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presented in Table II. Comparison of the fre­
quencies listed in Table II with the Raman 
frequencies recently published by Rosenbaum, 
von Grosse and J acobson4 shows a general cor­
respondence in pattern in the range below 1200 
cm-I . The degeneracies present in the frequencies 
of Table II would be removed by terms in the 
potential energy involving the interaction of 
adjacent bonds. For results of quantitative sig­
nificance, such interactions should of course be 
included. 

For very long molecules distribution functions 
of the Blackman type for the high and low 
frequency branches can be obtained from Eq. 
(10) and employed in the calculation of the 
vibrational partition function of the molecule. 
Thus the frequency densities g+(v) and g_(v) 
would be 

1 (df+)-I g+(v) =- - , 
v dt 

(11) 
1 (df_)-l 

g_(v) =- - . 
v dt 

4 Rosenbaum, v. Grosse and Jacobson, J. Am. Chern. 
Soc. 61, 689 (1939). 

The distribution functions are rather complicated 
and are best presented graphically. This will be 
done at a later time. 

From the present discussion, it appears that 
the infinite chain treatment of polyatomic 
molecules has distinct possibilities as a method 
for determining the normal modes of long-chain 
molecules. With the inclusion of higher order 
interactions and three-dimensional branching to 
provide for the hydrogen atoms, it should give a 
rather good approximation for molecules of 
moderate length. For short molecules, it can of 
course only serve as a method for the rough 
location of the frequencies. However, it seems 
possible that even here, if combined with 
perturbation theory, it might serve as the first 
step in a process of successive approximation. 
The frequencies which it gives are the exact 
frequencies of the finite segment under the 
influence of a known perturbation due to forces 
acting on its terminal atoms from the neighboring 
segments of the infinite chain. 

In conclusion, the writer wishes to thank 
Professor G. B. Kistiakowsky for some in teresting 
discussions which led to this investigation. 
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The theory of the semi-rigid rotator developed by Wilson 
and Howard has been applied to the axial molecules YXa 
and ZYXa. It is found that the change in rotational energy, 
6W, caused by the centrifugal distortion, can be expressed 
in terms of the quantum numbers J and K and as a function 
of the potential constants and the molecular dimensions. 
The formula is evaluated explicitly for NHa, and NDa, and 
for the former is, in cm-I : 

1i:~K = -O.000625J2(J + 1)'+O.000950K2J(J + 1) 

+O.000799J(J + 1) -O.000630K4-0.00189K2. 

The pure rotation lines of NHa and of NDa are calculated 

RECENTLY two interesting papers by Wilson 
and Howardl and by Wilson2 have appeared 

--=--:::-~ 
1 E. B. Wilson and J. B. Howard, J. Chern. Phys. 4, 260 

(1936). 
2 E. B. Wilson, J. Chern. Phys. 4, 313 (1936). 

and compared with the observations of Wright and Randall, 
and of Barnes. The agreement is very satisfactory. The 
theory predicts that the rotation lines are multiple. The 
spacing of this fine structure was too small to be observable 
in the region mapped by Wright and Randall but should 
be possible to detect in the case of the higher members of 
the rotation series. 

We have also calculated the pure rotation spectrum of 
PH, by using Howard's approximate values of the di­
mensions and force constants of this molecule. The agree­
ment with experimental values is as good as could be 
expected from such rough data. 

which deal with the vibration rotation energy 
levels of polyatomic molecules. In these papers 
there is developed, along general lines, the 
effect of the centrifugal force stretching upon the 
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rotational levels. The experimental existence of 
such an effect has been observed in the far infra­
red for NH3 and PH 3 by Wright and RandalP 
who found that the pure rotation lines of these 
molecules are not linearly spaced-as must be 
expected for a rigid rotator-but that their 
positions are given by a formula of the type: 
v~AJ -BP. The constant B is very small, indi­
cating that the centrifugal force stretching, 
although clearly observable, is a higher order' 
effect. Similar observations have been made by 
Barnes4 on ND3 and have been confirmed for the 
molecule NH3 by the measurements of Houston 5 

on the Raman spectrum of that molecule. 
We propose to apply the theory developed by 

Wilson and Howard to tetratomic and penta­
tomic axial molecules and to obtain explicit 
expressions for the change in the rotational 
energy. We shall show that these expressions are 
in very good agreement with the available 
experimental data. 

Howard and Wilson have derived a general 
expression for the Hamiltonian of a semi-rigid 
polyatomic molecule which is rather complicated. 
However, they show that if one is interested only 
in the rotational distortion of the nonvibrating 
molecule, the expression may be considerably 
simplified. Under these circumstances the energy, 
which is purely rotational and therefore suitable 
for calculating the pure rotation spectrum, takes 
the form, 

WR=tL:MaB(O)P aPB 
a(3 

The indices a, (3, /" ;; represent the directions in 
a rotating system of rectangular coordinates x, y, 
z, which will be defined in the next paragraph. 
The P's are matrices giving the components of 
the total angular momentum of the molecule 
along the coordinate axes. The index k denotes a 
normal mode of vibration and Ak is connected to 
the normal frequency of vibration in the usual 
way, Ak=4rvk2. 

