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We develop an analytic theory based on an earlier model of the admittance of a ballistic transit time
diode terahertz oscillator with tunnel emission of electrons into a transit space. The focus of this
work is on the actual case when electrons are injected with high enough energy to move from the
start with maximal~saturated! ballistic velocity (;13108 to 23108 cm/s). On the one hand, such
diodes have maximal oscillation frequencies and, on the other hand, a simple analytic theory
describes them and allows us to avoid a cumbersome numerical procedure, which characterizes the
general case. Such a description is analogous to the description of oscillatory diodes with diffusive
transport and saturated drift velocity. We have also considered a special case when a small part of
the ballistic electrons crossing the transit space scatter into a diffusive subsystem with a small drift
velocity. The appearance of such slow-drifting electrons substantially increases space charge in the
transit space and influences the staticJV-characteristic but the high-frequency admittance is almost
invariable. © 2004 American Institute of Physics.@DOI: 10.1063/1.1635645#

I. INTRODUCTION

Transit time diodes with a tunnel electron emitter
~TUNNETT-diodes,1–5 hereafter referred to as T diodes! sug-
gested by Nishizawa and Watanabe1 and later by Aladinski2

are in principle the highest-speed transit time diodes and are
appropriate for the terahertz~THz! range oscillatory regime.
Contrary to their IMPATT- and BARITT-competitors,3 T di-
odes can be completely ballistic devices since the principle
of action inherent in them does not require any dissipative
processes both in a tunnel barrier and in a transit space~T
space!. But in practice, this potential speed has not been
realized up to now because as usual the traditional
p11n1nn1-design4–6 is used with a tunnel electron emitter
in the form of thep11n1-junction, which is reverse-biased
into the regime of the so-called Zener breakdown or, in other
words, a tunnel emission through a band gap. To obtain a
sufficient tunnel current in this way, one needs a very strong
electric field, which in turn requires a voltage drop of;7–9
V mainly across then-region. The latter serves as a T space.
This means that electron transport in this space is substan-
tially dissipative, and almost all of the electrons are in non-
centralL- andX-valleys ~in the case of GaAs, InP, InGaAs,
and other similar materials for then-region!. A drift velocity
for such a transport does not exceed;107 cm/s, which leads
to oscillatory frequency limitation even in the case of very
short T spaces.~Note that the authors of Ref. 7 tried to avoid
partially the above-described traditional scheme!.

In Refs. 8 and 9, a certain scheme for the T diode was
suggested and substantiated theoretically. The main elements
of this scheme are the following:

~1! The T-diode is a unipolar heterostructural device
with only electrons as the current carriers.

~2! The undoped T space is placed between the heavily
doped n1-cathode andn1-anode, and then1-cathode is
separated from the T space by the tunnel permeable~trans-
parent! barrier B, which serves as an electron emitter. Such a
barrier on the anode side is absent, so our diode is asym-
metrical ~Fig. 1!.

~3! The T space lengthl is small @ l<(0.5– 0.6)
31025 cm# in order to provide ballistic or quasiballistic
electron transport across the T space. A comparatively small
voltageUl across the T space in the working regime~typical
values are;0.5–0.6 V! pursues the same goal. The small
values of this voltage are determined by the positions of
noncentralL- and X-valleys in the conduction band.~It is
necessary that the electrons emitted into theG-valley by the
tunnel emitter stay in the sameG-valley while traveling
across the T-space. They should obtain a possibility of scat-
tering to the lowest noncentral valley only at the output into
the n1-anode!. A short length of the T-space in combination
with moderate voltage across the T-space provides approxi-
mate ballisticity of an electron transport with the velocity
;V>VS;(1 – 2)3108 cm/s ~or even higher!. The velocity
VS is a maximal~saturated! velocity of G-electrons, which
have an isotropic nonparabolic dispersion relation

«~p!5VS~ApS
21p22pS!, ~1!a!Electronic mail: gribnikov@pa.msu.edu
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wherepS5mVS , andm is an effective mass in the bottom of
the G-valley.

