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Secondary breakup of axisymmetric liquid drops. Il. Impulsive acceleration
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The secondary breakup of impulsively accelerated liquid drops is examined for small density
differences between the drops and the ambient fluid. Two cases are examined in detail: a density
ratio close to unity and a density ratio of 10. A finite difference/front tracking numerical technique

is used to solve the unsteady axisymmetric Navier—Stokes equations for both the drops and the
ambient fluid. The breakup is governed by the Weber number, the Reynolds number, the viscosity
ratio, and the density ratio. The results show that Weber number effects are dominant. In the higher
density ratio caseny/p,= 10, different breakup modes—oscillatory deformation, backward-facing
bag mode, and forward-facing bag mode—are seen as the Weber number increases. The
forward-facing bag mode observed at high Weber numbers is an essentially inviscid phenomenon,
as confirmed by comparisons with inviscid flow simulations. At the lower density rajifp,

=1.15, the backward-facing bag mode is absent. The deformation rate also becomes larger as the
Weber number increases. The Reynolds number has a secondary effect, changing the critical Weber
numbers for the transitions between breakup modes. The increase of the drop viscosity reduces the
drop deformation. The results are summarized by “breakup maps” where the different breakup
modes are shown in the We—Re plane for different values of the density ratio200® American
Institute of Physics.[DOI: 10.1063/1.1370389

I. INTRODUCTION Ohnesorge number Oh. These numbers are defined later in
this article. The experimental data show that the breakup of

In spray combustion, secondary atomization of liquiddrops in gas flows can generally be categorized into four
droplets plays an important role in the increase of surfacgifferent moded?

area and the enhancement of heat and mass transfer between o .
the fuel and the ambient gas. In part we discussed the () Vlbrat|ongl breakup mode Where. the original drop disin-
secondary breakup of liquid drops that are accelerated by a tegrates into two or four equal-sized smaller drops.
constant body force. The Bas number, which is the ratio (2) Bag breakup mode where the original drop deforms into
of the body force to the surface tension, was found to be the @ torus-shaped rim spanned by a thin fluid film that rup-
main controlling parameter. The fluid viscosities and the turesinto tiny droplets, followed by the disintegration of
density ratio had secondary effects. Here, we investigate an- the rim into larger droplets. Sometimes, a tiny streamer
other type of disturbance causing drop breakup: impulsive is also formed inside the bag, called the parachute or the
acceleration of the droplet. This corresponds to an experi- umbrella breakup mode.
mental situation where a liquid droplet is accelerated by &3) Shear breakup mode where continuous stripping of fluid
shock wave. This type of disturbance has been employed in from the drop surface occurs.
many experimental studies of secondary breakup. Earliefd) Explosive breakup mode where the drop disintegrates in
studies include Lang;Hinze? Hansonet al;* Ranger and a violent manner due to strong surface waves.
Nicholls? and Gel'fandet al® For more recent studies of
liquid atomization, see KrzeczkowskBorisovet al;® Reitz  In modes 2 and 3, the breakup process is initiated by the
and Braccd* Pilch and Erdmar® Wierzba!' Hsiang and axisymmetric flattening of the drop into an ellipsoid or disk
Faeth!?~* and Joseplet al'® Comprehensive reviews of Shape. For modes 1 and 4, the formation of a disk is not seen
studies on the secondary breakup are provided by Gelfand and there are good reasons to believe that the breakup is fully
and Liu’ three-dimensional from the start. In some experiments, a
Experimental results are usually presented in terms ofransitional mode is seen between modes 2 and 3, where the
four nondimensional numbers: the Weber number We, thelrop breaks up due to both the formation of a bag and the
Reynolds number Re, the density ratio, and the viscositwtripping of fluid from the drop surface. This categorization
ratio. The Reynolds number is sometimes replaced by thand terminology are somewhat arbitrary and different varia-
tions have been suggested by different researchers. For ex-
3present address: AVL Powertrain Engineering Inc., 47519 Halyard Drive@MPle, the umbrella breakup mode has also been called
Plymouth, MI 48170-2438; telephoné877) 285-4278; fax:(734 414-  “bag-jet mechanism” and “bag-and-stamen breakup®’

5 2690; electronic mail: jaehoon.han@avina.com _ The transitions between the breakup modes described
Present address: Mechanical Engineering Department, 100 Institute Road