The Ma(3(k) are determined by the moments and 

3 N. Wright and H. M. Randall, Phys. Rev. 44, 391 
(1933). 

4 R. B. Barnes, Phys. Rev. 47, 658 (1935). 
6 W. V. Houston, Phys. Rev. 44, 903 (1933). 

products of inertia. Consider a rotating coordi­
nate system whose origin is fixed at the center of 
gravity of the molecule, and whose axes are 
defined by the conditions that the angular 
momentum of the molecule with respect to them 
shall be zero at all times. The moments and 
products of inertia A, B, C. D, E and F relative 
to these axes are now calculated. Since the mole­
cule is only semi-rigid, they will evidently be 
functions of the mutual displacements of the 
particles as well as of the equilibrium distances. 
It is convenient to express them in terms of the 
normal coordinates which are designated by 
Ql' .. Qn. A determinant is now built from the 
moments and products of inertia. 

A -D -F 

Ll= -D B-E 

-F -E C 

Ma/3 is the a{3 cofactor of Ll divided by Ll itself. 
/J.a(3(O) is its equilibrium value, that is, /J.a{3 in 
which the normal coordinates Ql' .. Qn have all 
been set equal to zero. Thus the first term of 
Eq. (1) is the familiar expression for the rota­
tional energy of a rigid molecule. The first 
derivative of /J.a8 with respect to Qk evaluated at 
the equilibrium position is given the symbol 
Ma(3(k) • 

From the dimensions of the molecule we shall 
calculate the /J.a(3(k) which are of course constants; 
then find a representation for the P's which 
satisfy the exchange rules but which in general 
will not make W diagonal. The final step will be 
to diagonalize Wand thus obtain the eigen­
values of our problem. 

THE AXIAL MOLECULE YX 3 

Consider the molecule YX3. The geometrical 
configuration is such that the atoms occupy the 
corners of a regular pyramid, the Y atom at its 
vertex and the three X atoms at the corners of 
the equilateral triangular base. See Fig. 1. 

The moments of inertia A, Band C and the 
products of inertia D, E and F of such molecules, 
may be readily calculated to the approximation 
in which only first powers in the displacements of 
the atoms from their equilibrium positions are 
retained. 
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,tr 
I 

Fw.1. 

A =Ao-2mcl(Zt+Zz+za-3z4}-maly'3(Y2-YS), 

B =BQ-2mcl(zl+Z2+Za-3z4) -mal(2xl-X2-X3), 

c= Co-maly'3(Y2-YS) -mal(2xl-X2-Xa), 

y'3 
D= -~ma(2YI-Y2-Y3) --mal(x2-Xa), 

2 

The coordinates XI, X2, Xa, and X4 are the dis­
placements from the equilibrium positions along 
the X direction of the three X atoms and the Y 
atom, respectively; Y1, Y2, Y3, and Y4 are similar 
displacements in the y direction and Z1l Z2, Z3, 

and Z4 along the Z direction. Ao and Co are the 
equilibrium values of the moments of inertia. 
Ao is the moment of inertia about an axis through 
the center of gravity of the molecule and per­
pendicular to the geometrical axis of symmetry. 
Co is the moment of inertia about this axis of 
symmetry. Cl is the distance of the center of 
gravity of the molecule from the plane of the 
X atoms, al is the distance of the X atoms from 
the symmetry axis. m is the mass of an X 
atom. 

These expressions may be considerably simpli­
fied when the symmetry of the molecule and the 
conservation of linear and angular momenta are 
taken into account. A coordinate system which 
does this will now be introduced. That one needs 
only six coordinates is evident from the fact that 
the YXs molecule has twelve degrees of freedom, 
three of which belong to the translation of the 
molecule, and three to its rotation. Hence only 
six coordinates are necessary for the six internal 
degrees of freedom of the molecule. The six 

! 
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a 

" 
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FIG. 2. 

coordinates we shall use are illustrated in Fig, 2. 
The coordinate z gives the displacement of the 
Y atom with respect to the center of gravity of 
the X atoms, which takes place along the geo­
metrical axis of symmetry. The coordinates X or y 
measure the displacement of the Y atom from 
a line drawn perpendicular to the plane of the 
X atoms and through their center of gravity. 
The angle I), which describes the tipping of the 
base with respect to the Y atom, is determined by 
the conservation of angular momentum, say 
about an axis through the center of gravity of 
the X atoms and perpendicular to the plane of 
the paper in Fig. 2c. The coordinates ~, 'Yl and r 

- are indicated in Fig. 2b. They are so chosen that 
the actual displacements are given by ~/ y'3, 
'Yl/ y'3 and i/ y'3. Four of these coordinates x, y, 
~, 'Yl are the same as those used by Johnston and 
Dennison6 and are discussed in their paper. 

