the rest of the 
features are common to all interior problems. This is 
also true for Eq. (76) for the class of exterior problems. 
For this reason it is convenient to write down the most 
general solutions for the corresponding coefficients and 
treat just the distinguishing part separately for each 
problem. Thus, for the class of interior problems, the 
solution of the singular integral equation (69) isl 

r> (;) = - 2~;[X+/-,u) - x-/~,u)J{v~r~ (~) 
X [erB/vo X(vo) _ e-t',/vo X( -vo)J 

,u + 71o ,u - 71o 

+ f l

dve-2r,!V r«i/v) X( -v) 
Jo 71- ,u 

+ e dp/ X+(f-t') - X-{f-t') 
Jo f-t' + f-t 

x [r,1p(r., -,u') - 01pir, -f-t')]}, f-t < O. 

(79) 
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The equation that determines r~ is 

v~I'~ (~) [X(vo)e-1',/vo - X( -vo)e-r,/vo] 

- fdVX( -v) exp (-2r./v)r < (~) 

-L1
d,u'[X+(,u') - X-(,u')] 

x [r.1jJ(r., -,u') - 01jJa(r, -,u')] = 0, (80) 
where 

X(z) = _1_ exp [~ (ld,u argA+(,u)]. (81) 
1 - Z 7T Jo ,u - z 

Similarly, for the exterior problems, Eq. (76) has the 
solution 

(i) 1 (1 1) r> ; = - 47Ti X+(,u) - X-(,u) 

x {_ v~I'~ (.!.) e-r,/vo X ( + vo) 
Vo ,u - Vo 

+ (1dp,' X+(,u? - X-(P') 

Jo ,u -,u 

x [01jJ(r, ,u') - rs1jJ(r., ,u')]}, ,u > O. (82) 

The equation that determines r~ is 

v~I'~ (*)X( +vo)e-r,/vo + fd,u'[X+(,u') - X-(,u')] 

x [01jJ"(r,,u') - r.1jJ(r.,,u')] = O. (83) 

Let us now consider some specific problems and 
determine the coefficients r < and r~ explicitly. We 

> > 
treat the interior problems first. 

A. The Albedo Problem 

The albedo problem involves the determination of 
neutron angular density everywhere inside the source­
free sphere [1jJir,,u) == 0] with an incident distribution 
given by 

1jJ(rs,,u) = (r;)-lb(,u - ,uo), ,u < 0, ,uo < O. (84) 

Under this boundary condition, Eq. (79) for r < 

becomes 

r(i) = __ 1 ( 1 _ 1 ){vgr~ (.!.) 
,u 27Ti X+( -,u) X-( -,u) Vo 

x [exp (!:!) - exp (-r.) X( -vo)J 
Vo vo,u - Vo 

+ [Idv exp (-2r./v) i\(ijv) X( -v) 
Jo v - ,u 

1 X+( -,uo) - X-( -,uo)} +- . 
r. ,u - ,uo 

(85) 

For r~ , we have 

v~I'~ (~) [ X(vo) exp (~) - X( -vo) exp ( - ~) ] 

[1 (-2r) (i) - Jo dvX( - V) exp ~ r < ; 

- .!. [X+( -,uo) - X-( -,uo)] = o. (86) 
rs 

Equations (85) and (86) are well suited for asymp­
totic expansions of the angular density. Thus, for a 
large sphere, one may neglect the integral term in Eq. 
(85) involving exp (-2r./v), and solve the equation by 
iteration. In particular, in the zeroth approximation, 
we have 

- (i) 1 (1 1) 
I' < ; ~ - 27Ti X+( -,u) - X-( -,u) 

x {vgI'~ (.!.) [exp (!:!) X(vo) 
Vo Vo ,u + Vo 

(-r8) XC -vo)J -exp - ---
Vo ,u - Vo 

(87) 

and 

v~I'~ (~) 

_ [X+( -,uo) - X-( -,uo)] . (88) 

rs[X( 1'0) exp (r./vo) - X( -vo) exp (- r.lvo)] 

Now, by eliminating v~r~(l/vo) from Eq. (87), we 
obtain the explicit expression for r <. The angular 
density is then readily obtained from Eq. (42). 