~4! The boundary T-space/n1-anode should not reflect
electrons coming from the T-space and should also not scat-
ter them back from then1-anode. The first condition could
be met if the same material were for both the T-space and the
n1-anode. The distinction is only in the doping level: the
T-space is undoped, and then1-anode is heavily doped. Due
to the use of the same material, we have no conduction band
discontinuities, which could induce an electron reflection.
Because of the above-mentioned substantial distinction in
doping level, the bottoms of all the valleys in then1-anode
lie lower than the same bottoms in the T-space at the bound-
ary T-space/n1-anode. The difference is approximately equal
to the Fermi energy in then1-anode,«F

(A) . ~Note, this esti-
mate relates to the working regime: for example, see curve 3
in Fig. 2 and also Fig. 3!. Therefore, electrons, which have
obtained a kinetic energy near«L ~where«L is a position of
a bottom of one of the noncentral valleys! as a result of their
ballistic travel in an accelerating electric field across the
T-space, have the energy;«L1«F

(A) after their transfer to the
n1-anode and can scatter into this noncentral valley. As a
result of such intervalley scattering, the probability of their
return to the T-space decreases noticeably.

In this article, we continue to consider the T diode sug-
gested in Refs. 8 and 9 and use the same phenomenological
scheme of description. This scheme is based on the fact that
the electrons emitted by the tunnel emitter travel across the
T-space in the form of a monoenergetic beam with a near-
zero transverse momentum:pW'>0. Electrons in this beam
are accelerated by a longitudinal electric fieldE(x). The
latter is the sum of a large dc field and a small high-
frequency monochromatic field~with an angular frequency
v52p f ). The ballistic transport is described by classical
mechanics equations. Reducing the transport problem to the
consideration of a monoenergetic electron beam~with the
collectivized electron velocity, momentum, and energy! is
first based on the electron transport ballisticity in the

T-space: electrons do not scatter, and an energy width of the
beam is determined by their initial temperatureT in the
n1-cathode. This temperature is assumed to be small on the
scale of all other energies in the considered problem. In the
second place, the tunnel transparency of the tunnel barrier
emitter at«5«F

(C) is also assumed to be sufficiently low and
rapidly decreasing with a drop in energy~starting from its
level on the Fermi surface!. This means that the above-
mentioned electron beam in T-space is formed by electrons
with energy«5«F

(C) counted from the bottom of the conduc-
tion band in the depth of then1-cathode. These electrons
have comparatively little transverse momentum:pW'>0. In
comparison with Refs. 8 and 9, we have changed the as-
sumed design of the tunnel barrier emitter. It has been se-
lected so that electrons can be injected in theG-valley of the
T-space with a sufficiently large initial kinetic energy«(x
50)5«0 and the corresponding initial longitudinal momen-
tum pX5p0 where«(p0)5«0 . Since we have assumed in
the G-valley the isotropic nonparabolic dispersion relation
@see Eq.~1!#, it is desirable that inequalityp0.pS be met
with some reserve. In this case the electron in the T-space
from the start atx50 ~see Fig. 3! is moving with maximal

FIG. 1. Equilibrium distribution of an electric potentialU(x) in a
n1in1-structure.~a! Structure without a tunnel barrier.~b! Structure with a
tunnel barrier.

FIG. 2. Qualitative sketch of nonequilibrium potential distributions in the
considered T diode structure. Curve 1 corresponds to the equilibrium pic-
ture. The curve number increases with an increase in voltage across T diode.
Curves 2 and 3 correspond to potential distributions with a virtual~effective!
cathode inside T space. For curves 4, 5, and 6, a virtual cathode disappears
and a depletion layer inn1-cathode is replaced by an accumulation layer,
which becomes deeper and deeper with an increase in the applied voltage.
We can see a lowering of the effective barrier height over the Fermi level in
n1-cathode and an increase in energy«0 of electrons entering T space:
«0

(6).«0
(5).«0

(4) .
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~saturated! velocity VS , and Eq.~1! can be approximately
reduced to

«~p!>VS~p2pS!. ~2!

