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0+2/1/+--0 band taken at a field of 4.68 kV/cm. The 
upper lines are obtained with the electric vector of 
exciting light polarized perpendicular to the electric 
field and the lower ones parallel. For the relatively weak 
fields employed, the splittings are small, but distinguish­
able. The results show clearly that the P- and R-branch 
lines are split in parallel polarization while the Q-branch 
lines are split in perpendicular polarization.6 This quali­
tative observation definitely characterizes the transition 
as magnetic dipole in nature. 

Optical Stark spectra have been used to determine 
dipole moments of electronically excited states.3•4 Since 
the splittings in the present spectra are small, relatively 

6 It should be noted that the Q-branch lines are weaker than the 
p- and R-branch lines. Thus, the assignment of Q-branch lines 
from field-free spectra is not as definite as the strong P- and 
R-branch lines. In the present work the main weight of evidence 
for the magnetic-dipole nature of the transition comes from the 
observed Stark splittings of P- and R-branch lines. In all cases, 
the observed splittings of Q-branch lines is in accord with their 
assignment calculated with previously determined constants. 
We wish to thank the referee for pointing this out. 
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low accuracy can be expected. The value obtained for 
the dipole moment of the 1 A2 state from measurements 
of the spliuings indicated in Table III is 1.5±0.3 D, 
which is consistent with the more accurate value of 
l.S6±0.07 D determined from splittings measured in 
the electric-dipole, vibronically allowed 0+/12' +/16'+--0 
band.3•4 It is expected that the variation of dipole 
moment with vibrational state is less than the present 
experimental uncertainty of 0.3 D. 

It appears to us that the present technique is a 
definitive method for determining the origin of spectral 
intensity in molecules showing first order Stark effects in 
their spectra. The general applicability of this straight­
forward method is probably limited to the spectra of 
molecular systems with well-characterized rotational 
structure. 
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The behavior of the electron in the ground state of the hydrogen molecular ion is examined using the 
Dirac theory. Since the resulting set of equations is not readily separable, the variational theorem is applied 
to obtain approximate eigenfunctions for the ground state. Trial variational functions having the same 
symmetry properties as the exact solution can be conceptualized as a superposition of functions closely re­
sembling nonrelativistic molecular orbitals. The relativistic correction to the electronic energy is approxi­
mately -7X1Q-t a.u. 

THE methods of nonrelativistic quantum mechanics 
have been extensively applied to the hydrogen 

molecule-ion. Within the Born-Dppenheimer approxi­
mation, both the exact solution (separable in prolate 
spheroidal coordinates) and various approximate 
solutions to the Schrodinger equation for electronic 
motion have been obtained. The corresponding prob­
lem in relativistic quantum mechanics does not appear 
to have been treated.I The relativistic motion of an 
electron in the electrostatic field of two protons is 
governed by the Dirac equation with Hamiltonian 
operator (in atomic units), 

therefore apply the variational principle to obtain ap­
proximate solutions for the relativistic ground state. 

JC= ca·p+pc2- ('11)-1- ('b)-I. (1) 

Unlike the Schrodinger equation, the Dirac equation is 
not readily separable for the two-center field. We 

For an exact solution to the Dirac equation, 

'1'= 

1/14 

the small components 1/13, 1/14 of the spinor are related to 
the large components 1/11, 1/12 by2 

(:} (2~)-'k(r) •• p(:) (2) 

1 The relativistic two-electron problem has been treated by 2 See, for example, S. M. Blinder, Advan. Quantum Chern. 2, 
K. S. Viswanathan, Proc. Indian Acad. Sci. A50, 1 (1959). 47 (1965), especially pp. 53-54. 
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in terms of the function 

k(r) = (1+ I [E+e4>(r)]/2mc2j)-I, (3) 

where E represents the nonrelativistic energy (rest 
energy subtracted) and 4>(r) is the electrostatic po­
tential. 

Accordingly, the expectation value of E can be 
written as 

E(R) = ['lr, (JC-mc2)'lr] 
4 4 

= L L (1/;i I JCij- OijmC2 I 1/;j)1 ('lr I 'lr), (4) 
i=1 j=1 

where JCij is the ijth element of the Dirac Hamiltonian 
(1). In application of (4), a self -consistency procedure 
is, strictly speaking, required since the operator de­
pends itself in E through k(r). In practice, however, 
because of the small magnitude of E relative to mc2, 

even a rough value of E in k (r) suffices. In this article, 
the expectation value formula (4) is applied to ap­
proximate spinor functions which are to be optimized 
in accordance with the variational principle. 

The approximate eigenfunctions were chose as linear 
combinations of spiniors related to the hydrogen-atom 
ground state. The spinor representing the relativistic 
ground state of a hydrogenlike atom with j=! and 
mj= +! (spin up) is of the form3: 

r 
e-ZTr'l-1 

'lr=const 0 , (5) 

l i[ (1-"I) I (1 +"1) ]1/2e-Zrr'l-1 cosO 

i[ (1-"1) / (1 +"1) ]1/2e-ZTrr-1 sin8ei </> 

provided that the polar axis is chosen coincident with 
the spin direction. In (5), "1= (1-a2Z 2) 1/2, where Z is 
the nuclear charge and a is the fine-structure constant 
(l/c in atomic units). The first component of (5) 
corresponds to a Is nonrelativistic atomic orbital 
(NRAO) with spin up, apart from the weak singularity 
at the origin. The third and fourth components have the 
form, respectively, of a po NRAO with spin up and a 
PI NRAO with spin down. 