In terms of the six coordinates thus intro­
duced, A, B, C, D, E and F assume a simpler 
form. 

A =Ao+6mclz+y'3mal(r+~), 

B=Bo+6mclz+y'3mal(r-~), 

C= Co+2y'3mal'\, 

D=y'3mal71. 

E=6mcl(Co/2A o)y, 

F=6mcl(Co/2A o)x. 

To introduce normal coordinates it is necessary 
to set up the usual determinant of the coefficients 
in the poten tial and kinetic energies of the 
molecule. 

6 M. Johnston and D. M. Dennison, Phys. Rev. 48, 868 
(1935). 
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I t is well known that axially symmetrical 
molecules such as YXa, possess four normal fre­
quencies which are separated into two sym­
metry classes, two parallel and two perpendicular 
frequencies. Since these belong to different 
symmetry classes, the Hamiltonian representing 
the vibrational motion will fall into two parts 
with no interaction terms. Thus one really has 
two distinct problems. The parallel frequencies 
are given by the coordinates z and S- while the 
motions corresponding to the perpendicular fre­
quencies are given by x, y, ~ and 7). The kinetic 
and potential 'energies are then 

2TII =/-IZ2+mt2, 

2 VII =az2+bs-2+2czL 

2TJ.=mK(j;2+y2) +ma2+?i), 

2 VJ.= a(x2+y2) +~(e+7)2) +2'Y(x~+y7), 

where 

3mM Co /-I 
/-1= and K=---; 

3m+M 2Ao m 

a, b, c, a, {3 and 'Yare the potential constants. 
The determinants which, when set equal to 

zero, yield the normal frequencies are 

1 J.1.~-a -c!_o 
-c m>.-b - , 

The first gives the parallel frequencies and the 
second, the doubly degenerate perpendicular 
frequencies. The relations between x, y, z, ~, T1, S­
and the normal coordinates QI, Q2, Qa, Q4, Qs and 
Qs follow immediately, 

x=A 2Q2+A 4Q4, ~=B2Q2+B4Q4' 

y=AsQs+AsQs, 7)=BsQs+BsQ8, 

z=AIQI+AaQa, S-=B1Ql+BaQa. 

The subscripts are so chosen that the odd ones 
correspond to the parallel frequencies while the 
even subscripts belong to the perpendicular 
frequencies. The coefficients in these transforma­
tion equations are the normalized cofactors of 
the determinants. 

mh;-{3 
A·----------------
,- (mK(mhi-.B)2+m'Y2)~' 

i=2, 4, 6, 8, 

c 
Bj = , 

(/-ICm>'i- b)2+mc2)1 

j=1,3. 

Inasmuch as the motions of the atoms in the 
plane perpendicular to the axis of symmetry are 
degenerate, A 2=A6, A 4=Ag, B2=B6 and B4=Bs. 

The moments and products of inertia A, B, C, 
D, E and F may now be written in terms of the 
normal coordinates and the determinant ~ set up. 
Since all powers of the displacements above the 
first are rejected in our calculations, the determi­
nant and all ,its co factors may be readily ex­
panded and the Jt,,~(k) evaluated. If the coefficients 
of the matrices PaP~P"lP6 are designated by 
T a~"I6, that is, 

their values are 

Tyyyy= T,l.xxx, 



DISTORTION OF AXIAL MOLECULES 513 

'T zxz:.r = T yzyz, 

Txxzx= - TXUyzJ 

The above expressions constitute all the coeffi­
cients which are different from zero. The per­
turbation which we are calculating is given by 
considering all the possible permutations of a, {J, 

'Y and 0 in such terms as T a~"aP "p ~P "P". The 
PaP {:IP "'(Pa may be collected into six groups, each 
of which has the same coefficient. Thus: 

T x:m {P:zP",P xP x+ P yP yP yPy+ P ~P xP yPy 

+PyPyPxP",l, 

Txx •• I P",PzP zP .+P.P.P xPx+PYP!lP zp. 
+Pzp.pypy }, 

Txyxy I P",P yP ",P y+P yPXP yP x+P xPlIP yP" 

+ P "PxP xPII- 2P,PxPlIP Y - 2P yp yF.Px } , 

TYZlIZ{PIIP,P yp.+ P ,PIIP zPy+PyP.P.P y 

+ p.pyPyp. + pzp,P.p" +PxPzP",P" 
+p",p.P,p.,+p,p",p.P.J, 

TX!lYz {P XP!lP liP. + P "P yP.P y+ P yp ",P yP z 

+ PyPXP ,P y+PyP .Pxp lI+ PIIP ,P uPx 

+ P zPlIP"Py+P zP uPIIP"+PYP yP",P z 

+ PyP uP .Px+P .PXpyPy+P xP .PIIP 11 

- P.xP xP.P x- P:tP ",P xP z- P ",p.p ",P '" 