The value ofVSpS , which can serve as an approximate mea-
sure for the necessary values of«05«(p0), is estimated as
;0.25 eV for In0.53Ga0.47As, ;0.16 eV for InAs, and
;0.075 eV for InSb. Below we have in mind just these three
semiconductors as the probable materials for the T-space
~as well as for then1-cathode and then1-anode! since in
each of them theL-valley bottoms are at the level of«L

;0.7 eV that is much higher. To form the tunnel barrier,
we need to use a wider-band-gap material. The alloy
(In0.53Ga0.47As)12x(In0.52Al0.48As)x could serve as an iso-
morphic partner for In0.53Ga0.47As, and
(InAs)12x(InP0.69Sb0.31)x could be an isomorphic partner of
InAs. Since the tunnel barriers are very thin, pseudomorphic
structures can also be employed.

II. POTENTIAL STRUCTURE

In this section, we consider more thoroughly a potential
structure in the T-space. Since the T-space, then1-cathode
and then1-anode are grown from the same materials and the
latter two are heavily doped, the Fermi level in the equilib-
rium state is placed high in the conduction band not only in
the n1-cathode and then1-anode but in the very short un-
doped T-space~Fig. 1!. Such an inhomogeneous picture
takes place both in the absence@Fig. 1~a!# and in the pres-
ence@Fig. 1~b!# of the tunnel barrier between the T-space and

the n1-cathode. We have an inhomogeneous electron en-
hancement of T-space and some weak depletion in the
boundary-adjacent layers of then1-regions. An external
voltage applied to the structure, which is depicted in Fig.
1~b!, leads to an electron current flowing from the
n1-cathode to then1-anode. This substantially changes the
pictures of the potential and electron concentration distribu-
tions between then1-regions. All the qualitative stages of
evolution of these potential distributions are shown in Fig. 2.
We can see that as a result of an increase in the applied
voltage, not only the electric field in the T-space changes
noticeably but also a potential distribution in and around the
tunnel barrier significantly varies. As a result of these
changes, a virtual~effective! cathode, which is initially
placed ~for very small currents! in the T-space~potential
curves 1, 2, 3 in Fig. 2!, leaves this region. The depletion
layer initially placed in then1-cathode near the tunnel bar-
rier transforms into an accumulation layer. An effective tun-
nel barrier rising over the Fermi level position in the
n1-cathode becomes lower and lower, and its form also
changes. As a result of these potential variations, the tunnel
current increases. The main part of this tunnel current is
concentrated close to the Fermi level, as has been pointed out
above. Simultaneously, while lowering the effective tunnel
barrier, the energy of electrons emitting from this barrier to
the T-space increases. This energy is designated as«0

(4) ,
«0

(5) , and «0
(6) for potential curves 4, 5, and 6 in Fig. 2. It

includes the Fermi energy in then1-cathode,«F5«F
(C) , to

which we need to add an energy depth of the accumulation
layer in then1-cathode,d« (C), and a voltage drop in the
tunnel barrier~in the energy units!

«0>«F
~C!1d«~C!1eEBwB , ~3!

whereEB is an electrical field in the barrier, which becomes
almost homogeneous, andwB is the barrier thickness.

As it was indicated above, T-space electrons need to be
emitted with sufficiently large values of energy«0 exceeding
;VSpS . Such energies allow us to use the linear dispersion
relation Eq.~2! instead of Eq.~1!. We do not calculate here a
depthd« (C) of the accumulation layer, which increases with
an increase in the voltage. Such a calculation is the subject of
the special problem, taking into account the size quantization
of an electron gas in this layer.

We are interested in such voltages across the diode when
a potential distribution corresponds to potential curves 5 and
6 in Fig. 2. An example of such a distribution is presented
separately in Fig. 3. An electric field in the tunnel barrier and
a depth of the accumulation pocketd« (C) are completely
determined by the value of the electric field,E(0), in the
T-space at its boundary with the tunnel barrier (x50).
Therefore, the height of the effective barrier over the Fermi
level d5d02d« (C)2«F

(C) is also determined by the field
E(0) such as the electric field in the barrier:EB

5E(0)kD
(T)/kD

(B) , wherekD
(T) and kD

(B) are static dielectric
constants in the T-space and the tunnel barrier, respectively.
As a result, a tunnel current emitted from then1-cathode to

FIG. 3. Qualitative sketch of nonequilibrium potential distribution for the
considered working regime.Ul is a voltage drop across T space.UC is a
voltage drop across an emitter region: an accumulation layer plus the tunnel
barrier.UA is a voltage drop across a depletion layer inn1-anode.
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the T-space in the form of a beam with the energy«
5«0@E(0)# is determined completely by the fieldE(0)

j 5 j T@E~0!#. ~4!