Worcester Polytechnic Institute, Worcester, MA 01609-2280; telephone.above take place at critical Weber numbers that generally
(508 831-5759; fax(508 831-5680; electronic mail: gretar@wpi.edu  depend only weakly on the Ohnesorge number based on drop
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properties. For low viscosity drops, the critical Weber num- |

bers are approximately 10, 20—-60, and 1000, respectively, ;\\\\\‘&\‘\\\\\\\\\\\\\\\&\\\\\\\\\\\\\\\\\\\\\‘\\\%
for the transitions from one mode to the next one. It is also |
found that the critical Weber numbers increase as the Ohne-
sorge number increases. Note that the first three breakup
modes are realized for a very narrow range of Weber num-
bers. Wierzb& found that in the range of We<14, the

drop deformation and the breakup are very sensitive to small
fluctuations of the experimental conditions and he could fur-
ther refine the observed breakup into five subcategories.
There are large variations in the critical Weber numbers in
the available experimental data due to different test condi-
tions. Thus the numbers presented above should be consid-
ered only as a rough guide.

Most previous studies have been done for liquid—gas
systems at atmospheric pressure and temperature. The behav-
ior of liquid droplets at smaller density ratida characteris- ;
tic of high pressure combustion systemis not well- 7
understood yet® In this study, computational results are §
presented for impulsively started drops in which the motion A\ Y
and the deformation of the drop are caused by the initial |
momentum due to a step-change in the relative velocity. Nu-
merical simulations have been done for two density ratios,
1.15 and 10. These values are in the range of typical density
ratios encountered in practical spray combustion systems
[density ratios of0(10) for diesel enginé€ and O(1) for  the mean curvature, and is a unit vector normal to the
rocket motors are comma@nAs discussed in part I, simula- interface. The contribution of the surface tension is limited to
tions in the Boussinesq limit using the smaller density ratiothe interface itself, as indicated by the three-dimensional
1.15, can be scaled to predict the drop behavior at othedlelta function,s. In the argument o6, x is the point at which
density ratios close to 1. The effects of the individual gov-the equation is evaluated, amg is a point at the interface.
erning parameters are examined and the physical mechdhe integral over the surface of the dr&,results in a force
nisms associated with different breakup modes are discussedistribution that is smooth and continuous along the drop

ambient fluid
Po, o

Y,

FIG. 1. Schematic diagram of the computational domain.

surface.
Il. FORMULATION AND NUMERICAL METHOD The above equations are supplemented by the incom-
) ) pressibility condition:
A. Navier—Stokes equations
V-u=0, (2

The physical problem and the computational domain are ) ) )
sketched in Fig. 1. The domain is axisymmetric and the lef@nd equations of state for the physical properties:
boundary is the axis of symmetry. At the start of the compu- Dp Du
tation (t=0), the drop is spherical and given an impulsive ﬁ=0; Dt
motion downward due to a step change in the relative veloc-
ity. (If coordinates fixed at the drop centroid are adopted, thavhereD/Dt is the total derivative. These two equations sim-
incoming ambient fluid flow moves upwajdwe solve for  ply state that the physical properties of each fluid remain
the flow everywhere, both inside and outside the drop. Th&onstant in the case of immiscible fluids.

Navier—Stokes equations are valid for both fluids, and a Dimensional analysis shows that a set of four indepen-
single set of equations can be written for the whole domairflent dimensionless parameters can be constructed for the dy-
as long as the jump in density and viscosity is correctlynamics of drop deformation and breakup. When the drop is
accounted for and surface tension is included. subject to an impulsive acceleration, it is convenient to

The Navier—Stokes equations in conservative form are choose the Weber number We; the Reynolds number based

on the ambient fluid properties Re; the density ratio; and the

0, ()

‘?;’_t“JrV_(puu): —Vp+V-u(Vu+VTu) viscosity ratio. These are defined by
V2D VD
we= 22 7 Re= Po ; &; "y 4
to f knd(x—x;) dS 1 o Ko ' po’ Ho
S