B. Milne Problem for the Interior of a Sphere 

The Milne problem involves the determination of 
neutron angular density everywhere inside the sphere 
with a source at the center and zero incident distri­
bution. Thus, the boundary condition is 

1jJ(r",u) = 0, ,u < O. (89) 

We assume an isotropic source; i.e., 

Q(r, n) = ~(r). (90) 
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Putting this expression for Q into Eq. (10), we obtain 

1 foo dkk
2 

1pir, #) = 87T2 -00 A J(k, r, #), (91) 

where J(k, r, #) is given by Eq. (17). 
As before, we may express 1pq in terms of boundary 

values about the branch cut in the upper half k plane 
by first decomposing J(k, r, #) as shown in Eq. (45). 
To avoid repetition of calculations, we merely state 
the answer. Thus, 

C 1ioo dkk 
1pir, #) = - - -- Z(k, r, #) 

87T i A+A-

where Z(k, r, #) and S(l)(iko, r, #) are given by Eqs. 
(50) and (27), respectively. Put k = ii'll and ko = 11'110 

to get 

1 y(I) ( i ) + 4 2· A' ~ - , r, # . 
7T IVo '110 

(93) 

After the application of the reduction operator to Eq. 
(91) for # < 0, we get 

1 e-r./vo 

+ 2 'A' --, # < O. (94) 
m '110 - # 

Now let us subject Eq. (79) to the boundary con­
dition (92) and insert the expression (94) for ()1pq. The 
result is 

{ 
2rO (1)[ (rs) X(vo) x '110 < - exp - --

'110 '110 # + '110 

(-rs) X( -vo)J -exp -
'110 # - '110 

1 (-rs) X( -'110) ---exp - --
27TiA' '110 # - '110 

l Id (-2rs)r'"\ (i)X(-V) + vexp -- < - --
o v v '11-# 

+- --exp - --, C II dv' (-rs) X( -v)} 
47T 0 vA + A-v v - # 

# < O. (95) 
From Eq. (79), we get 

v~r~ (~)(exp (~)X(vo) - exp (~:s)X( -'110)] 

- --. -exp _s X(-vo) 1 (-r) 
2mA' '110 

(1 (-2~) _ (i) -Jo dvexp .-'11- X(-v)r< ; 

_..£... (I~ exp (-rs)X( -v) = O. (96) 
47T Jo vA+A- v 

For a large sphere, we may neglect the integrals in 
Eqs. (95) and (96) involving exp (-2rslv). Thus, in the 
zeroth approximation, Eq. (96) becomes 

2r O(1) 1 (-2rs)X(-vo) '110 < - c:::: --exp -- ---
'110 27TiA' '1'0 X( '110) 

c (-rs) 11 dv +-exp - --
47T '1'0 0 vA+A-

x exp - --, (-ra) XC-v) 
v X(vo) 

(97) 

while Eq. (95) becomes 

(i) 1 (1 1) r ; '" - 27Ti X+( -#) - X-( _#) 

X exp -, S --- (v' + '110) • (-r) X( -v') ] 
v '11'-# 

(98) 

These are precisely the coefficients which occur in the 
half-space Milne problem, I as expected. The first 
order approximation of r~ and r < may now be 
readily obtained by computing the integrals pre­
viously neglected in Eqs. (96) and (95) from the first 



PROBLEMS IN ONE-SPEED TRANSPORT THEORY 233 

iterations (97) and (98). Thus, 

c (-rs)Il 
dv (-rs) XC-v) + - exp - -- exp - --

41T '1'0 0 vA+A- v X(vo) 

- - dvexp - XC-v) -----1 11 (-rs) (1 1) 
21Ti 0 v X+(v) X-(,v) 

x [_1_ exp (- r s) voX( - '1'0) 
1TiA' '1'0 ('1'0 - '1')('1'0 + v) 

c e dv' 
41T(VO - v) Jo v'A+A-

X exp (-rs) XC-v') (v' + vo)J 
v' v' + v 

(99) 

and 

I\ (1.) '"" _1 ( 1 _ 1 ) 
{t 21Ti X+( -{t) X-( -{t) 

x {_1_ exp (- rs) voX( -'1'0) 
1TiA' '1'0 ('1'0 - '1')('1'0 + v) 