-PzPxPxPxl· 

All the other PaP{:IP"fP.'s have vanishing coeffi­
cients. Now by means of the well-know,n com­
mutation rules for such matrices, 

p2 commutes with all three 

PXPy-PyP",= (h/i)Pz, 

pyPZ-p.py= (ft/i)Px, 

PzPx-p",p.= (ft/i)Py , 

the. above may be reduced to much simpler 
matrices: 

Tzx• z(2pZP.2 - 2P .4), 

T",yx ll(Sh2P .2- 2h2P2), 

T YZy.( 4p2P.2 - Sh2P l-4P .4+ h2 P2), 

T xylI.(8Py2 P.P x+8P",P zPy2 - 2p2 pxp.- 2p2p zP '" 

-4P.2P",+6Pz2p",p.+6PzPxP2_4P",p.2). 

The eigenvalues of these matrices can now be 
calculated. There are many matrix representa­
tions which will satisfy the four matrix equations 
arising from the commutation rules. One such 
represe~tation has the fonowing nonvanishing 
elements: 

This representation is chosen because in it the 
angular momentum P z and the square of the 
total angular momentum p2 become diagonal 
matrices. In this representation the W matrix 
has the following nonvanishing elements (in 
waves per em) : 

li
2 

( 1 1) li
2 

--J(J+l)+ --- _<-K2 
2A ohcL Co Ao hCL 

-P1J2(J + 1)2+2(P1-Pa-2P5)K2J(J +1) 

+(2P4-Ps)J(J+l) - (P 1+P2 -2Pa-4P5)K4 

-5(P4 - P 5)K2 (2) 
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and the off diagonal elements 

JK JK 
WJ,K±I WJ,K±S 

which are of the same order of magnitude as the 
last five terms in the expression above. h is 
Planck's constant, CL, the velocity of light and 
the P's are defined by 

Txxzzn4 

P s=---, 
8hcL 

It may be shown that to a first-order approxi­
mation the off diagonal elements can be neg­
lected. To this approximation, therefore, the W 
matrix is diagonal with elements given by ex­
pression (2). 

Thus far the P's have been given in terms of 
the normalized first minors of the determinants 
formed by the coefficients of the kinetic and 
potential energies. One may show, however, 
that: 

A12 AS2 b A22 A42 fJ 
-+-=--, -+-=--, 
Al As ab-c2 A2 A4 afJ - "(2 

BI2 BS2 a B22 B42 a 
--+-=--, -+-=--, 
Al As ab-c2 A2 A4 afJ - ')'2 

AIBI A3B3 C 
--+--= ----, 

Al A3 ab-c2 

A2B2 A4B4 ')' 
-+-=---, 

A2 ~'4 a(3-')'2 

so that the P's have the more easily calculable 
form: 

Expression (2) is perfectly general insofar as 
it will hold for any ammonia-like molecule as 
for example NDa, PH 3, PD3, AsH 3, AsD 3, etc. 
The numerical calculation involves the dimen­
sions of the particular molecule and its force 
constants. These are often obtainable from the 
vibrational spectrum, and the fine structure of 
these vibrational bands. The dimensions of both 
NH 3, and ND3 are well known from the work of 
Migeotte and Barker,7 Wright and Randall ,3 

Dennison and Uhlenbeck. 8 The force constants 
for these two molecules have also been evaluated 
by Migeotte and Barker but in coordinates which 
are different from ours. The transformation to 
our coordinates is, however, straight forward. 

The various constants for NH3 are: 

a=5.46X105 dynes/cm, 
b = 5.04X 105 dynes/cm, 
c=4.23 X 105 dynes/cm, 

Ao=2.782XlO-4o g em2 , 

al=0.9S0XlO-8 em, 
a=10.16XI05 dynes/em, 
(3=3.54X105 dynes/em, 
,),=3.67X105 dynes/em, 

Co = 4.497 X 10-40 g em2, 
CI = 0.296 X 10-8 em. 

The constants for N03 are identical with those 
for NHa except that Ao= 5.397X 10-40 , Co= 8.985 
XlO-40 and cI=0.27SXIO-8. These values give 
for oW, the change i,n the energy due to the 

7 M. V. Migeotte and E. F. Darker, Phys. Rev. 50, 418 
(1936). 

8 D. M. Dennison and G. E. Uhlenbeck, Phys. Rev. 41, 
313 (1932). 
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rotational distortion: 

oW 
-= -0.000625J2(J+l)2 
hCL 

+0.000950K2 J(J + 1) 

+0.000799J(J + 1) 

-0.000630K4-0.00189K2 (3) 

and for ND 3, 

oW 
-= -0.000176J2(J + 1)2 
hCL 

+0.000261K2J(J + 1) +0.000226J(J + 1) 

-0.000163K4-0.000540K2. (4) 