Sometimes, the viscosity ratio is replaced by the drop Rey-
whereu is the velocity,p is the pressure, anglandu are the  nolds number, Rg=pyVD/1q. Here,D is the initial diameter
discontinuous density and viscosity fields, respectively. Thef the drop andV is the initial relative velocity between the
effect of surface tension is included as a singular body forcelrop and the ambient fluid. The subscripdsando, denote
in the final term, wherer is the surface tensiong is twice  the properties of the drop and the ambient fluid, respectively.
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Another parameter often used in the literature is the OhneB. Inviscid flow
sorge number, Ohu/\pDo=We/Re, which is the ratio To address to what extent the drop evolution can be

of the viscous shear to the surface tension. ~ described by an inviscid model, a few simulations were done
The momentum equations and the continuity equationsing a vortex method. The interface separating the drop and
are discretized using an explicit second-order predictorthe ambient fluid is a vortex sheet, and an evolution equation
corrector time-integration method combined with a secondfor the vortex sheet strength= (ug—U,) - s can be derived
order centered difference method for the spatial derivativespy subtracting the tangential components of the Euler equa-
The discretized equations are solved on a fixed, staggerafbns on either side of the interface. The resulting equation is
grid. The grid spacing is non-uniform in order to improve the(see, for example, Ref. 22
accuracy of the computation in some specific regions. For
simulations withpy/p,=1.15, a fixed computational domain Dy du DU 1 992 o Jk
is used and the full-slip boundary condition, where both the Dt 7E'SIZA(E'S+ 8 E)  pgtpe IS ®)
normal component and the gradient of the tangential compo-
nent of the velocity are zero, is applied to all four bound-Here, A=(pgq—po)/(pqtpo) is the Atwood number,U
aries. For thepy/p,= 10 simulations, where the drops move = (Ug+U,)/2 is the average of the velocities on either side of
a longer distance, a reference frame moving with the centroithe vortex sheet, ana is the mean curvature. Given the
of the drop is employed. The motion of the domain is detervortex sheet strengtly, the velocity is found by the Biot—
mined from the solution and an extra acceleration term is>avart integral. For computational purposes, the axisymmet-
added to the governing equation to account for the timeliC Vortex sheet is discretized by a finite number of vortex
dependent motion of the domain. The boundary condition§Ngs- The azimuthal integration can be done analytically and

have also been modified to include a constant flow at thd"€ integral is therefore replaced by a summation over the

bottom and a zero velocity gradient in the normal direction afiSCrete vortex rings. The radial and axial velocities at a

the top. The use of moving coordinates has been shown jRoint on ringj are given by
part | to be very effective in keeping the computational cost

. L . 1 Tiriki(zi—2z)[ [K2—2
reasonable while maintaining the necessary resolution || —— RS A J E(k;; )+ 2K (ki)
; T n& T (4rr)? 1-k? 1 W
around the moving drop. =1 it Ij
In order to accurately simulate a highly deformed inter- (6)
face during breakup, a front-tracking method is employed, N
where the interface is represented by marker points that are U:i Iy kg
moved by interpolating their velocities from the stationary I & (4 r,)E2
grid. These points are connected to form a “front” which is )
used to construct the property fields at each time step. This (r+ryki—2r _ _
: : =z | E(kj) +2rK(k) | (7
front is also used to calculate the surface tension. Through- 1-kijj

out the computation, the front points are dynamically added
and deleted to avoid excessive stretching or clustering offere,I' is the circulationK(k) is the complete elliptic inte-
neighboring front points. This ensures that there exist apdral of the first kind E(k) is the complete elliptic integral of
proximately two to five front points per fixed grid spacing. the second kind, and
For a more detailed description of the front tracking method,
see Refs. 20 and 21. K = 21y

The numerical method described earlier is essentially the " J(r + r,-)2+ (z; _zl)Z'
same as in the constant acceleration case presented in part I.
The only difference in terms of numerical procedures existsThe elliptic integrals can be computed efficiently by a poly-
in the initial flow condition. In shock tube experiments, the nomial approximatiod® When the axisymmetric vortex
main function of the shock is to produce a high-speed consheet is replaced by discrete vortex rings, the rings must be
vective flow, while the collision between the shock and thegiven a finite core size to avoid infinite self-induced velocity.
droplet has little effect on the breakup phenometdm.our ~ This can be accomplished simply by replacikgby
numerical simulations, this initial flow field is calculated as
follows: We estimate the vorticity distribution &0 on the ~ 7N
drop interface based on the inviscid flow solution for a k'i:\/(r T2+ (z—-2)2+ 8 ©
spherical drop moving with a velocity. Then, the vorticity P A

is distributed to the neighboring fixed grid points and thewhere 5 is a small regularization parameter. In the limit of

corresponding velocity field is obtained by solving the Pois-N—« and §—0 the solution will be independent of the

son equation for the stream functiofi?y= — w. exact value of5 (except at isolated points where roll-up takes
The majority of the simulations presented here were carplace.