C [1 dv' 

41T(VO - v) Jo v'A+A-

X exp (-rs) X( -v') (v' + '1'0) 
v' v' + v 

1 11 dv -- --
21Ti 0 v - {t 

x exp -- XC-v) -----(-2rs) (1 1) 
V X+(v) X-(v) 

x [_1_ exp (~) voX( -'1'0) 
1TiA' '1'0 ('1'0 - '1')('1'0 + v) 

c e dv' 
41T(VO - v) Jo v'A+A-

X exp (-rs) X( -v') (v' + vo)]}. (100) 
v' v' + v 

C. The Critical Problem 

We mentioned earlier that, when the zeros of the 
dispersion function are real (c> I), the Green's 
function [Eq. (5)] is not uniquely determined. The 
angular density, however, is still uniquely determined 
regardless of the manner we choose to treat the singu­
larities. To illustrate this point, let us consider the 
critical problem. Assuming no volume sources, the 

integral equation (20) becomes 

"P(r, {t) = "Po(r, {t) + "Pc(r, {t). (101) 

The dispersion function occurs only in "Pc, which is 
given by Eq. (29). We rewrite this equation as follows: 

'lPcCr, {t) = ..£. 100 

dkk2Tl(k)I(k, r, {t) 
81T -00 

X [~± + Alo(k - kl) + A2o(k - k2)} 

(102) 

where ~ implies the Cauchy principal value, Al and .12 
are some arbitrary functions of k, and kl' k2 are the 
real zeros of A(k). Since A( -k) = A(k), -k2 = 
kl = ko > O. Also froin Eq. (28), we have Tl( -k) = 
T2(k). With this in mind, let us re-express Eq. (101) in 
the following form: 

c JOO 2 TICk) "Pc(r, {t) = - dkk - I(k, r, {t) 
81T -00 A 

+ 1>(ko, r,{t)rC(ko), (103) 

where we have omitted writing the principal value 
symbol and 

rC(ko} = ..£.. kUA1T1(ko) + A2T2(ko)] (104) 
81T 

and 

1>(ko, r, {t) 

= II dt. eikotTIl J o(kor[(l - {t2)(1 - t2) ]!) (105) 
-11 + Ikot 

is the discrete regular eigenfunction which is of 
oscillatory type in contrast to the eigenfunctions 
constructed previously. 

The calculation of the integral in Eq. (103) may now 
be carried out in exact analogy with the interior 
problems for c < 1. Here we merely state the final 
result. Thus, 

"P(r,{t) = f d; r «;)1>(;, r,~) 
+ 1>(ko, r, {t)rC(ko), (106) 

where the coefficient r < is given by Eq. (38), and, as 
before, 1>(i/v, r, {t) [see Eq. (35)] are the regular 
eigenfunctions corresponding to the continuous spec­
trum. 

The implication of our previous statement as to the 
uniqueness of the angular density should now be 
obvious. In particular, we see from Eq. (106) that the 
coefficients r < and r c are determined uniquely by the 
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boundary conditions, and the angular density, there­
fore, does not depend on how we set up these coeffi­
cients. Equation (104) illustrates such an arbitrariness 
in re. 

The steps involved in obtaining the auxiliary equa­
tion for the coefficients are exactly those involved in 
the interior problems for c < 1. Thus, Eq. (69) 
represents that equation with (}'ljJq == 0, r c replacing 
rl!: , and the discrete eigenfunctions by their oscilla­
tory counterpart. In fact, from Eq. (79), which repre­
sents the most general solution of Eq. (69), we have 

-exp - --
(
-irs) X(ivo) ] 