The pure rotation frequencies are then ob­
tained by means of the selection rules. For all 
ammonia-like molecules these are: 11K = 0 and 
I1J = ± 1. The frequencies are then given by: 

h2 

vJJ- 1 =---J +0.00160J 
AohcL 

- 0.00250J3+0.00190K2 J (5) 

for NH3 and 

h2 

VJJ- 1 =--J +0.000452J 
AohcD 

-0.000704J3+0.000522K2J (6) 

for ND3. 
It is evident from the last term in (5) and (6) 

that the far infra-red lines of these molecules 
have a fine structure. For NH3 the spacing is 
given by 0.00190J(2K -1) where K is taken for 
the larger component. This spacing is much too 
small to be observed for lines with J val~es less 
than 15. However, their presence will affect the 
position of the peak of any experimentally ob­
served line. Such a peak will be roughly at the 
center of gravity of the fine structure com­
ponents. Therefore, in order to compare the 
theoretical values with those observed, one must 
consider the intensity pattern of a given line and 
determine its center of gravity. 

The rotation lines of NH3 consist of close 
doublets which are caused by the existence of a 
double minimum for the N atom. This complica-

tion must be considered In calculating the in­
tensity patterns. 

The double minimum problem has been treated 
by several authors.s. 9 It is shown that in the 
pure-rotation spectrum there are two vibrational 
energy levels for each value of J, one of these 
belongs to the symmetric solutions the other to 
the antisymmetric. The first are commonly 
designated by a and the latter by (3. The selection 
rules are such that only transitions from a to 
(3 or (3 to a are allowed. The doublet member on 
the long wave-length side corresponds to the (3 
to a transition while the other arises from the a 
to (3 transition. The doublet separation for the 
case of pure rotation will be just twice the 
separation of the a and (3 levels in the zeroth 
vibrational state and is independent of J. 

The intensity formula has been given explicitly 
by Dennison and Hardy9 and may be immedi­
ately adapted to our case. 

J2-K2 
I =AVK,K[X] e-u(J2+J)-u~K2(I_e-hv!KT). 

J 

Since only the shape of the line, rather than its 
absolute intensity is of interest, we may reject 
all multiplicative constants, thus: 

I~vK,K[x ](J2- K2)e- u,9K2(I_e-hv!KT), 

(J=.h2/2AoKT and (3= (Ao/Co-l). [x] is the 
weight factor which has the following values: 
if the component under consideration is due to a 
transition for which K = 0, J even, and the final 
state a, then [x] = 0; if the final state is (3, then 
[x] = 2. If J is odd, then the con verse is true. 
For K ~O and not a multiple of 3, then regardless 
of whether the final state is an a or a (3 state, 
[x]=l. If K is a multiple of 3, then [x]=2 for 
both a and (3 final states. 

As an example, the results of the calculation 
will be given in detail for J = 7. In Table I the 
( -) sign designates the long wave-length com­
ponent of the doublet. The exact position of the 
maximum when such lines are unresolved is, of 
course, difficult to predict. It was assumed that 
it is given by the center of gravity of the com­
ponents. \Ve have, therefore, 11+=0.187 and 

9 Dennison and Hardy, Phys. Rev. 39, 938 (1932). 
Dennison, Rev. Mod. Phys. 3, 208 (1931). F. Bund. Zeits. 
f. Physik 43.805 (1927). 
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LL=0.144 where the ~'s are measured from the 
component for which K=O, and hence from the 
position where the maximum would be if there 
were no JK2 term. The experimental curve for 
this line as observed by Wright and Randall 
together with the theoretically calculated com­
ponents are shown in Fig. 3. For J = 6, ~+ = 0.074 
and ~_ = 0.103 and for J = 5, the third line ob­
served by Wright and Randall, ~+ = 0.064 and 
~_=0.042. 

The exact frequencies may now be calculated 
and compared with the observed frequencies. 
Since the doublet separation is independent of J, 
we take the average value, i.e., 1.32 em-I. The 
single adjustable parameter, the Ao moment of 
inertia, may be adjusted to fit anyone of the 
frequencies and the rest then calculated. With 
h2jAohcL= 19.890 we have the results shown in 
Table II. 

This comparison together with Fig. 3 which 
shows that the observed curve fits the calculated 
components well, indicates that the theory is 
adequate for the explanation of this spectrum. 

Barnes4 has mapped the far infra-red spectrum 
of NH3 for J values up to 12, but unfortunately 
the resolving power is not as good as that ob­
tained by Wright and Randall and the results, 
therefore, not quite so accurate. The doublet 
separation is not in evidence. We have calculated 
a few of these lines to see how well our calcula­
tions fit the observed lines. In doing so, the 
intensity patterns of the two members of the 
doublet were superimposed, and the center of 
gravity of the resultant pattern taken as the 
position of the peak of the line. (Table III.) 

The pure rotation spectrum of ND3 is com­
pletely determined by the data already known 
from NH 3• The dimensions and the force con­
stants are the same for both molecules and the 

TABLE I. 