III. STATIC JV-CHARACTERISTIC

A staticJV-characteristic is determined by the following
equations:

j 5eV~p!n, ~5!

V~p!dp/dx5eE, ~6!

kDdE/dx5en5 j /V~p!, ~7!

where p5px is an electron momentum in the beam,V(p)
5d«(p)/dp is electron velocity,«(p) is a kinetic energy,n
is an electron concentration, andkD5kD

(T) . As a result of
integrating Eqs. ~5!–~7!, we can obtain the required
JV-characteristic in the following form:

~2e j/kD!1/2l 5E
p0

pl
V~p!dp/@p2p01p~0!~ j !#1/2, ~8!

wherep0 is determined by the energy of the entering T-space
electron~see Fig. 3!

«05«~p0!, ~9!

pl is determined by the analogous equation

«01eUl5«~pl !, ~10!

Ul is the voltage drop across the T-space~see Fig. 3!, and
p(0)( j ) is determined by the formula

p~0!~ j !5ekDE2~ j !/2j , ~11!

in which E( j )5E(0) for a certain value ofj. @Note that
E(0)5E( j ) is the converted Eq.~4!.#

In the general case for the dispersion relation Eq.~1! the
requiredJV-characteristic can be obtained numerically.8 But
the calculation is substantially simplified if the linear disper-
sion relation Eq.~2! is valid for the total electron beam
across the whole T-space. Then

Ul5E~ j !l 1 j l 2/2kDVS . ~12!

The first component on the right side of Eq.~12! corresponds
to the homogeneous electric fieldE( j )5E(0) in all the
T-space, and the second component takes into account the
space charge effect: a linear increase inE(x) from the cath-
ode to the anode. Note that neitherp0 nor «05«(p0) partici-
pates in Eq.~12!. They take part only in its criteria of
validity.

IV. ALTERNATING CURRENT WITH FREQUENCY v

The equations defining a small alternating current with
angular frequencyv have the following form~see Ref. 8!:

j 85eVn81enm21~p!p8, ~13!

kD~v!dE8/dx5en8, ~14!

d j8/dx1 ievn850, ~15!

ivp81Vdp8/dx1m21~p!p8dp/dx5eE8, ~16!

where the primed valuesj 8, n8, p8, and E8 are complex
functions ofx. To obtain alternating electron current density,
electron concentration, electron momentum, and electric
field, we should multiplyj 8, n8, p8, andE8, respectively, by
exp(jvt). Since

j 8~x!1 ivkD~v!E8~x!5J8, ~17!

where a total current densityJ8 exp(ivt) is independent ofx,
we can obtain from Eqs.~13!–~17!

S V
d

dx
1 iv D S V

d

dx
1 iv1m21~p!

dp

dxD p8

1
e2n

kD~v!
m21~p!p85

eJ8

kD~v!
, ~18!

wherem21(p)5d2«(p)/dp2. In the general case of the non-
parabolic dispersion relation~1!, Eq. ~18! can be solved only
numerically.8 But in the specific case of the linearized rela-
tion ~2!, Eq. ~18! is substantially simplified sincem21(p)
50 and we have

~VSd/dx1 iv!2p85eJ8/kD~v!. ~19!

Because of this simplification, we can obtain numerous re-
sults in analytic form.

Equation~19! as well as Eq.~18! should be solved with
boundary conditions

j 8~0!5sSE8~0!, ~20!

wheresS5sS@E(0)# is a differential tunnel transparence of
the tunnel barrier B, and

«08[VSp8~0!5eE8~0!weff . ~21!