Vo ft + ivo 

l Id (-2rs)r«i/V)X() + vexp -- --- -v 
o v V-ft 

+ (1 dft' X+(ft') - X-(rt') rs"P(rs, ft»). 
Jo ft' + ft 

The equation that determines r e is (107) 

v~re(*)[X(-iVo)eXp (-v~s) - X(ivo)exp (~:)J 

- fdVX(-V) exp (-~rs)r «~) 

- fdft'[X+(ft') - X-{ft')]rs"P(r., -ft') = 0. (108) 

The boundary condition for the critical problem is 

'IjJ(r" ft) = 0, ft < 0. (l09) 

Inserting this boundary condition into Eq. (107), we 
get 

(i) 1 (1 1) r < ~ = - 21Ti X+( -ft) - X-( -ft) 

X {v~rc(..!.) [exp (irs) X(=i~o) 
Vo Vo ft 1Vo 

- exp -- ---(
-irs) X(ivo) ] 

Vo ft + ivo 

l Id (-2r,) r <City) X( )} + vexp -- --- -v, 
o v v-ft 

and, from Eq. (107), we get (110) 

v~re(~)[ X(-ivo)exp (~:) - X(ivo)exp (-v~·) ] 
(1 (-2r ) (i) - Jo dvX( -v) exp ~ r < ; = 0. (111) 

For a large sphere, if we neglect the integral in Eq. 
(111) involving exp (-2rs/vo), we get 

exp (-irs/v)X(+ivo) - X(-ivo)exp (irs/vo) = 0, 

(112) 

which merely states that the asymptotic density is to 
vanish at the extrapolated end point. This problem has 
been extensively treated for planar geometry by the 
normal mode expansion technique. I •4 

As a final application of the Green's function 
technique, let us consider the Milne problem for the 
exterior of a black sphere. 

D. Milne Problem for the Exterior of a Black Sphere 

The problem under consideration involves the 
determination of the neutron angular density outside 
a purely absorbing sphere (black sphere). Far away 
from the sphere, there is a source which supplies the 
neutrons. Since the black sphere implies zero emergent 
distribution, the appropriate boundary condition is 

"P(rs ' ft) = 0, ft > 0. (113) 

Ih calculating the angular density 'ljJq(r, ft) in Eq. 
(47), let us assume that a spherically symmetric 
source is located at some distance R outside the black 
sphere. Thus, let 

Q(r, Q) = (qo/R2)b(r - R), R > r.. (114) 

Putting this source function into Eq. (10), we get 

qo J 00 dkk ikR (k ) ( 5) "Pir,ft) = --. - e I ,r,ft, 11 
41TRI -00 A 

where J(k, r, ft) is given by Eq. (17). 
Let us split Eq. (115) into two parts as follows: 

qo [J 00 dkk ikR )0( ) "Pir,ft) = -.- --e J(k, r,ft • R - r 
47TlR -00 A 

+ - eikRJ(k, r, ft)0(r - R). (116) Joodkk ] 
-00 A 

Now, if we push the source to infinity (i.e., let R ---+ 

00), we see that the second integral in Eq. (116) will 
make no contribution. Furthermore, in the same 
limit, the modes with continuous spectrum must also 
disappear. Thus, in Eq. (110), if we choose 

qo = R ekoRi[koA'(ko)rl, (117) 

where A(iko) = 0, and let R ---+ 00, we get 

'ljJa(r, {t) = -t/>Uko, r, ft). (118) 

The application of the reduction operator for ft > ° 
to Eq. (116) gives us, in the limit R ---+ 00 and the 
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same choice of qo as given in Eq. (117), 

1 ( e-kor, ~or.) 
(hp<i r , fl) = 2ko 1 _ kolt - 1 + ko{t , fl > O. 