ried out on HP 9000 workstations. A typical run generally ~ The evolution equation for the circulation of each vortex

required between 4000 and 120 000 time-steps and took 12ring can be obtained by integrating E¢p) over a small

240 h, depending on the parameters of the problem. material segment:

®
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FIG. 3. Grid refinement test. Aspect ratio and centroid velocity plotted vs

t*. Results using four different grids, 84128, 128<256, 256<512, and
FIG. 2. Grid refinement test. The breakup of a impulsively started drop512x 1024 are showrpy/p,=1.15, We=54.7, Re=331, Rg=381.
computed using a 128256 grid (left) and a 25& 512 grid (right). p4/p,
=1.15, We=54.7, Re=331, Rg=381. The drop shape is plotted every
Aty =0.909. . .

culations. The velocities are then used to calculatg Dt at

the original interface position and the process is repeated.

DI’ s(™)| DU 1 992
DI_ZAL(a) Dt ‘st 8 s ds Ill. RESULTS AND DISCUSSION
Most of the simulations presented here are Qv p,
- [k(a®)—k(a™)], (10 =10. The effects of the Weber number, the Reynolds num-
Pt Po ber, and the viscosity ratio are studied. In addition, a few

where a™ and @~ are the two end points of the segment. simulations have been done fpg/p,=1.15 to examine the
Equation(10), along with the equatioDx/Dt=U, wherex  effect of the density ratio. As discussed in part I, the Bouss-
=(r,z) is the position vector for each vortex ring, can beinesq approximation applies when the drop and the ambient
integrated using a time-integration method such as théuid have similar densities. Thus a single simulation with
fourth-order Runge—Kutta method once the initial vorticity one specific value of the density ratio close to 1 can be res-
distribution and the geometry are given. Th&J/Dt term is  caled for a range of density ratios. When presenting the re-
found in an iterative manner: First the interface is advancedults, time is nondimensionalized with the diameter and the
and the circulations are updated usibdJ/Dt from last initial relative velocity,t* =tV/D.

time-step as an approximation. Then the velocities at the new In order to validate the numerical method, grid refine-
position are found using the approximate values of the cirment tests were done and one case is shown in Fig. 2 for
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FIG. 4. Effect of We on the deformation of impulsively started drops wiihp,= 10, Re=242, and Rg=1935. The numbers next to the drops dertdte
when the drop contours are plotted. The centroids of the drops in a column are separated by a fixed distance. The gap between two successive drops in a
column does not represent the distance the drop travels during the time interval. The computations were done<&ia @5d.

palpo=1.15, We=54.7, Re=331, and Rg=381. The com- surface tension effects are dominant. The computational do-
putational domain has a dimension of 2.5 and 5 times th&ain has a dimension of 2.5 and 5 times the initial drop
initial drop diameter in the radial and axial directions, re-diameter in the radial and axial directions, respectively, and
spectively, and is resolved by two different grids: 22866 IS resolved by a 256512 grid. The grid is slightly stretched
(left) and 256< 512 (right). The shape of the drop is plotted @nd the average number of grid points across the drop diam-
at time intervalsit’ = 0.909. The results agree well, despite &t€r iS between 100 and 180, depending on how deformed
the large deformation of the drop. In Fig. 3, the aspect ratidhe drop is. _ _

and the centroid velocity are plotted verdiisfor the cases The drop in(a) with We=3.74 shows oscillatory defor-
shown in Fig. 2 and two other simulations done using a 64Mation. The drops with We12.5 and 18.7 in(b) and (c)
%128 and a 512 1024 grids. The aspect ratio is defined asinitially develop an indentation on the side facing the down-
the drop thickness at the centerline divided by the maximungtream of the incoming ambient fluid flotthe side facing
width of the drop. The centroid velocity of the drop is found Upward in the figurgsand it continues to deepen. As the
by taking the volume average of the vertical velocity insidedeformations increase the drag, the initial momentum of the
the drop. The result for the 64128 grid shows a small dif- drop fluid decreases. This reduces the aerodynamic pressure
ference but the results with the three finer grids are nearlyariations around the drop and the influence of the surface

identical. tension starts to increase. At later stages of the deformation,
the We=12.5 drop displays oscillatory deformation while
A. Effect of We at a fixed Re the We=18.7 drop shows the formation of a backward-

facing bag(a thin hollow bag facing the downstream direc-
tion is attached to a toroidal rinatt* =7.98. Eventually, the