The meaning of Eq.~21! can be clarified from Fig. 4. Varia-
tions of the fieldE(0) lead to variations of the energy«0

because this field determines both an electric fieldEB in the
tunnel barrier and a depth of the accumulation layerd« (C)

@see Eq.~3!#. We should use in boundary conditions~20! and
~21! E8(0)5(1/e)(VSd/dx1 iv)p8ux50 .

In a quasistatic tunnel barrier version, the above-
introduced new parameterssS5sS@E(0)# and weff can be
calculated as a result of some treatment of the stationary
equations. For example,sS can be found as a result of a
simple differentiation of Eq.~4!

sS5d jT /dE~0!. ~22!

But such an approach can be unrealistic for sufficiently high
frequencies. The validity of Eq.~22! can be directly con-
nected to the tunneling itself, which is not instantaneous.
There exists a finite time of tunnelingtS ~see Ref. 10 as a
review! associated with the passage of an electron under a
tunneling barrier. The quasistatic approach anticipatesvtS

!1. For a triangular barrier, the timetS can be estimated by
the following formula:11,12

tS5~2mBd!1/2/eE~0!, ~23!

whered is the height of the triangular barrier for the level of
the tunnel percolation~that is for «5«F

(C)), and mB is an
electron effective mass in the barrier. IfmB50.042m0 is se-
lected wherem0 is the free electron massd50.2 eV and
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E(0)5105 V/cm, then tS>0.3310213s. This means that
the inequalityvtS!1 is not satisfied forf 58 THz ~or v
52p f ;50 THz), but forf <1 THz a quasistatic approach is
realistic. For a rectangular barrier with a thicknesswB , a
quasiclassic approximation leads to an estimate

tS5mB
1/2wB /~2d!1/2, ~24!

that is a timetS can be decreased by simultaneously thinning
and heightening the barrier.

Instead of the boundary condition~20!, we can use an
equivalent condition

J85@sS~v!1 ivkD~v!#E8~0!. ~25!

Solving Eq.~19! with the boundary conditions~21! and~25!,
we obtain

p8~x!5
eJ8

v2kD~v!
F211S 11

v@vkD~v!weff1 isSx#

VS@sS1 ivkD~v!# D
3exp~2 ivx/VS!G , ~26!

E8~x!5
iJ8

vkD~v! F211
sS

sS1 ivkD~v!
exp~2 ivx/VS!G .

~27!

By integratingE8(x) from x50 to x5 l , we calculate an
alternating voltage,Ul8 , across the T-space and its imped-
ance

Z5Ul8/J85R1 iX ~28a!

with

R5
l 2

kD~v!VS
F q

u2
3

q~12cosu!1u sinu

q21u2 G , ~28b!

X5
l 2

kD~v!VS
F2

1

u
1

q

u2

q sinu2u~12cosu!

q21u2 G ~28c!

whereu5v l /VS , q5sS(v) l /VSkD(v).
If q!u, resistanceR and, consequently, conductanceG

5R/(X21R2) are negative in the almost complete intervals
where sinu,0 ~that is atp,u,2p, 3p,u,4p, and so on!.
But because of the inequalityq/u!1, values of the resistance
~or the conductance! are very small in comparison with the
total impedance@or the total admittanceY5G1 iB5(R
2 iX)/(R21X2)]. Therefore, it is necessary to narrow the
u-windows, in whichR is negative, and increase the values
of q. In the first of the above-mentionedu-windows, the
optimal value ofu should be nearu53p/2 where sinu521.
Selecting this value ofu, we look for such a value ofq, for
which absolute value of the so-called quality factor3 ~QF!
QF5B/G52X/R is minimal. ~In accordance to Ref. 3, the
desirable QF for transit time oscillators should be negative
and not very large on the absolute value!. In our case, the
approximate formula for QF is

QF>u~q21u2!/q@q~12cosu!1u sinu#.

For u53p/2, we have QF>(3p/2)(11j2)/j(12j) where
j52q/3p, and the optimal value of QF is reached at
j5&21 and equal to23p/~&21!>222.75. A more accu-
rate calculation can decrease the absolute value of this opti-
mal QF not very substantially. We see that parameters of the
optimal design for the selected frequencyv should be

VS / l >2v/3p54 f /3, ~29a!

sS~v!/vkD~v!5A221. ~29b!