(J2-K2) [xl 

K 0.0019 JK2 (-) (+) B.F. L 1+ 
----

0 0.000 98.0 0.0 1.000 98.0 0.0 
1 0.013 48.0 48.0 1.019 48.9 48.9 
2 0.053 45.0 45.0 1.076 48.4 48.4 
3 0.122 80.0 80.0 1.180 94.4 94.4 
4 0.214 33.0 33.0 1.343 44.4 44.4 
5 0.324 24.0 24.0 1.587 38.0 38.0 
6 0.480 26.0 26.0 1.947 50.6 50.6 

1~6 141 

FIG. 3. 

moments of inertia may be calculated from the 
mass of deuterium and the dimensions of the 
molecule. The frequencies are given by: 

v /-1 = 10.260J +O.000452J 
- 0.000704J3+0.000522K2 J. 

Barnes has mapped the ND3 lines with the 
same arrangement he used for NHa and pre­
sumably with the same accuracy. In Table IV 
some of the calculated lines are compared with 
the experimental values. 

It is perhaps of interest to note that the usual 
procedure of fitting a cubic expression such as 
AJ -BJ3 to the observed frequencies gives very 
nearly the correct values. From theoretical 
considerations, however, a JK2 term should be 
included. It turns out that the center of gravity 
of the components is roughly given by one-third 
the coefficient of the JK2 term multiplied by J3 
so that the theoretical values will approximately 
follow a simple cubic expression. The divergence 
from this siinple formula will, of course, become 
evident when J values are high enough to spread 
out the fine structure components.' 

We have also calculated the far infra-red 
spectrum of PH 3, four lines of which have been 
mapped by Wright and Randall under high 
resolving power. These calculations suffer, how­
ever, from the fact that the infra-red frequencies 
of this molecule are not well known so that 
neither the dimensions nor the force constants 
can be determined with any degree of accuracy. 
We have taken the values as given by Howard. lo 

10 J. B. Howard, J. Chern. Phys. 3, 207 (1935). 
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He calculates the force constants on the assump­
tion that the molecule is of the valence type. 
Under this assumption only two fundamental 
frequencies are needed to determine the two 
force constants, which he calls K and H. K is the 
constant which gives the resistance to the 
stretching of the P - H bond and H is the 
constant which gives the resistance to the defor­
mation of the H-P-H angle. The values are: 
K=3.09X105 and H=0.34X105 dynes/cm. The 
dimensions of this molecule may be estimated 
and give for the moment of inertia, A o, 6.221 
X 10-40 , and for Co, 7.73 X 10-40 • The dimension, 
al, is 1.24X10-8 and C1 is 0.657 X 10-8• With 
these values one may deduce the general force 
constants, a, b, c, and a, {3, -y, from the constants 
K and H. They turn out to be: 

a=3.63X105 dynes/cm, 
b=7.39X105 dynes/cm, 
c=3.26X10s dynes/cm, 
a=3.97X10s dynes/cm, 
(3= 1.61 X lOs dynes/cm, 
-y=1.53XlOs dynes/cm. 

The pure rotation energy of PHa is then given by: 

- 0.000123J2(J + 1)2+0.000155K2J(J + 1) 

+0.000104J(J + 1) -0.000105K4- 0.00020SK2. 

Since the selection rules are identically the 
same as those for NH a, the change in the energy 
due to the centrifugal distortion is, in waves 
per cm: 

~jI/-1 = 0.00020SJ +0.000310JK2-0.000492J3. 

It must be pointed out that neither the 
fundamental frequencies nor the dimensions are 
really well established for PHa. The above 
formulae are therefore somewhat inaccurate. 

TABLE II. 

J FINAL CALC. OB5. DEY. 

5 98.52 98.53 +0.01 
5 99.86 99.83 -0.03 
6 118.25 118.22 -0.03 
6 119.54 119.58 +0.04 
7 137.86 137.88 +0.02 
7 139.23 139.21 -0.02 

They may, nevertheless, serve well for locating 
other pure rotation lines of phosphine. We have 
calculated one of the lines which have been 
observed by Wright and Randall (J = 13) and 
obtained 114.66 as against the observed value, 
114.S4; a fair check considering the inaccuracy 
of the data used. 

THE ZYXa MOLECULE 

There are a number of molecules of the ZYXa 
type whose infra-red spectrum has been the 
subject of considerable study. Since all such 
molecules have a permanent electric dipole 
moment, they have a far infra-red spectrum. 
We propose to extend our calculations to such 
molecules and in particular evaluate numerically 
the spectrum of the methyl halides. 

The geometrical configuration of the ZYXa 
molecule is indicated in Fig. 4. The YXa group 
of atoms in this molecule has the same geo­
metrical configuration as the YXa molecule 
discussed in the previous section. The Z atom is 
located along the axis of the YXa pyramid. 