In Fig. 4, the deformation and breakup of drops with backward-facing bag itic) stops growing and the drop re-
pd/po=10 are shown for Re242 and Rg=1935. Results stores its original spherical shapes. The drop showd)ifor

for We=3.74, 12.5, 18.7, 28.1, 37.4, 46.8, 56.1, 74.8, 93.5We=28.1 shows the formation of a backward-facing bag
and « are compared. For these paramet@scluding the more clearly at* =12. The Weber numbers for the drops in
We== caseg, the ranges of the Ohnesorge numbers ardb)—(d) are in the range where a bag breakup mode is ob-
0.008-0.04 and 0.0032-0.0158 for the ambient fluid and theerved experimentally for higher density ratios. The results
drop, respectively. Experimental evidence suggests thah (e)—(i), for even higher Weber numbers, show, on the
when Oh<0.1, the viscosity has only minor effects and thatother hand, the formation of a forward-facing bi#ige bag is

1. Evolution of drops with  p4/p,=10
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moving faster than the rim and the bag faces the upstream
direction. The drop with zero surface tension {p also
displays a forward-facing bag. In this case small-scale ir-
regularities are observed both on the edge and on the drop
surface facing the downstream direction. This is due to the
absence of surface tension, which suppresses the formation
of the small-scale structures caused by the interfacial shear.

As the drops in Fig. 4 continue to deform, a thin film of
drop fluid is formed in several cases. This film becomes very
thin and eventually it is not resolved on the grid used. Al-
though we have not performed a systematic study of how
accurately the motion of the film is computed as the resolu-
tion is reduced, we believe that the motion is captured in a
physically meaningful way. As the film becomes thin, its
inertia is of much smaller importance than surface tension
and even if the computation of inertia forces becomes inac-
curate(since the mass has been spread over a distance much
thicker than the filmy, surface tension is computed to the
same level of accuracy as for an interface between two flu-
ids. Since the film is clean, we would also expect viscous
forces to be much smaller than surface tension.

A direct comparison of the above simulations with ex-
periments in the same physical parameter range is not readily
feasible due to the limited availability of experimental data
on the secondary breakup at high press(gmall density
ratios.*® Among those available, an investigation bykatp
et al?* is most relevant for comparison. They reduced the
density ratio by increasing the pressure of the ambient gas at
room temperature. Even though their lowest value of the
density ratio pq/p,~60) is still higher than ours, similar
transitions of the breakup modes are reported. Another study
at elevated gas pressure with density ratios between 80 and
700 was done by Lee and ReftzAt We= 148 and 270, their
photographs show a breakup mode similar to the forward-
facing bag mode. They found, however, a breakup in the
backward-facing bag mode at W&2, while our simulation
shows a breakup in the forward-facing bag mode. This dis-
crepancy is caused in part by the difference in the density
ratio but, more importantly, by different loading history: A
transverse gas jet is used in their experiment and the drop
accelerates more gradually than in shock-tube experiments.
As a result, the instantaneous value of the Weber number at
the time of breakup should be much lower than the reported
one.

The aspect ratio, centroid velocity, and surface area of
some of the drops shown in Fig. 4 are plotted versusn
Fig. 5. The aspect ratio plot displays an oscillation of the
drop with the lowest We and monotonic decrease for the
other drops. When the drops with \Wd2.5 and 18.7 start to
resume their initial shape, an abrupt increase in the aspect
ratio is observed. The velocity plot shows a monotonic de-
cline for all We shown. The surface area plot shows that the
rate of deformation increases with We.