Equation~29a! is a standard transit time condition and
relates only to the length and material of the T space. Equa-
tion ~29b! is mainly a requirement to the tunnel barrier,
which should be optimal for the selected frequency and be
matched to both the T-space and then1-cathode. An increase
in the oscillatory frequency requires not only shortening the
T-space length with a desirable increase inVS but also simul-
taneously increasing the differential transparence of the tun-
nel barriersS(v) in the vicinity of the Fermi energy in the
n1-cathode.

Note that the obtained comparatively large absolute
value of QF ~;20! is not connected specifically with the
transport ballisticity or with very high oscillatory frequen-
cies. The optimal correlation betweenq andu, and the opti-
mal value of QF are invariants of the theory, and they are
connected only with the assumed saturation of the electron

FIG. 4. Variations of energy«0 as a result of an alternating electric field
E8(0) effect.
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transport velocity in T-space. The ballisticity is necessary
only to legalize such high values ofVS as (1 – 2)
3108 cm/s.

The maximum values of the T-space lengthl max and the
minimum oscillatory frequencies, which can be still related
to the ballistic regime in T-space, are determined by the time
of electron scattering out of the beam. In accordance with
numerous calculations of scattering times with absorption
and emission of polar optical phonons~LO scattering! in the
G-valley, tLO , the latter saturates with an increase in energy
in the same energy interval where electron velocity saturates.
This saturated time typically exceeds13–15 10213s, and we
obtain the estimation:l max5VStLO>1025 cm. The actually
measured16 free path length of hot electrons in a very pure
InGaAs crystal is;1.531025 cm for T52 K. The values of
tLO in GaAs measured and also collected in Refs. 17 and 18
for electron energies 0.1–0.4 eV are in the range (1 – 2)
310213s.

V. DIFFUSIVE ELECTRON TRANSPORT IN T-SPACE

Our presentation in the previous sections has been based
on the hypothesis of ballistic electron transport between the
n1-cathode and then1-anode. The saturation of a ballistic
velocity for the nonparabolic dispersion relation~1! allows
us to obtain simple analytic results. Now we consider such a
modification of our model when we keep an assumption of
the saturated transport velocity for electrons in an electric
field but reject an assumption of the ballisticity in T-space.
Instead of a ballistic transport, we assume a diffusive elec-
tron transport with numerous collisions in the T-space. To
deduce a staticJV-characteristic, we should reject Eq.~6!
completely and rewrite Eq.~5! in the form

j 5evD~E!n, ~30!

wherevD(E) is drift electron velocity, which has replaced
velocity V(p). We need also to produce the same replace-
ment in Eq. ~7!. Note that we neglect all of the possible
gradient components in Eq.~30! ~such as a diffusion, ther-
modiffusion, etc.!. This means that we assume absence of
any sharp gradients in T-space. For an electric field in the
T-space with taking into account Eqs.~7! and~30!, we obtain

kDvD~E!dE/dx5 j . ~31!

If a drift velocity vD(E) is saturated@vD(E)5vS5const#, a
solution of Eq.~31! with the boundary condition~4! leads to

E~x!5E~ j !1 jx/kDvS ~32!

from where immediately aJV-characteristic in the form Eq.
~12! follows with the replacement of saturated ballistic ve-
locity VS by saturated drift velocityvS .

In the nonstationary case for a small harmonic signal
with a frequencyv and for the same saturated drift velocity
vD(E)5vS , we should replace Eq.~13! by the analogous
equation

j 85evSn8, ~33!

protecting Eqs.~14! and ~15! in the invariable form, and
rejecting completely Eq.~16!. Naturally, the reduced system
of equations does not require the boundary condition~21!:

only Eq. ~20! is sufficient.@Recollect that Eq.~21! has been
unclaimed even in the ballistic case: for example, in solu-
tions ~26! and ~27! and in Eqs.~28a!, ~28b!, and~28c!#. We
can find from Eqs.~15! and ~33! by taking into account Eq.
~20!

j 8~x!5$J8sS~v!/@sS~v!1 ivkD~v!#%exp~2 ixv/vS!.
~34!