(119) 

The coefficients f' > and r~ given by Eqs. (82) 
and (83), respectively, which solve the integral equa­
tion (47), may now be readily obtained. Thus, inserting 
the boundary condition (113) and Eq. (119) into Eq. 
(82), we get 

x {V~X(vo) e-rs/vo[l - r> (!)] 
fl - Vo Vo 

+ v~X( -vo) ers/vo}. (120) 
It + Vo 

The equation that determines r~ is similarly obtained 
from Eq. (82). Thus, 

One usually writes 

Derivation of Identities 

Let us begin with the Green's function (for c = 0) 
in the form of a Fourier integral 

1 f e
ik

.
R 

G(r, n; ro, no) = -3 b(n 0 no) d3k , 
(27T) 1 + ikon 

(Al) 

where R = r - roo The integration may be carried out 
in a straightforward manner by first resolving k and 
R as follows: 

k = nkon + k1.' such that k1. on = 0, 

and 

R = nR 0 n + R1.' such that R1. 0 n = 0. 

Then we can write 

k 0 R = k 0 nR 0 n + k1. 0 R1. . 

Equation (1) then becomes 

G = b(n 0 no) 1. 
27T 

xJoo d(k 0 n) exp (ik 0 nR 0 n) 0 _1_ 

-00 1 + ik 0 n (27T)2 

x f d2kl. exp (ikl. 0 Rl.)' 

(122) Separate parts of the integrals are 

where '0 is the so called extrapolation distance which 
determines the distance where the asymptotic neutron 
density vanishes. 

APPENDIX 

In the main body of this paper, we have dealt with 
the media with regeneration property. In the course 
of the treatment we encountered certain complicated 
looking functions such as ,<0,(2), defined by the infinite 
series (27), which are hard to relate to any classically 
known functions. In this section we consider the 
Green's function for media without regeneration 
property (i.e., c = 0). (For a geometrical interpreta­
tion of the Green's function for purely absorbing 
media, see Ref. 1.) Here also we encounter similar 
type of functions which do not seem to have classical 
analogs, but their certain integrals are related to 
Dirac's delta function. Consequently, they give rise to 
some interesting mathematical identities and com­
pleteness relations (half and full range). For the 
planar geometry, the completeness relations are rather 
trivial. However, for the sake of comparing the 
hierarchy of complexity, we also present these trivial 
completeness relations. 

and 

.!.. J 00 d(k 0 n) eik.nR.n = e-R.n 0(R 0 n) 
27T -00 1 + ik 0 n ' 

where 
0(R 0 n) = I, Ron> 0, 

= 0, Ron < o. (A2) 

The expression for the Green's function now may be 
written as 

G = exp (-R 0 n)b(n 0 no)b(R 1.)0(R 0 n). (A3) 

This equation holds for any arbitrary values of , 
and roo 

Let us consider Eq. (I) again and carry out the 
integration in a manner parallel to the treatment of 
interior and exterior problems. Define I as 

I = _1_ f d3
k exp [ik 0 (r - ro)] (A4) 

(27T)3 1 + ik 0 n ' 
and let 1< denote this integral when r < ro, and I> 
when r > ro. First consider ,< ro. Expanding 
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exp (-ik • ro) in terms of spherical harmonics and 
using the cosine formula to express 1{ • r = t and T • 
Q = p" we get 

XJoo dkk2~~2)(kro)j1 dt. Y!m(t, cp) 
-00 -1 1 + Jkt 

. eiktrIlJm{kr[(1 - p,2)(1 - t2)]!}. (AS) 

(Here we have used the decomposition of the spherical 
Bessel function in terms of spherical Hankel functions 
~~l) and '~).) Now the distortion of the path of inte­
gration (with respect to k) to the path surrounding the 
branch cut in the lower half k plane yields 

I -TlljO dv ~ ~ 'n -hm"Y(2) ( . ro) 
< = -e "3,:;.,,:;., I e 'on 1-

-1 V n~O m~-n V 

x Ynm(-To ·Q)Y~m(V'!P) 
X Im{r[(1 - ft2)(V-2 - 1)]!}. (A6) 

Since G = IJ(Q· no), the comparison of Eq. (6) with 
Eq. (3) gives us the first identity. 

Identity I: 

-exp (-rp,) 3'! ! in exp -im - ,~2) j...Q j o dv 00 n ( 7T) (r ) 
-1 V n~O m~--n 2 V 

X Ynm( -To • n)Y~m(V' !p) 
X Im{r[(1 - p,2)(V-2 - 1)]i} 

= exp (-R. Q)15(R.l)0(R· Q), 

r < ro, fl == r· Q. 
Similarly, for r > ro, we have the second. 