In Figs. 6 and 7, vorticity contour@deft) and streamlines
in a frame moving with the drojgright) are plotted along
with the drop contour at selected times for the ¥\%8.7 and
e=93.5 drops shown in Figs(d) and 4i), respectively. In
both cases, the vorticity plots show that most of the vorticity
is created at the outer edge of the drop, as expected. The
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FIG. 6. Vorticity contourgleft) and streamlines with a
frame moving with the drogright) plotted for the drop
shown in Fig. 4c).

tr=2418 t* =4.835 t* =17.263

streamline pattern for the Wel8.7 drop shows that the Viscous shear causes a portion of the drop fluid to be stripped
backward-facing bag is stretched upward when the waké&om the drop shoulder. The validity of this assumption has
downstream of the drop detaches from it. On the other hand)een questioned by Lee and Réitayhose experimental ob-
the closed streamlines around the ¥A@8.5 drop suggests Servations in the shear breakup regime were independent of
that the drop moves as a vortex ring, forming a forward-the Reynolds number, suggesting weak influence from the
facing bag. viscous boundary layers. As an alternative, they proposed a

Inviscid flow simulations using a vortex method with “stretching—thinning” type breakup mechanism where the
400 point vortex rings are presented for W@3.5 and thin edge of the drop, flattened by the aerodynamic pressure,
pa/po=10 in Fig. 8. The evolution of three inviscid drops is deflected in the downstream direction by blowing of the
with different blob sizes, 8/D=0.03125, 0.025, and ambient fluid. Our inviscid simulations show that the initial
0.01875, are shown ite), (b), and(c), respectively. In ad- formation of the thin film from the drop shoulder is an invis-
dition, the viscous simulation for the same Weber numbegid phenomenon, supporting the “stretching—thinning” type
and the density ratio—already shown in Fidi)4-is illus- ~ mechanism.
trated again in(d) for comparison. In each column, the drop
shapes are plotted evet{y=0.4835. Note that was intro- . )
duced in Eq(9) only to avoid singularity and that the choice 2- Evolution of drops with  p4/p,=1.15
of & is somewhat arbitrary. The overall drop evolution is, Figure 10 shows the deformation versus time of drops
however, not very sensitive to the exact valuedfin all  with a density ratio of 1.15 in the same way as in Fig. 4. The
three cases, a thin film of drop liquid is pulled away from theWeber numbers are 2.73, 13.7, 27.4, 54.7, andhe Rey-
shoulder of the main drop. Differences exist in the smallnolds number is fixed at 331; and the drop-based Reynolds
scale structures, such as the thickness of the film which reaumber is 381. The computations were done using a 128
duces faster for smallef. The viscous drop irid) also dis- X256 grid. The low Weber number drop (@) oscillates due
plays an evolution similar to those of the inviscid drops.  to the high surface tension. As We is increased to 13(B)in

The centroid velocities of the drops in Fig9aB-8d)  an indentation develops on the drop surface facing the down-
are compared in Fig. 9. As the drops start moving, the visstream direction. Later, the momentum of the drop decreases
cous simulation shows a faster decrease of the initial velocand the surface tension causes it to oscillate. The drop shown
ity, compared to the inviscid results. Later, the inviscid dropsin (c) for We=27.4 also deforms into an indented ellipsoid
deform more and the trend is reversed. As observed in Fig. 8nitially. The indentation deepens progressively and later
the rate of deformation of the inviscid drops increasesmeets the drop surface facing the upstream direction, form-
slightly as & is reduced. The velocity therefore decreasesng a forward-facing bag as observed in part | for drops
faster asé decreases. accelerated by a constant body force. However, since there is

In spite of some differences, due to viscosity on the oneno driving force to sustain the deformation against the sur-
hand and finite regularization on the other, the viscous droface tension, the drop eventually resumes its initial shape.
and the inviscid ones display essentially the same behaviofThis is consistent with a statement made by Gel'f&hBor
Traditional “shear”® or “boundary-layer stripping®  liquid—liquid systems with density ratios @(1), the bag
breakup theories are based on the assumption that viscoasd the transitional breakup modes are rarely observed ex-
boundary layers develop on both sides of the interface angderimentally for We<30. The drop with We=54.7 in(d), on

FIG. 7. Vorticity contourdleft) and streamlines with a
frame moving with the drojright) plotted for the drop
shown in Fig. 4i).
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FIG. 9. Centroid velocities of the drops shown in Fig. 8 plotted*s