An electric fieldE8(x) is presented by Eq.~27! after replac-
ing VS with vS . We need to produce the same replacement in
Eqs.~28b! and ~28c! to obtain componentsR andX.

As we see, the ballistic and diffusive cases coincide with
each other in the form of the final results: the same equations
and formulas, the similar invariants and optimal correlations
~for example, the optimal value of QF!. But these cases op-
erate not only with different velocitiesVS andvS , but, as a
result, with different values ofv, sS(v), and l.

VI. WEAK NONBALLISTICITY

In the previous section, we assumed that a tunneling
electron beam transforms immediately after leaving the tun-
nel barrier B into another electron subsystem with drift ve-
locity vS , which is much smaller thanVS . Such an assump-
tion is not evident since this drift velocity is formed as a
result of numerous scatterings including intervalley transfers.
Below we present a certain simplified model, which allows
us to model an inertial and nonlocal ballistic-diffusive trans-
fer. We introduce a finite timet for a transfer from the bal-
listic beam with a saturated velocityVS to a diffusive current
with a saturated drift velocityvS . Such a situation can be
realized if the considered ballistic-diffusive transfer occurs
across an intervalleyGL-scattering.

Assume that the tunnel barrier emits ballistic electrons
and their current densityj 1 in a stationary electric field de-
creases in accordance with the following equation:

d j1 /dx52en1 /t, ~35!

wheret is the above-mentioned time of the ballistic-diffusive
transfer, andn1 is the ballistic electron concentration

j 15eVSn1 . ~36!

The ballistic-diffusive transfer leads to the increasing second
current with current density

d j2 /dx5en1 /t ~37!

with

j 25evSn2 . ~38!

Note that we assume an absence of the back diffusive-
ballistic transfer. Adding to Eqs.~35!–~38! the Poisson
equation

kDdE/dx5e~n11n2! ~39!

and using Eq.~4! and the conditionj 2(0)50 as the bound-
ary conditions, we can obtain a staticJV-characteristic in the
following form:

Ul5E~ j !l 1~ j /kDvS!$ l 2/21~VS2vS!l t

1VS~VS2vS!t2@12exp~2 l /VSt!#%. ~40!
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Equation~40! transforms into Eq.~12! if t5`. If t50, Eq.
~40! transforms into the same Eq.~12! but with the replace-
ment of VS by vS . The result of such replacement can be
very substantial ifVS@vS . In particular, the leading role on
the right side of Eq.~12! can transfer from the first compo-
nent ~tunneling! to the second one~space charge!. For ex-
ample, consider the specific case when

VSt@ l ~41!

and only a small part of ballistic electrons is able to transfer
into the diffusive subsystem during their travel across
T-space. Nevertheless, we obtain

Ul5E~ j !l 1~ j l 2/2kDVS!~11 l /3vSt! ~42!

and Eq. ~42! is somewhat different from Eq.~12! if the
strong inequality 3vSt@ l takes place together with Eq.~41!.
But if

VS@ l /t>3vS , ~43!

the structure of space charge in the T-space is changed: it is
substantially defined by less mobile electrons with a small
drift velocity.

A high-frequency admittance for a signal with a fre-
quencyv is determined by the system of equations@which
are analogous to Eqs.~13!–~15!#

d j185eVSn18 , ~44a!

d j285evSn28 , ~44b!

kD~v!dE8/dx5e~n181n28!, ~45!

d j18/dx1 iven181en18/t50, ~46a!

d j28/dx1 iven282en18/t50, ~46b!

with the boundary conditions@compare with Eqs.~20! and
~25!#

j 18~0!5 j 8~0!5sS~v!E8~0!

5J8sS~v!/@sS~v!1 ivkD~v!#. ~47!

Equations~44!–~47! lead to a formula for an alternating elec-
tric field

E8~x!5
iJ8

vkD~v! F211
sS

sS1 ivkD~v!
F~x!G , ~48!

where

F~x!5
ivt~12vS /VS!exp@2~11 ivt!x/VSt#2~vS /VS!exp~2 ivx/vS!

ivt~12vS /VS!2vS /VS
.