Identity 2: 

exp (rop,o) f :: ~o m~ninehm"'~1)(i;) 
X Ynm(T' n) Y~m(v, !Po) 

X Im(ro[(l - p,;)(1/v2 - 1))!) 

= exp (-R· Q)O(R.l)0(R· n), 

r > ro, fts == To' n. 
We remark here that Identities 1 and 2 so far are not 

restricted to any geometry. Also note that the Green's 
functions G < (r < r 0) and G> (r > r 0) are related to 
1< and I>, respectively, by 

(A7) 

Now if we express the delta function in Eq. (A7) in the 
form 

b(n ·.no) = (j(p's - fto)(j(!po - !POo) , (A8) 

where ft. = To·.n, P,o = To' .no, and in Eq. (A3) 

write oCR 1-) in cylindrical coordinate system, i.e., 

o(R.l) = r-1(1 - p,2)-t 

X (j[r(l - p,2)! - ro(1 - ft;)!]o( cp - !Ps), 

(A9) 

and integrate Eq. (A7) over all angles except p, = 
r· nand fto = To' .no, we get Identities 3 and 4 
corresponding to the spherical geometry . 

Identity 3: 

-t exp (-rp,) (0 d: S(2)(iro , -P,o , v) 
1-111 V 

X Io{r[(1 -- p,2)(1/V2 - 1)Jt} 

= exp (-(rp, - rop,o)J 

b[r(l - ft2)! - ro(1 - p,~)!) 0 
X !" (rp, - rop,o), 

r(l - ft2)' 

Identity 4: 

i exp (rop,o) f ~: S(l)(~ ,p" 11) 

where 

X Io{ru«(1 - p,~)[(l/v2) - I))!} 

= exp [-(rp, - ro,uo)] 

J[r(l - p,2)* - ro(1 - p,~)!] 
X * 0(rp, - 'oP,o), 

r(l - ft2) 

S(1).(2)(~ ,p" V) 

= n~/n(2n + 19~1).(2)(~)Pn(P,)PnCP). (AIO) 

A more convenient form of these identities is 
obtained if we use the formula 

to re-express the right-hand sides. This gives us: 
Identity 3' : 

_! exp (- rP,)jO d: S(2) (iro , -fto, v) 
-1 V V 

X Io{r[(l - fl2)(lJv2 
- 1)]i} 

1 
= exp [-(rp, - rop,o)) -2-

r Iftl 
X [(j(p, - ftl) + (j(p, + P,1)]0(rp, - 'otto), 

, < '0; 
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Identity 4': 

! exp (ropo) f ~: S(1) C;: ,p, v) 

where 

X Io{ro[(l - p~)(1/v2 - l)]!} 

= exp [-(rp - ropo)](r2 Ipl)-1 

X [b(p - PI) + b(p + pl)]0(rp - ropo), 

r> ro, 

Completeness Theorems 

Let us note that the left-hand and right-hand sides 
of identities (3') and (4') are two representations of 
G< and G>, respectively. The half-range completeness 
theorems follow from the limits of G < and G> as r 
approaches r o' Specializing to various particular 
values of P and Po, let us first obtain a number of 
useful results. Consider G < first. 

The right-hand side representation of G< is 

1 
G < = exp [-(rp - rOPO)]-2 

rfl 

X [b(# + #1) + b(# - #1)]0(r# - ro#o)' 

(All) 

I. #0> 0, # > ° 
The argument of the 0 function is positive if 

# > (rolr)#o' Now the first b function makes no 
contribution, since its argument cannot vanish. The 
second b function can contribute if 

# = #1 = {(r~/r2)#~ - [(r~/r2) - I]}! < (rofr)po, 

(rofr) > 1. 
But then 0(rp - ropo) = 0. Hence, 

G< = 0, #0> 0, and # > 0. (AI2a) 

2. Po > 0, P < ° 
For these values of P and Po, 0 (rp - ropo) = 0. 

Hence, again 

G< = 0, Po> 0, P < 0. (AI2b) 

3. #0 < 0, # > ° 
For this 0 = I, b(# + #1) makes no contribution. 