As approximations to the relativistic ground-state 
molecular orbital for H2+, the following forms for the 
first component have been considered: 

1/;l=N[exp( -ra)rar-1+ exp( -rb) rb'l-l] , (6) 

1/;l=N[exp( -rra)ra'l-l+ exp( -rrb) rbr-l] , (7) 

and, in terms of prolate spheroidal coordinates p.= 
(ra+rb) I R, jI= (ra-rb) I R, 

1/;l=Nlexp[ -!R(rp.+~jI)](p.+jI)r-l 

+ exp[ -tR(rp.-~/J)](p.-jl)'I-I}. (8) 

3 See, for example, H. A. Bethe and E. E. Salpeter, Quantum 
Mechanics of One- and Two-Electron Atoms (Academic Press 
Inc., New York, 1957), Sec. 14. 



RELATIVISTIC EFFECTS IN CHEMICAL BONDING 2751 

TABLE II. Relativistic variational results for equilibrium internuclear separation. 

Function 

LCAO [Eq. (6) ] 

Finkelstein-Horowitz [Eq. (7) ] 

GuilJemin-Zener [Eq. (8) ] 

Exact solution 

• Reference 9: V=0.586507, =1.23803, R=2.00329. 
b Reference 10: V=0.60244, =1.3539, =0.9191 at R=2.0. 

R (a.u.) 

2.4928 

2.00329 

1.9978 

2.00 

These represent the relativistic analogs of the LCAO,4 
Finkelstein-Horowitz,5 and Guillemin-Zener6 functions. 
Since the Hamiltonian (1) commutes with j z, the com­
ponent of total angular momentum along the inter­
nuclear axis, the ground state of H 2+ is doubly de­
generate with mj= ±!. We need consider only the spin­
up component of the doublet. For this state, if;2=O. 
The small components are then determined by (2).7 
Using (4) to evaluate the energy expectation value and 
optimizing with respect to the parameters r and ~ 
the results summarized in Table I are obtained.s 

The corresponding nonrelativistic limits, approached 
as C-H:~) (or ~O), or by setting k(r) = 1, are also 
given. These agree well with recent recalculations 
based on the Finkelstein-Horowitz9 and Guillemin­
Zenerlo nonrelativistic wavefunctions. 

The relativistic contribution to the electronic energy 
is found to be approximately -7X1o-6 a.u. This is of 
the order of Ot2E, as expected for the first-order rela-

4 L. Pauling, Chern. Rev. 5;173~ (1928). 
I; B. N. Finkelstein and G. E. Horowitz, Z. Physik 48, 188 

(1928) . 
6 V. Guillemin and=C. Zener, Proc. Natl. Acad. Sci. U.S. 15, 

314 (1929). 
1 Choice of if; in this fashion ensures solutions corresponding to 

positive energy states for a Dirac particle. 
S All integrals were evaluated numerically in double precision 

using lOXlO Gaussian quadrature and checked by using a finer 
grid. 

• M. Geller, J. Chern. Phys. 36, 2424 (1962); W. J. Meath and 
J. O. Hirschfelder, ibid. 39, 1135 (1963). 

10 S. Kim, T. Y. Chang, and J. O. Hirschfelder, J. Chern. Phys. 
43, 1092 (1965). 

1.2380 

1.3544 

Nonrelativistic 
- V (a.u.) limit 

0.5648377 0.5648310 

0.5865123 0.5865065" 

0.9190 0.6024502 0.6026431b 

0.60263420 

C H. Wind, J. Chern. Phys. 42,2371 (1965) . 

tivistic correction to the energy of an electron in such a 
field. 

The approximate internuclear equilibrium separation 
and corresponding vibrational potential minimum for 
H 2+ can be obtained by minimizing 

V(R) = E(R) +R-l, 

with respect to R. These values are given in Table II 
along with the nonrelativistic limits and the results of 
the corresponding nonrelativistic calculations. 

The spinor representing the relativistic molecular 
orbital is effectively the symmetric linear combination 
of two hydrogen-atom spinors. The first component of 
the former, which gives the overwhelmingly dominant 
fraction of the binding energy, can be identified with a 
1sO"y bonding nonrelativistic molecular orbital (NRMO). 
Similarly, the third component can be associated with a 
PO"u antibonding NRMO and the fourth component with 
a p7ru NRMO.ll Evidently the 7r bonding of the fourth 
component (plus any relativistic enhancement of the 
bonding of the first component) outweighs slightly 
the 0" antibonding of the third component, thus making 
the relativistic H 2+ molecule slightly more stable. 
The relativistic effects operative in H 2+ are actually 
at a minimum, owing to the small nuclear charges; 
they should be considerably magnified in heavier mole­
cules. 

11 These have the same symmetry properties as the correspond­
ing components of the exact solution. 