We can check again that Eq.~48! transforms into Eq.~27! if
t5` and to the same Eq.~27! with a replacementVS→vS if
t50. As a result of the integration from 0 tol of both sides of
Eq. ~48!, we obtain

Z5Ul8/J8

52@ i /vkD~v!#F l 1 i
sS@s2 ivkD~v!#

sS
21v2kD

2 ~v!

3
~vS /VS!1 ivt~12vS /VS!

~vS /VS!21v2t2~12vS /VS!2
C~v!G , ~49!

where

C~v!5VSt~12vS /VS!vt~12 ivt!

3@12exp~2L2 iV!#/~11v2t2!1~vS
2/vVS!

3@12exp~2 iV8!#,

L5 l /VSt, V5v l /VS , andV85v l /vS . As in the stationary
case considered above, we pay our attention to the situation
when a nearly ballistic electron transport with a velocityVS

@vS occurs and the strong inequality~41! is met. Then, for
the frequencies starting withv>pVS / l the inequality

vt@1, vS /VS

is satisfied with a reserve, and Eq.~49! reduces to Eqs.~28a!,
~28b!, and ~28c!. This means that a weak nonballisticity,
which leads to the formation of a dense background of slow-
drifting electrons and has a visible effect upon a static

JV-characteristic, does not affect the considered oscillatory
regime, induced by the only ballistic electron beam in T
space.

VII. CONCLUSIVE REMARKS

~1! In this article, we continue to develop a theory of
ballistic transit time diode oscillators. We have considered a
model design for a single-transit~not cascading! unipolar T
diode with a tunnel barrier electron emission. For this design,
only two semiconductor materials are used: the first is for the
n1-cathode, then1-anode, and for the undoped T-space, and
the second is for the tunnel barrier placed between
n1-cathode and the T-space. We suggest using~as a working
ballistic electron energy range in the T-space! an energy in-
terval («0 ,«L) where«0 is the starting energy of the emitted
G-electron and«L is the bottom energy of the lowest noncen-
tral valley, to whichG-electrons can scatter effectively. The
starting energy«0 should be selected so high that the elec-
tron could have the maximum saturated velocityVS>(1
22)3108 cm/s while crossing the T-space. The range of this
interval is;0.5 eV for actual semiconductors.

~2! We have developed an analytic theory of static and a
linear high-frequency conductivity of the above-described
diode. We have shown that such a theory is distinguished
practically from the analogous theory for a diffusive electron
transport with a saturated drift velocity only by the values of
incoming and resulting parameters. Since the drift velocity is
10–20 times less than the saturated ballistic velocity, then
the diffusive transport oscillators are the same degree slower
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than the ballistic oscillators for the same T-space length~and
for much larger static voltage across this T-space!.

~3! We have shown that for both the ballistic transport
and the diffusive transport of electrons across the T-space,
the considered T diodes have an identical and not very small
quality factor in the most optimal regimes~;220!. A high-
frequency conductance for T diodes with a saturated electron
transport velocity in the T-space is always proportional to the
differential tunnel transparence of the tunnel emittersS(v).
The noticeably lower values of a quality factor have been
obtained in Refs. 8 and 9 where tunnel and over-barrier elec-
tron emissions with a zero starting energy and velocity were
assumed: QF'210 for the over-barrier space charge limited
emission and QF'23.3–3.5 for the tunnel emission. In the
last case a high-frequency conductance can be nonzero even
for sS(v)50 @being connected with the components in Eq.
~18!, which are proportional tom21(p) and eliminated from
Eq. ~19!#.

~4! Since even a small leakage of electrons from the
ballistic beam to the diffusive subsystem increases the static
space charge in the T-space due to the small drift velocity of
the diffusive transport, we have considered this effect on the
basis of the simplest two-velocity model. The above-
mentioned leakage leading to the visible decrease of a static
conductance almost completely spares the high-frequency
ballistic conductance in the THz range.
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