Therefore, only b(p - PI) may contribute. Hence, 

G< = e-(rl'-rol'o)(r2Ipl)-lb(p - PI), Po < 0, P > 0. 

(AI2c) 

4. Po < 0, P < ° 
Then r# - ropo = ro IPol - r Ipi > ° if 

Ipi < (ro/r) IPol· 

Clearly b(p - PI) makes no contribution. Hence, the 
possible contribution may come from b(# + #1)' This 
is easily seen from putting P + #1 equal to zero: 

P + PI = ° = -ipi + PI 

or 

Ipi = {(r~/r2)p~ - [(r~/r2) - In! < (rofr) IPol. 

The last inequality shows that 0(r# - ro#o) = 1 is 
satisfied. Hence, 

G < = e-(rl'-rol'o)(r21,u1)-lb(p + #1), ,uo < 0, # < 0. 

(A12d) 

By exactly the same argument, one may show that 
G> , in the right-hand side representation (see identity 
4'), can be written as 

G> = e-(rl'-rol'o)(r2 Ipl)-lo(,u - PI), Po > 0, P > 0, 

(A13a) 

G> = 0, Po> 0, ,u < 0, 

(A13b) 

G> = [e-(rl'-rol'o)/ r2 Ipl]b(,u - PI), ,uo < 0, ,u> 0, 

(AI'3c) 

G> = 0, ,uo < 0, P < 0. 

(A13d) 

Now in Eqs. (AI 2a)-(AI 2d) and (AI3a)-(A13d) let 
r -4- ro. Denoting this limit of G'J; by G'f" we obtain the 
following set of results: 

G_ = 0, Po> 0, P > 0, 

(A14a) 

G_ = 0, Ilo > 0, # < 0, 

(AI4b) 

G_ = (e-2rol'/r~p)b(p + ,uo), Po < 0, ,u > 0, 

(AI4c) 

G_ = -(r~p)-Ib(p - Po), Po < 0, P < 0, 

(AI4d) 

G+ = (r~p)-lb(p - Po), Po> 0, p> 0, 

(AI5a) 

G+ =0, fto > 0, ft < 0, 

(A15b) 

G+ = (e-2rol'/r~fl)b(p + ,uo), ,uo < 0, ,u > 0, 

(AI5c) 

G+ = 0, Po < 0, ,u < 0. 

(A15d) 
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Let us remark here that the purpose of tabulating G ± 

for various sets of values of f-l, f-lo (instead of using 
Heavyside theta function) is that only those repre­
sentations of G± give rise to completeness relations 
which correspond to the same sign of f-l, f-lo -for 
instance, Eqs. (A14a), (AI4d), (AI Sa), and (AISd). 
The rest give rise to mere identities. 

In the left-hand side representations of G'f' we have 
from identities (A3') and (A4'), 

G = _1. -rOllio dv S(2) (iro _ ) - ~e 3 ' f-lo,Y 
-1 V Y 

G =1 ropoll dy S(U (ir 0 ) 
+ ye 3 ' f-l, Y 

o Y V 

From Eqs. (AI4d) and (AI Sa) we may now con­
clude our half-range completeness theorems. 

Theorem 1 (Half-Range Completeness): For f-lo < ° 
andf-l < 0, 

r~ -ropio dv S(2) (iro ) -e - - -II Y 
2 3 ' rO, 

-1 Y V 

Theorem 2 (Half-Range Completeness); For f-lo > ° 
and f-l > 0, 

The full-range completeness theorems may now be 
readily obtained by taking the appropriate differences 
of G+ and G_. Thus, subtracting (AI6) from (AI7), 
we have (in the left-hand side representation) 