FIG. 8. Inviscid flow simulations for We 93.5 andpy/p,= 10 with three
different values of6/D=0.03125(a); 0.025 (b); 0.01875(c). In (d), the
viscous result shown in Fig.(¥ is included for comparison. The drop

shapes are plotted evet§/—0.4835 in each column. tively, for the drops shown in Fig. 10. The aspect ratio plot

shows shape oscillation for the two lower values of We. For

higher We, the aspect ratio decreases monotonically to zero
the other hand, shows increased initial deformation whichas the indentation deepens. The velocity plotihshows a
results in a bigger rim that is connected by a forward-facingrapid decline initially. Later, the velocity of the drops with
bag. For zero surface tenside), the drop displays a roll-up We=2.73 and 13.7 decreases but with fluctuations. After
of the interface. A similar roll-up has been observed in thereaching a first minimum, the velocities of the drops with the
constant acceleration cases for drops with no surface tensiothree higher Weber numbers start to increase again when

In Fig. 11, the normalized aspect ratio, centroid velocity,most of the drop fluid is in the torus-shaped rim and a very

and surface area are plotted verddisin (a)—(c), respec- thin forward-facing bag is attached to it. Finally, they de-
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2 |) A = 27| 2719 2019 FIG. 10. Effect of We on the deformation of impul-
sively started drops withpy/p,=1.15, Re=331, and
Re;=381. The numbers inside the frames dentte

258 ) 258 [ 2.58 } 2.58 9 2.58 @ when the interfaces are plotted. The computations were
done on a 128 256 grid.
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(a) We = 2.73 (b) We = 13.7 (c) We =27.4 (d) We = 54.7 (6) We = o0
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crease again as the drop deformation progresses. The surface
area plot in(c) shows the effect of We on deformation: As
We increases, the slope of the curve increases.

B. Effect of Re

In order to see the effect of the viscosity of the ambient
fluid, simulations with four different Reynolds numbers, Re
=387, 242, 121, 60.%from left to right are compared in
Fig. 12. In the top rowa), We=18.7, py/p,=10, and Rg
=1935. The overall evolution of the drops with two higher
Reynolds numbers, Re387 and 242, are very similar and
the only difference is in the small-scale structure. The results
for the two lower Reynolds numbers, R&21 and 60.5,
however, display some differences: Increasing the ambient
fluid viscosity (decreasing the Reynolds numpevhile the
other parameters are fixed can lead to a transition from the
backward-facing bag mode to the oscillatory deformation
mode. Another comparison is made (n) for We=74.8,
while the other parameters remain the same dg)irHere, a
transition from the forward-facing bag mode to the
backward-facing bag mode is observed as the Reynolds
number is reduced from 121 to 60.5.

Based on these observations, it is clear that as the Rey-
nolds number is decreased, progressively higher Weber num-
bers are necessary in order to observe the same mode of
deformation. The translation of the boundaries between dif-
ferent deformation modes—oscillation, backward-facing
bag, and forward-facing bag—to higher We is clearly due to
the increased viscous dissipation.

In Fig. 13, the surface areas of the drops shown in Fig.
12 are plotted versus the nondimensional tihe The com-
parison in(a) for drops with We=18.7 shows that the initial
rate of increase of the surface area becomes higher as the
Reynolds number increases. The same trend is confirmed for
We=74.8 in (b).

C. Effect of Re 4

In Fig. 14, the effect of drop viscosity is shown for drops
with py/p,=10 and Re=242. The number in each frame
denotes the dimensionless time when the drop is plotted. In
the top row, four cases are compared for different drop vis-
cosities(represented by the drop Reynolds numia¢m fixed
Weber number, We 28.1. As the drop viscosity is increased
from left to right by an order of 19 the drop deformation is
greatly reduced. The least viscous drop, withyRE935,
clearly shows the formation of a backward-facing bag, while
the most viscous drop with Re1.935 remains in an oblate
shape. In the middle row, a similar comparison is made for
We=56.1. Again, by increasing the drop viscosity, the drop

FIG. 11. Nondimensionalized aspect ratio, centroid velocity, and surfac%eformaﬁon is reduced and the drop changes from a forward-

area plotted ve¢* for the drops shown in Fig. 10. Results for five We
=2.73, 13.7, 27.4, 54.7, ard are comparedpy/p,=1.15, Re=331, and

Re;=381.