In a manner similar to that used for the YXa 
molecule, we may set up the moments of inertia, 
A, E, C, and the products of inertia, D, E, and 
F, in terms of the equilibrium positio.fis of the 
atoms and of their displacements from equi­
librium. The internal coordinates are then 
introduced by means of the conditions for the 
conservation of linear and angular momenta. 
For the conservation of linear momentum: 

M 2zS+ M1z4+3mz123 = 0, 

M2XS+M1x4+3mx123=0, 

M 2Y5+ M 1Y4+3mY123 = 0, 

and for the conservation of the angular mo­
mentum: 

M2aOX5+M1boX4+iCoO=0, ao=Ca+Cl, 

M2aoY5+M1boY4+tCOO=0, bO=C1- C2. 

TABLE III. 

J FINAL CALC. OB5. DEY. 
---

8 158.11 158.33 -0.22 
9 177 .58 177.69 -0.11 

10 197.06 196.93 +0.13 
11 216.32 216.61 -0.29 
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TABLE IV. 

J FINAL CALC. Oas. DEV. 
~~-~~ 

10 102.08 102.32 -0.24 
15 152.36 152.02 +0.34 
16 162.13 162.12 +0.01 
17 172.01 172.10 -0.09 
18 181.88 181.99 -0.11 
19 191.79 192.80 -1.01 
20 201.59 202.10 -0.51 

In the above equations M 2, Ml and m are the 
masses of the Z, Y and the X atoms, respectively; 
Cl is the equilibrium distance of the center of 
gravity of the three X atoms from the center of 
gravity of the molecule; C2 and C3 are the equi­
librium distances of Y and Z atoms, respectively, 
from the center of gravity of the molecule; 
xs, Ys, Z5 are the displacements of the Z atom 
from equilibrium, X4, Y4, Z4 that of the Y atom 
and X123, Y123, Zl23 are the displacements of any 
one of the X atoms from its position of equi­
librium. () is the angle between the perpendicular 
to the plane of the X atoms and the line drawn 
through the center of gravity of the X atoms, 
the Y and the Z atoms. (See Fig. 5.) Co is, as 
in the case of NH 3, the moment of inertia about 
the axis of symmetry when the molecule is 
considered rigid. 

The coordinates which we introduce give the 
displacement of Z with respect to Yand Y with 
respect to the center of gravity of the X atoms. 
Together with coordinates ~, 1J and S, already 
described, we have the nine coordinates necessary 
to describe the internal motions of the molecule. 
The new coordinates are determined by: 

thus 

M2 M l+M2 
X123= --p-----x, 

L L 
M2 3m 

X4=--P+-x, 
L L 

with similar expressions for Yand Z. 

2 
()= --(M2c3P+3mclx}, 

Co 

here ~=M2+Ml+3m and ~'=Ml+3m. 
The moments and products of inertia ex­

pressed in these coordinates assume the following 
simple form: 

A =Ao+6mclz+2M2c3r+3mal(s+~), 

B =Bo+6mclz+2M2c3r+3mal(s- ~), 

C= CO+6mals, 

E = 6mclY+ 2M2C3q, 

F= 6mclX+2M2C3P. 

The coordinates P and x or q and Y suffer the 
disadvantage of depending on the masses rather 
than on the geometric properties of the molecule. 
We therefore introduce the coordinates Xl, X 2 

and Y l , Y2 as illustrated in Fig. 5. 

ao-bo 
Xl=p----x, 

bo 

ao-bo 
Yl=q---y, 

bo 

Y2=y-bo(). 

When these relations are solved for p, x, q and y 

and the values substituted in E and F, they 
become: 

The normal coordinates are introduced by means 

*' , 1. 

<8 __ L'X_> 

"j;. 0. 1 ;(. 

I 

I X 
L 

FIG. 4. 
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of the usual determinant of the kinetic and 
potential energies. Just as in the case of NHa 
the Hamiltonian for the ZYXa molecule splits 
up into two parts, one giving the motions 
belonging to the parallel bands and the other 
those giving the perpendicular bands. 

The kinetic energy expressions for the parallel 
vibrations are: 

and for the perpendicular: 

Since the expressions for the y direction are 
always identical with those given above for the 
x direction, we shall consistently omit them 
where no ambiguity exists. 

Together with the expressions for the potential 
energies these may be written in terms of the 
coordinates described above. 

and for the perpendiculars: 

2 TJ. =a22X l2+ a44X 22+ 2a24X IX 2+3m~2, 

2 VJ. = aX12+{JX22+'Y~2+2QXlX2+2eX 1~+2'PX2~. 

The constants a, b, c, d, e, j, a, (J, 'Y, 0, e and 'P 
are the usual force constants of the molecule. 
The evaluation of these constants is the subject 
of another paperY The other constants are as 
follows: 

al1=--, a22=----------
~ 

3m(Ml+M2) 
aaa=-----

(Ao- Co/2)Co/2 
a44=------

A obo2 

M2(3maO+ Mlao - M l bo)Co/2 
a13=--, a24=--------

~ 

FIG. 5. 

ordinates is given by: 

z=A lQl+A aQ3+ A 5Q5, 

X 2=A 2Q2+A 4Q4+A 6Q6, 

t=B 1Ql+BaQa+B5Q5, 

~=B2Q2+B4Q4+B6Q6, 

r = DlQl + DaQa+ D 5Q5, 

Xl =D2Q2+D4Q4+D6Q6. 