G - G - 1 ropoll dy S(I)(iro ) 
+ - - ye 3 ' f-l, Y 

o v v 

This equation can be cast into a more symmetric form 
by means of the following relations: 

e-rplo{ro[(l - f-l2)(V-2 - 1)]i} 

= HS(UC:o , f-l, v) + S(2t:O 
, f-l, v) 1 (A19) 

erp1o{ro[(1 - f-l2)(V-2 - 1))i} 

S(l)( iro ) S(2)(iro ) --,f-l, -Y = -,f-l,Y. 
v v 

(A2l) 

We may now rewrite Eq. (AS) in the form 

G - G =! II dv S(1)( iro )S(2)(iro _ ) + - 3 ' f-l, v ,Po, v . 4 ~v v v 

(A22) 

In the right-hand side representations of G+ and G_ we 
have, from (AISa), (AI4a) and (AISd), anc!(AI4d), 

G+ - G_ = (r~f-l)-lc5(f-l - f-lo), Po > 0, f-l > 0, 

Po < 0, P < 0. 

(A23) 

The fUll-range completeness theorems may now be 
readily concluded from Eqs. (A22) and (A23). 

Theorem 3 (Full-Range Completeness): For any P, 
f-lo, 

r~Il dv S(l)(iro )S(2)(iro _ ) 
4 

3 ' p, V ,Po, V 
-I'll Y V 

Theorem 4 (Full-Range Completeness,; For any P, 

f-lo, 

_1 2fl dv S(l) (iro _ )S(2)(iro ) "4ro 3 ,p, V , /.to, V 
-1 V v J' 

We note that Theorem I is adjoint to Theorem 2 in 
the sense that they imply each other under the reflection 
of f-l and f-lo. In particular, this equivalence also exists 
under the interchange of P and f-lo. We may, therefore, 
combine the two theorems into a symmetric form. 
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Theorem 5 (Full-Range Completeness-Symmetric 
form); For any fl' flo, 

1 2f1 dV[S(l)(iro )S(2)(iro _ ) lIro 3 ,fl, v , flo, v 
~ v v v 

- S(l)(iro - )S(2)(iro )] , fl,v ,flo,v 
v v 

For the sake of comparison we present the corre-

sponding trivial theorems for the planar geometry: 

for any fl, flo· 
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The first-order quantum corrections to the equations of state of an almost-classical N-particle system 
are calculated to all orders in the particle density by expanding the normalized Wigner distribution 
function in powers of h2• In this way one avoids the expansion of the partition function, which has the 
unsatisfactory property that the correction terms diverge in the thermodynamic limit. Similarly, the 
first-order quantum correction to the pair distribution function is derived. 

1. INTRODUCTION 

A well-known concept in the quantum statistical 
treatment of an N-partic1e system is the Wigner distri­
bution function (WDP) f(r, p), where rand pare 
the 3N-dimensional position and momentum vectors. 
It is defined in such a way that the quantum statistical 
ensemble average of an arbitrary operator A is given 
by 

(A)qu = Tr pA/Tr p 

= I a(r, p)f(r, p) dr dp / If(r, p) dr dp. (1) 

Here p is the density operator and a(r, p) represents 
the classical quantity corresponding to the quantum 
mechanical operator A. If, in particular, the corre­
spondence between a and A is established according 
to Weyl's rule (cf., e.g., Ref. 2), one finds for fer, p) 

1 E. Wigner, Phys. Rev. 40, 749 (1932). 
2 K. Schram and B. R. A. Nijboer, Physic a 25, 733 (1959). 

the expression 

fer, p) = (7rnr3N I per - y, r + y) exp (2in-I p. y) dy, 

(2) 

where per, r') is the density operator in coordinate 
representation.3 It will be obvious that p andf(r, p) 
may be multiplied by an arbitrary temperature-depend­
ent factor. 

In the case of statistical equilibrium described by a 
canonical ensemble, the (unnormalized) density oper­
ator is given by 

p = exp (-PH), P = (kT)-l. (3) 

This operator satisfies the so-called Bloch equation 

op 
-= -Hp. 
o{J 

(4) 

a In fact, the correspondence (2) and Weyl's rule are equivalent, 
as several authors showed independently; see, e.g., Ref. 2, Ref. 5, 
and Boris·Leaf, J. Math. Phys. 9, ~5 (1968). 