facing bag to an oblate drop. The result for #@3.5 drops
shown in the bottom row displays a similar trend.
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In Fig. 15a), a breakup map is shown to summarize the
sos ﬁ sor 9 02 205 deformation and breakulp modes of drqps withy p,= 10
_j and Rg=1935. The horizontal and vertical axes represent
the Reynolds number based on the ambient fluid properties
58 ﬂ 6.77§ 116} 2320 and the Weber number, respectively. The various breakup
modes are denoted by different symbols. When the Weber
number is low, surface tension prevents large deformation so

(b) We = 74.8 the drop only oscillates. As the Weber number increases past
a critical value(approximately 16for high Re, a backward-
FIG. 12. Effect of the Reynolds humber on the deformation of drops WithLa.'CL?g b;’;lg starts to. emelrge. Whhen ctjhe Wﬁberknumb.er IS
pa!/po=10 and Rg=1935. In the top row(a), results with We=18.7 and igher than apprommatey 30, the drops break up in _a
four Reynolds numbers, Re887, 242, 121, 60.%from left to right are backward-facing bag mode for low Reynolds numbers and in
compared. In the bottom roub), a similar comparison is made for We a forward-facing bag mode at high Reynolds numbers. The

=74.8 with the same set of the Reynolds numbers. The numbers next to theansitions from the backward-facing bag mode to the
drops denoté* when the drop contours are plotted. The centroids of thef

drops in a column are separated by a fixed distance. The gap between twg'rward'falCIng bag mode occur at progresswely lower We-
successive drops in a column does not represent the distance the drop travB€r Numbers as the Reynolds number increases. As the We-
during the time interval. The computations were done on 28R grid. ~ ber number is raised to 100, approximately, all drops break
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up in the forward-facing bag mode for the Reynolds number , L o
range examined. Finally, when the surface tension vanishes ™, 10° 10°
(We— ), the strong shear due to the outside flow peels off Re
the drop interface and small irregularities on the drop surface ® pafoo =115

are observed.

A similar breakup map is presented in Fig.(6for the
drops with py/p,=1.15 and Rg=1935. Again, when the
Weber number is low, the drops only oscillate due to large  The formation of a backward-facing bag is seen only for
surface tension. As the Weber number is increased, thge larger density rati¢10), which is consistent with experi-
backward-facing bag mode displayed(@ for p4/p,=10is  mental observations indicating that this type of breakup is
no longer observed since the momentum difference betweepglre|y observed for liquid—liquid system%Our finding also
the drop and the ambient fluid is very small. Instead, thesypports the general observation in previous studies using
drops in this Weber number range recover their initial spheri1mpu|sive acceleration—the disruptive aerodynamic force
cal shapes. When the Weber number is greater than 100, theyst be imposed for a sufficiently long time for the forma-
drop deforms into a forward-facing bag and roll-up of thetijon and the growth of a backward-facing bdgr example,
interface is observed. The effect of the Reynolds number igge Ref. 2B The present simulations show that the velocity
similar to what has been observed(&: the boundaries be- gecreases too fast when the density ratio is close to one.
tween different deformation/breakup modes move to lowerrherefore, flow separation and the appearance of the wake

FIG. 15. Breakup mode maps for impulsively started drops with Re
=1935. The density ratios are 10 and 1.15adhand (b), respectively.

Weber numbers as the Reynolds number increases. behind the dropgthe physical mechanism of a backward-
facing bag formation as proposed in the case of continuously
IV. CONCLUSIONS accelerating drop$ are not likely to be sustained.

When We is further increased, the initial deformation is

To study the characteristics of impulsively acceleratedso large that a forward-facing bag is formed. This is found to
drops, numerical simulations have been done for two densitpe an inviscid phenomenon, confirmed by inviscid flow
ratios, 1.15 and 10. These values @f/p, are lower than  simulations showing essentially the same development of a
those used in most experimental investigations of the droghin film of drop liquid drawn from the drop shoulder in the
breakup due to impulsive disturbance and therefore are morgownstream direction. In the case of vanishing surface ten-
relevant to high pressure sprays. At low We&10), the  sijon, small-scale irregularities develop on the drop contour,
drops display oscillatory deformation. As We increases, asimilar to experimental observations of liquid drops in gas
indentation develops on the drop surface facing the downflows at very high We.
stream direction. Since the velocity and the aerodynamic
forces causing deformation continue to decrease, the surfaéCKNOWLEDGMENTS
tension eventually takes over and the drops resume the initial This effort was sponsored by the Air Force Office of
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