The coefficients for Y l , Y 2 and TJ are identical 
with those for X 1, X 2 and ~. 

The coefficients AI· .. D 6 are the normalized 
first minors of the following determinants. 

For the parallel frequencies, 

-e al1A-a aIaA-d 

a13A-d a33}..-b -j =0, 

-e -j 3m}..-c 

and for the perpendiculars: 

a24).. - 15 a44}..- {J - 'P = o. 
- E - 'P 3mA - 'Y I 

The first minors of these determinants are: 

Ui= (a33e - a la!)}..i+dj-be, i=1, 3, 5, 

Vi= - {(alae-al1f)}..i+aj-de}, 

j=2, 4,6, 

Once the kinetic and potential energies are V;= - {(a24e- a22rp)}..i+ a rp-Qe}, 

known, the transformation to the normal co- W j = (a22a44- a242)}..i2 

11 Succeeding paper by the authors. - (a22{J+a44a - 2a240)}..i+a{J - 02. 
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The normalized first minors are then: 

Vi 
Ai=-Di' 

Ui 

Wi 
Bi=-Di, 

Ui 

Comparison with the NH3 case shows immedi­
ately that the matrices for this type of molecule 
fall into the same groupings. The coefficients are, 
of course,' different and more complicated for 
numerical evaluation. For the same reasons as 
have been given for the YX3 molecule, the 
energy matrix, including the rotational distortion 
is diagonal to the order of approximation used 
here. The rotational energy levels are then given 
by an expression which formally is identical 
with (2). The P's, however, are now given by: 

(
AlBl A3B3 A5B5) 

+4alcl --+--+--
Al A3 As 

The numerical calculation of the P's turns out 
to be rather involved since it seems to be 
impossible to reduce them to expressions as 
simple as those for ammonia-like molecules. By 
using the dimensions and force constants dis­
cussed in the succeeding paper we obtained the 
values given in Table V. 

The change in the rotational energy levels in 
these methyl halides due to the centrifugal force 
stretching may then be immediately written as 

WJKJK /i2 (1 1)/i2 

--= J(J+1)+ --- _K2 
hCL 2A ohcL Co Ao hCL 

for FCH 3, 

-4.34X 1O-7J2(J+l)2 

+1.45 X 10-6K2J(J + 1) 

-3.23 X 10-6J(J+ 1) 

-7.02 X 1O-4K4+1.67 X 1O-5K2 

/i
2 

( 1 1) /i
2 

--J(J+1)+ --- _K2 
2A ohcL Co Ao hCL 

-1.14 X 1O-7J2(J + 1)2 

+O.976X 10-5K2J(J+ 1) 

-1.71 X 1O-6J(J+1) -7.52 X 1O-4K4 

+0.861 X 1O-5K2 
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107 P, 
10' P2 
lOs Ps 
108 P4 
107 p. 

for ClCH a• 

TABLE V. 

FCH. CICH, HrCH, 

4.34 1.14 0.30 
6.88 7.43 8.46 

-13.70 -8.23 -4.71 
10.75 1.04 0.22 
34.46 17.32 6.94 

-O.30X 10-7J2(J+1)2 

+0.670X 1O-5K2J(J+1) 

-0.690X 1O-6J(J +1) 

ICH. 

0.38 
10.83 

-6.18 
0.096 
5.30 

-8.52 X 1O-4K4+0.346 X 10-5K2 

for BrCH a. and 

h
2 

( 1 1) h
2 

--J(J+1)+ --- _K2 
2A OhCL Co A 0 hCL 

- 0.38 X 10-7 J2(J + 1)2 

+0.832 X 10-5K2J(J +1) 

-0.528X 10-6J(J+1) 

-10.93 X 1O-4K4+0.264 X 10-5K2 

for ICH a• 
Applying the selection rules which are AJ = 1. 

AK = 0 we obtain the following rotational 
frequencies. 

h2 

V JJ-l =--J - 6.46 X 10-6 J 
AohcL 

for FCH a• 

h2 

vJJ-1=--J -3.42 X 10-6J 
AohcL 

for ClCH a• 

h2 

vJJ-1=--J -1.380X 1O-6J 
AohcL 

for BrCH a• and 

h2 

-1.20X 1O-7J3+1.340X 1O-5K2J 

v JJ-l =---J -1.056 X 10-6 J 
4 0hcL 

for ICB a. 

Unfortunately the pure rotation spectra of 
these molecules have not as yet been mapped so 
that comparison with experimental values must 
be left to the future. 


